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 We are considering q R decomposition of n by n invertible matrix using reflectors. So, 

we will discuss this q R decomposition and then after that I want to consider 

approximation of a continuous function by polynomials in the 2 norm. So, that is known 

as least square approximation. We have already considered best approximation in the 

infinity norm. So, now this will be best approximation in the 2 norm. So, first we look at 

the q R decomposition of an invertible matrix. 
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So, we have a to be an invertible matrix of size n and our aim is to find an orthogonal 

matrix q; that means, matrix which satisfies q transpose q is equal to identity and an 

upper triangular matrix R, such that a is equal to q into r. So, this we are going to achieve 

using reflectors. 
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So, let me recall the reflectors, if you have 2 vectors in R n, such that x is not equal to y 

and the euclidian norm of x and y, they are the same. Then what we do is, we look at 

parallelogram with sides as x and y. The diagonals of this parallelogram, they will be 

given by vector x plus y and vector x minus y. We consider a unit vector in the direction 

of x minus y, which is given by u is equal to x minus y divided by its norm and v is a 

unit vector along the other diagonal. So, v is x plus y divided by its norm. These 2 unit 

vectors u and v, they are going to be perpendicular. So, inner product of u with v is equal 

to 0. What we want is a reflector, which will take vector x to vector y. So, we want 

orthogonal matrix q such that q x is equal to y. So, we look at the reflection in the line 



along the direction of v. The reflector q will be given by identity matrix minus 2 u u 

transpose. 
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When you look at q into u, that is going to be u minus 2 u u transpose u. U being a unit 

vector u transpose u will be equal to 1. So, we have u minus 2 u, So, that is equal to 

minus u. On the other hand when I look at q of v, it will be v minus 2 u u transpose v, 

since u and v are perpendicular to each other, q of v will be equal to v. So, thus if you 

define u and v in this fashion and look at q to be equal to identity minus 2 u u transpose, 

it has got property, that q u is equal to minus u and q of v is equal to v. 

Now, look at vector x. This we write as x plus y by 2 plus x minus y by 2. Q of u is equal 

to minus u. U is x minus y divided by norm of x minus y. And hence q of x minus y by 2 

will be minus of x minus y by 2 because x minus y by 2 is perpendicular to vector u. Q 

of v is equal to v and hence q of x plus y by 2 will be equal to x plus y by 2 and thus we 

get q of x is equal to y. 

We have achieved the fact that if x and y are vectors which are not equal with the same 

euclidian norm, then we can find q, such that q x is equal to y. Now, let us look at the 

properties of q. First of all q transpose is going to be equal to q. Q x is equal to y and 

consider q square. So, this will be identity minus 2 u u transpose multiplied by itself. So, 

when you multiply, you are going to have identity minus 2 u u transpose minus 2 u u 

transpose plus four u u transpose u u transpose. This u transpose u is going to be equal to 

1 because u is a unit vector. 

So, thus we have here four u u transpose, which will get canceled with this minus four u 

u transpose and you have q square is equal to identity. Thus q transpose is equal to q and 



q square is equal to identity. So, this matrix q is going to be orthogonal matrix. So, our q 

is the desired matrix which takes vector x to vector y and it is a orthogonal matrix. 
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Now, look at our n by n matrix. So, it is a invertible matrix. So, what we are going to do 

is, we are first going to look at the first column, a 1 1 a 3 1 a n 1. This column will be a 

non-0 column, because a is invertible. This column, what we want to do is, we want to 

reduce a to an upper triangular form. That means, we want to introduce zeroes in the first 

column below the diagonal. That is what we are going to do using reflectors. So, now we 

have got the first column. It is a non-0 vector. We want to convert it into a vector, which 

has only first entry to be non-0 and all other entries to be 0. Since the new vector should 

have the same euclidian norm as the original vector, the first entry, it should be norm of 

the first column or it should be minus of norm of the first column. 
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So, here take vector x to be equal to a 1 1 a 2 1 a n 1 the first column, vector y to be 

sigma 1 0 0 0 where sigma 1 is nothing, but euclidian norm of x; that means, a 1 1 square 

plus a 2 1 square plus a n 1 square whole thing raise to half. Then euclidian norm of y is 

equal to norm of x, even if I write here minus sigma 1, then also this property will be 

satisfy. So, thus we have got 2 vectors, which I have got the same norm, then we know 

how to construct a orthogonal matrix q, such that q x is equal to y. So, sigma 1 is the 

norm of this vector, we look at u to be equal to x minus y divided by its norm and then q 

1 is equal to identity minus 2 u u transpose, then q 1 of x is going to be equal to y. So, 

thus we can reduce the first column to a column of the form sigma 1 0 0 0. 
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 Now, let me look at the norm of x minus y. Norm of x minus y is given by the square of 

all the entries, sum it up and then its square root. So, it is going to be summation a I 1 

square minus 2 times sigma 1 a 1 1 plus sigma 1 square. Sigma 1 square is the norm of x, 

so, it is summation a I 1 square and hence norm of x minus y will be equal to 2 sigma 1 

into sigma 1 minus a 1 1. 
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So, we have calculated, we need to calculate sigma 1, we need to calculate. Once you 

calculate sigma 1, norm of x minus y is given by this quantity. Then q 1 is identity minus 

2 u u transpose. This we have calculated that is 2 sigma 1 sigma 1 minus a 1 1 and sigma 

1 is this. So, now we are not going to calculate q 1 explicitly as a matrix. What we want 

to do is apply q 1 to a. So, we will look at the columns of a, we will call them as C 1 C 2 

C n and we need to look at the action of q 1 on each column. So, we have q 1 a is equal 

to q 1 C 1 C 3 C n the columns of a, this will be q 1 C 1 q 1 C 2 q 1 C n. Q 1 C 1 is going 

to be vector sigma 1 and then 0 0 0. 

Look at q 1 C 2, q 1 is identity minus 2 u u transpose and hence q 1 C 2 will be C 2 

minus 2 u u transpose C 2. So, this is nothing, but inner product of C 2 and u. So, the 



second column will be given by original column C 2 minus 2 times, this inner product 

multiplied by vector u, and similarly for the other columns q 1 C 3 q 1 C 4 and q 1 C n. 

Then look at this q 1 into a. The first column is reduced to sigma 1 and then 0 0 0. The 

second third nth column, they will all get modified. So, I am denoting the modified 

entries of the matrix as a 1 2 super script 1 a 2 2 superscript 1 and so on. So, this is about 

the first column. 
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Now, what we want is, we will look at the second column, and in the second column, we 

want to introduce zeros below the diagonal. Now, in the process, we do not want our first 

column to be disturbed, because we have already achieved the desired form. So, what we 

will do is, we will look at this n minus 1 by n minus 1 sub matrix. And then we will look 

at the first column of that n minus 1 by n minus 1 sub matrix and find a orthogonal 

matrix of size n minus 1, which will reduce the first column of this smaller matrix 2 a 

vector of the form here it will be non-0 and rest of the things they are going to be 0. 



(Refer Slide Time: 13:02) 

 

So, find n minus 1 by n minus 1 matrix q 2 tilde, such that q 2 tilde of this vector of size 

n minus 1. It becomes sigma 2 and then all the entries to be 0, where sigma 2 will be 

norm of this vector. So, this is q 2 tilde next what we do is, we add the entries to q 2 tilde 

and obtain a n by n matrix q 2. So, q 2 is going to be 1 here, this will be a row vector of 

length n minus 1, this will be column vector of length n minus 1 and then this will be q 2 

tilde. 
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Then, when you consider q 2 q 1 a, because of the nature of q 2, the first row and first 

column of our original matrix will not be changed and you will get here sigma 1 

remaining entries 0, here sigma 2 and remaining entries 0 and then so, on. Then we will 

go to a third column. So, we will look at a matrix of size n minus 2 and using the same 

idea we continue. So, like that we will find matrices q 1 q 2 q n minus 1, such that when 

you pre multiply a by this matrix, what you get is upper triangular matrix R. Each of q I 

is going to be a symmetric matrix and its square will be identity. So, each q I will be 

orthogonal matrix. 
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So, q I square is identity; that means, inverse of q I is equal to q I and hence from here, I 

will get a to be equal to q 1 q 2 q n minus 1 into R. Look at this product, that is going to 

be our matrix q. Since q 1 q 2 q n minus 1 they are orthogonal, their product also will be 

orthogonal, here we had q I transpose is equal to q I, but when you take their product, it 

will not be a symmetric matrix, but what we want is, we want q to be orthogonal. So, q 

transpose q will be, when you take the transpose, you change the order. So, it will be q n 

minus 1 q n minus 2 q 1 and then q 1 q 2 q n, q 1 square will be identity then q 2 square 

will be identity and then, so on. 

So, that is how we get q R decomposition of a matrix a, where a is invertible and q is 

going to be an orthogonal matrix, R is going to be an upper triangular matrix. Such a 

decomposition is not unique, but then for the uniqueness, we can impose some 



conditions on the diagonal entries of the matrix R. For example, we if we say that R 

should be such that, all diagonal entries they are bigger than 0, then the q R 

decomposition with this additional condition is going to be unique. Now, we are going to 

look at an example of a 2 by 2 matrix and we want to find its q R decomposition. 

(Refer Slide Time: 17:18) 

. 

So, a is matrix with first column to be 1 1 and second column to be 2 3. The determinant 

of this matrix is going to be equal to 1 and hence it is a invertible matrix. The first 

column I denote by x. So, x is equal to 1 1. Its norm is going to be root 2. Define y to be 

equal to vector root 2 0. So, thus x and y, they have got the same norm. Next look at u is 

equal to x minus y divided by norm of x minus y and q to be equal to identity minus 2 u 

u transpose. We have seen that such a matrix q will be such that q x is equal to y. And I 

said that we are not going to calculate q explicitly, what we need is its action on the 

columns, but since it is a illustrative example of size 2, let us calculate the what q looks 

like. 
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So, here is our vector 1 1 y is vector root 2 0, when you consider x minus y into x minus 

y transpose. So, this will be vector 1 minus root 2 1 and then transpose will be a row 

vector 1 minus root 2 1. So, take the multiplication. So, this will be 1 minus root 2 square 

1 minus root 2 1 minus root 2 and then 1. So, thus and also norm of x minus y square, it 

is going to be equal to 4 minus 2 root 2. So, this is this matrix and norm is going to be 4 

minus 2 root 2, because we are going to divide by this norm here. 
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Now, q is equal to identity matrix minus 2 x minus y x minus y transpose upon norm of x 

minus y square, this is the identity matrix 2 4 minus 2 root 2 was norm of norm square of 

this x minus y and this matrix, we have seen that it is 1 minus root 2 square 1 minus root 

2 1 minus root 2 1. So, now one can simplify and then see that q is equal to 1 by root 2 1 

1 1 minus 1. Notice the columns of q, they have norm to be equal to 1 and they are 

perpendicular to each other. So, this is our q, and now let us look at r. 
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So, a is 1 2 1 3 the columns of q are nothing, but the vectors, column vectors of a ortho 

normalized. So, we have got this and then one can check that q into a is going to give us 

this matrix r. So, it becomes an upper triangular matrix 1 by root 2 2 0 5 minus 1. Now, 

since q transpose is equal to q inverse, a is equal to q into R. So, this is our original 

matrix, this we have written as a product of orthogonal matrix q and then upper 

triangular matrix r. 

Now, we were saying that the diagonal entries of R should be positive. Here we have got 

this entry to be negative, but then it can be adjusted with the entries of q. So, q into R is 

here. So, if I consider q cap and R cap, where q cap is 1 by root 2 1 1 minus 1 one and R 

cap to be this, then q cap is also orthogonal matrix and R cap is upper triangular matrix. 

So, this is q R decomposition using the reflectors and now we are going to look at the q 

R method, we had already defined it. So, I just want to state the method again and its 

convergence. 
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So, the q R method consists of writing a as q 0 into R 0. So, a is the our starting matrix, 

we find its q R decomposition and then we define a 1 to be q 0 and R 0 multiplied in the 

reverse order. Then find the q R decomposition of this new matrix. Once you find this q 

and R, you multiply them in reverse order, matrix multiplication is not commutative, so, 

you are going to get a different matrix in general. Like that when you reach a m, then 

find its q R decomposition and then a m plus 1 is equal to R m into q m. So, you see in 

the q R method, one needs to calculate this q R decomposition at each stage and that is 

why we wanted some efficient way of doing the q R decomposition. 
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So, here is the theorem, here is a sufficient condition for convergence of q R method. So, 

let a be a real n by n matrix with Eigen values lambda 1 lambda 2 lambda n, such that 

mod lambda 1 bigger than mod lambda 2 bigger than mod lambda n bigger than 0. The 

matrix is real. So, its Eigen values they are either real or they are going to be complex 

conjugating pairs. But because of this condition that no 2 Eigen values they have the 

same modulus, all Eigen values they are going to be real. Then a m converges to an 

upper triangular matrix that contains lambda I in the diagonal position. 

If a in addition is symmetric, then a m converge the sequence a m converges to a 

diagonal matrix. Symmetric real matrices, they are going to be diagonalizable. And in 

general, if you have a matrix a, then we know that there exist a similarity transformation 

which will convert a to a upper triangular matrix. So, this is what we try to achieve 

iteratively in the q R method. If this condition is not satisfied, then the iterates in the q R 

decomposition, they may not converge. 
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So, here is an example, look at matrix a 2 by 2 matrix with entries as 0 1 1 0, then the 

Eigen values they are given by minus 1 and 1. So, that means, 2 Eigen values they will 

have the same modulus. A is a symmetric matrix and a square is equal to identity. So, a 

itself is a orthogonal matrix and hence its q R decomposition can be q 0 is equal to a and 

R 0 is equal to identity, but in that case, I will get a 1 to be equal to R 0 into q 0 which is 



same as a. So, that means, all the iterates they are going to be equal to the original matrix 

a, and in this case a m s they do not converge to a diagonal matrix. 

So, this is about the q R method, we could not prove the convergence of q R method, but 

that is beyond the scope of the first course on a elementary numerical analysis. Now, 

what I want to do is, I want to look at least square approximation of a continuous 

function by using polynomial. Now, before that let me just mention that the q R 

decomposition, it can be used to find solution of system of linear equation. 
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So, we have got a system a x is equal to b, where as a is invertible matrix, we have 

written a is equal to q into R, where q is orthogonal and R is upper triangular. So, the 

original system becomes q R x is equal to b, this is equivalent to 2 systems q y is equal to 

b and R x is equal to y. So, first solve this that is nothing, but y is equal to q transpose b 

and then solve R x is equal to y by back substitution. 
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However the number of computations for q R decomposition they are going to be of the 

order of 2 n cube by 2 multiplications and 2 n cube by 3 additions, which is twice as 

expensive as the as compared to the L U decomposition. So, that is why one does not use 

q R decomposition for solution of system of linear equations. 
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Now, let us look at the polynomial approximation. We had looked at Bernstein 

polynomials and then the disadvantage of Bernstein polynomials was slow convergence 



and it does not reproduce the polynomial. So, that is why what we did was, we looked at 

the best approximation. 
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Now, in the best approximation, our aim is to find p n star, such that the error in the 

maximum norm or the infinity norm that is minimize. So, that means, we are trying to do 

the best, as for as the error is concerned, but then there exists a unique best 

approximation p n star, but in order to find is, we need a iterative method. So, that is why 

the best approximation, it was not advisable or we did not consider the best 

approximation, now what I want to do is, I want to consider the best approximation, but 

instead of infinity norm in the 2 norm. 
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So, our space is C a b, on that we have got this inner product, inner product of f and g as 

integral a to b f x into g x d x. Take f and g to be real valued functions. This inner 

product, it induces a norm for elements of C a b and that is integral a to b f x square d x 

whole thing raise to half. So, that is the 2 norm and now we are going to look at the best 

approximation from the space of polynomials in the 2 norm. 

(Refer Slide Time: 29:29) 

 

So, that is known as the least-squares approximation that p n is the space of polynomials 

of degree less than are equal to n. F is a continuous function we want to find a 



polynomial of degree less than or equal to n, such that norm of f minus p n star is its 2 

norm is equal to minimum of norm of f minus p n 2 norm when p n varies over script p 

n. We have to show the existence of such a best approximation p n star and then the way 

to find such p n star. So, for that purpose, we are going to use what are known as 

Legendre polynomials. So, look at the functions 1 x x square x cube and. So, on. 

So, that is linearly independent, apply gram Schmidt Roth normalization process to it, 

then you will get the Legendre polynomial. So, q 0 q 1 q 2, these are going to be 

Legendre polynomials with the property, that q I is polynomial of exact degree I and they 

are mutually perpendicular. So, inner product of q I with q j is 1, if I is equal to j and 0 if 

I not equal to j. The gram schmidt orthonormalization process has the property that span 

of 1 x x square x raise to n. If I look at the first n plus 1 functions here, then that is going 

to be same as span of first n plus 1 Legendre polynomials q 0 q 1 q 2 and. So, on. 

So, span of q 0 q 1 q n will be same as span of 1 x x raise to n and that is nothing, but the 

space of polynomials of degree less than or equal to n. Q I is a polynomial of degree I, 

they are they form a Roth normal set and hence linearly independent. So, q 0 q 1 q n will 

be a basis for the space of polynomial. 1 x x square x raise to n, that is also basis for 

space of polynomials of degree less than are equal to n. So, here is another basis. So, 

when I look at a polynomial p n of degree less than or equal to n, I can write uniquely as 

a linear combination of q 0 q 1 q n. So, thus alpha 0 alpha 1 alpha n, these are scalars. 
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Now, look at our claim is that the best approximation in the 2 norm is going to be given 

by summation j goes from 0 to n, inner product of f with q j q j, f is a given continuous 

function. Q 0 q 1 q 2 etcetera, these are the Legendre polynomial. So, look at this p n star 

and we want to show that norm of f minus p n star is less than or equal to norm of f 

minus p n. So, we are showing the existence and then show that it is the best 

approximation. If I take inner product of p n star with q I, then by linearity of inner 

product in the first variable, it will be summation j goes from 0 to n f comma q j q j 

comma q I. 

Now, this will be 1 only when j is equal to I and hence it is inner product of f with q I for 

I going from 0 1 up to n. So, thus f minus p n star q I will be 0, for I is equal to 0 1 up to 

n. Q 0 q 1 q n these are basis for the polynomials of degree less than o equal to n, and 

thus f minus p n star will be perpendicular to each polynomial of degree less than or 

equal to n and it is this property we will use to show this inequality. 
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So, f minus p n star is perpendicular to each polynomial of degree less than or equal to n. 

Since q 1 q 2 q n they form a basis for sequence of for a space of polynomials of degree 

less than or equal to n. Consider f minus p n norm square, add and subtract p n star. So, f 

minus p n star plus p n star minus p n, f minus p n star is perpendicular to each 

polynomial of degree less than or equal to n. 
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So, it will be perpendicular to this polynomial. And hence by Pythagoras theorem, it will 

be norm of f minus p n star square plus norm of p n star minus p n square, and thus norm 



of f minus p n star is less than or equal to norm of f minus p n, p n belong into script p. 

So, unlike in the case of best approximation by polynomials in the infinity norm in the 

case of best approximation in the 2 norm, we can find the best approximation explicitly. 

In case of infinity norm, we needed to go to a iteration process. 

So, thus we have considered polynomial approximation of a continuous function. So, 

there are various ways. So, one was Bernstein polynomial approximation, then there was 

the best approximation in the infinity norm, then approximation by interpolating 

polynomials and now approximation best approximation in the 2 norm. Now, all these 

approximations, they have some desirable properties, some not so, desirable properties. 

Now, what I am going to do is, I am going to recall what all results we have proved in 

this course. 

So, our course, this is the last lecture. So, now I want to recall what all things we did 

briefly. I have already talked about the approximation of continuous function by 

polynomials in various ways and then we started with the interpolating polynomial. 

Many of the topics in this course, they were based on this interpolating polynomial. We 

proved existence of and uniqueness of interpolating polynomial by using Lagrange 

functions or Lagrange polynomials, but then such a definition is not recursive; that 

means, if we find a polynomial of degree n and then add 1 more interpolation points, 

then we have to do all the work again. So, that is why we looked at the divided 

difference form or the Newton’s form of the polynomial. 
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So, then Newton’s form is given by, you have got x 0 x 1 x n to be distinct points in 

interval a b, then there is a unique interpolating polynomial of degree less than or equal 

to n. That polynomial is given by this form. This is known as Newton’s form and if from 

p n to p n plus 1, I have to go I have to just add 1 more extra term. The error in the 

interpolating polynomial, it is given by f x minus p n x is equal to divided difference 

based on x 0 x 1 x n x and then multiplied by x minus x 0 x minus x n. 

So, this was a very important formula, because when we use this polynomial 

approximation for various problems, then we need to know what is the error involved. 

Now, the first topic we considered was numerical integration, all continuous functions 

they are Riemann integral, but when it comes to finding the integral, it is not easy, for 

some functions, yes, but otherwise the definition using Riemann sums is not of much use 

in numerical analysis, when we want to calculate the integral. 

So, now integral a to b f x d x will be approximately equal to integral a to b p n x d x. 

This p n x if you write it in the Lagrange form; that means, summation f x I l I x, where l 

I x is this polynomial of degree n, then integral a to b p n x d x, it is given by summation 

w I f x y where w I is integral a to b l I x d x. So, thus integral a to b f x d x is 

approximately equal to summation w I f x I, i goes from 0 to n. Choices of n and of the 

interpolating point, they give raise to varies numerical quadrature rules and the rules 

which we have considered the basic rules, these are the midpoint rule, when you are 



considering the constant polynomial with the interpolation point to be the midpoint, 

trapezoidal rule when you consider the approximation by linear polynomial with 

interpolation points to be the end points or Simpson’s rule when you consider 

approximation by quadratic polynomials with 3 interpolation points as the 2 end points 

and the midpoint and these are all special cases of Newton cotes formulae, where you 

sub divide your interval into n equal parts and take your interpolation points as the n plus 

1 partition points. 

Now, once we got basic rules, then we considered composite rules. So, composite rule is 

divide your interval a b into smaller sub intervals and then on each sub interval, apply a 

numerical integration. We also considered Gaussian integration, where we started with 

integral a to b f x d x to be approximately equal to summation w I f x I and treated w I 

the weights and x I the nodes as unknowns to achieve the maximum exactitude. The way 

we did numerical integration, for the numerical differentiation we use the same idea, that 

polynomials are infinitely many times differentiable. So, consider a interpolating 

polynomial and then derivative of it will give you an approximation to derivative of a 

function. And this later we used for finite difference method for the solution of 

differential equations. 
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Then important topic was system of linear equations. So, Ax is equal to b with the 

assumption that a is n by n invertible matrix. First we considered gauss elimination 



method, this gauss elimination method is equivalent to L u decomposition of a matrix a, 

where l is unit lower triangular matrix; that means, the diagonal entries are equal to 1 and 

u is upper triangular. Next we considered gauss elimination with partial pivoting and in 

that case, it is equivalent to L u decomposition of not matrix a, but matrix p into a, where 

p is a permutation matrix; that means, the matrix obtained from the identity matrix by 

finite number of row interchanges. If your matrix a is positive definite, then you have got 

what is known as colicky decomposition. We have L u decomposition for a matrix a 

under certain conditions. 

One of the conditions are in fact, necessary and sufficient condition is, look at the 

principle minors, if they are all not equal to 0, then you can write a as l into u, if a is 

positive definite, then we can write it as g into g transpose where g is going to be a lower 

triangular matrix. So, this will need half the number of computations as compared to l u 

decomposition, but it will be possible only for positive definite matrices. So, we have the 

colicky decomposition of a positive definite matrix as a is equal to g g transpose, we also 

considered iterative methods for solution of a x is equal to b and those were the Jacobi 

and gauss-sidle method. 
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.We looked at vector and matrix norms. So, for the vector, we considered mainly 1 norm 

2 norm and infinity norm. 2 norm is the well-known Euclidian norm. Once you fix vector 

norm, then we define induced matrix norm as norm a is equal to maximum norm a x by 

norm x x not equal to 0. And then corresponding to 1 vector norm and infinity vector 

norm we have got a formula for norm a in terms of its value of its entries a I j. For norm 

a 2 we have to be satisfied only with an upper bound we want to solve a x is equal to b, 

but then because of the finite precision of computers, instead of a x is equal to b, we will 

be solving a nearby system. There will be, instead of a there will be a plus delta a, 

instead of the right hand side b, you will have b plus delta b and instead of x the 

computed solution will be x plus delta x. 

One wants to know what is the error between x and x cap. The exact solution and the 

computed solution. So, relative error is norm of x minus x cap by norm x some vector 

norm and then we showed that this will be less than or equal to the error in the 

coefficient matrix error in the right hand side and in that what comes into crucially into 

picture is the condition number norm a into norm a inverse. For a x is equal to b, we 

looked at the iterative methods which were Jacobi and gauss-sidle methods. 
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Then we wanted to look at the solution of non- linear equations f x is equal to 0, this is 

related to finding a fix point of a method g of C is equal to c. So, we considered Picard’s, 

it fixed point iteration and in detai,l the Newton’s method, secant method also regular 

falsi method for finding 0 of a function. 
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Differential equations, we looked at initial value problem, here there were 2 types of 

methods, single step methods such as Euler and range kite methods, these are classical 

methods and multi-step methods such as Adams-Bashforth and Adams-Moulton which 



are relatively of recent origin method and the important thing is the stability of the 

methods which we are considered in detail. 

Then we looked at the boundary value problem and for the boundary value problem the 

method which we considered was the finite difference method, where the derivatives are 

replaced by finite differences. So, that finishes our course and it was a pleasure to give 

this course. So, thank you. 

 


