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Lecture No. # 37 
Power Method 

.In this lecture, we are first going to show that if A is a normal matrix; that means, A star 

A is equal to A A star, then 2 norm of the matrix is modulus of the biggest Eigen value. 

Then we will look at some of the localization results; that means, we will look at some 

region in the complex plane which are going to contain Eigen values of given matrix, 

after that we are going to look at power method, which is a method for finding 

approximation to the dominant Eigen value and then we will look at some of the 

extensions of this power method. So, let me first show that 2 norm of A is maximum of 

the biggest or it is the modulus of the biggest Eigen value provided A is normal. 
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So, we have got A to be normal matrix A star A is equal to A A star, by spectral theorem 

we have got A u j is equal to lambda j u j, where norm u j, its 2 norm is equal to 1 and 

inner product of u i with u j is 0, if i not equal to j. Our definition of 2 norm is maximum 

of norm A z its 2 norm divided by norm z 2 provided, z is not equal to 0 vector. A z in c 

n can be written as summation j goes from 1 to n, inner product of z with u j u j. So, this 

is using orthonormality of u j s. So, let us calculate norm z, norm A z, A z is going to be 



summation j goes from 1 to n, inner product of z with u j and then A u j. So, that will be 

lambda j u j. 
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So, we have got z is equal to summation j goes from 1 to n inner product of z with u j u j. 

So, norm z its 2 norm square, it is going to be inner product of z with itself. So, this will 

be summation j goes from 1 to n, inner product of z with u j u j and summation, say, i 

goes from 1 to n, inner product of z with u i u i. Now, use the linearity in the first 

variable conjugate linearity in the second variable to obtain summation j goes from 1 to 

n, summation i goes from 1 to n, inner product of z with u j this is coming out as it is, 

complex conjugate of z u I, because it is coming out from the second variable, u j comma 

u i, now this is 0 if i not equal to j. So, you will get this to be equal to summation j goes 

from 1 to n modulus of z comma u j square. So, this is norm z its 2 norm square. 
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In a similar manner, we are going to have A z to be equal to summation j goes from 1 to 

n, inner product of z with u j lambda j u j. So, norm of A z, its 2 norms square will be 

summation j goes from 1 to n modulus of z comma u j square mod lambda j square. 

Suppose the Eigen values are ordered in this manner, mod lambda 1 are bigger than or 

equal to mod lambda 2, bigger than or equal to mod lambda n, then norm A z its 2 norms 

square will be less than or equal to each mod lambda j will be less than or equal to mod 

lambda 1, take out of the summation sign. So, we will have mod lambda 1 square, 

summation j goes from 1 to n modulus of z comma u j square. Now this is nothing but 2 

norm of z whole square. So, we have got mod lambda 1 square and then norm z 2 square 

and thus we will get norm A z 2 norm to be less than or equal to mod lambda 1 times 

norm z 2 norm. 
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And then for z not equal to 0 vector, norm a z divided by norm z will be less than or 

equal to mod lambda 1, which will imply that maximum of norm a z by norm z, z not 

equal to 0 vector is less than or equal to mod lambda 1. This is our norm a 2. We have 

got a u 1 is equal to lambda 1 u 1. So, norm a u 1 is going to be mod lambda 1 times 

norm u 1 2 norm. So, this is equal to 1 and thus mod lambda 1 will be less than or equal 

to norm a 2 norm u 1 2 which is 1. So, here you have got norm a 2 to be less than or 

equal to mod lambda 1, here you have got mod lambda 1 to be less than or equal to norm 

a 2, so combining you get norm a 2 to be equal to mod lambda 1. 

(Refer Slide Time: 07:54) 

 



There is the result that, if A is normal, lambda 1 lambda 2 lambda n are Eigen values of 

A, which are arranged in such a manner that mod lambda 1 bigger than or equal to mod 

lambda 2, bigger than or equal to mod lambda n, then 2 norm of A is nothing but 

modulus of lambda 1. Now, here we have just obtain a formula, but norm A 2, it is still 

we cannot compute, because we cannot compute the Eigen values for all matrices. For 

special matrices, if it is a upper triangular matrix, I know how to calculate its Eigen 

values. 

So, for norm A 2, we did not have a formula, in terms of the elements of the matrix as in 

case of 1 norm or infinity norm, and now we have got norm a 2 is equal to mod lambda 

1, where both left hand side and right hand side are not computable, but still we have got 

a relation. So, now we are going to consider localization of Eigen values. 
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So, we have the simplest one which we get is, if A is a, this is going to be always the 

case. A will be either real or a complex matrix, if lambda is a eigen value, then you have 

A u is equal to lambda u, where u is a not non-0 vector. If you consider induced matrix 

norm, then we have got norm a to be maximum of norm a z by norm z. So, taking norm 

here, you get norm A u is equal to norm lambda u. So, that gives you mod lambda to be 

equal to norm A u by norm u, I can divide by norm u, because u is a non-0 vector and 

this will be less than or equal to norm a. 
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So, if you consider a disc with center 0 and radius norm A, then the Eigen values they 

are going to lie in this close disc, set of all z belonging to c such that mod z is less than or 

equal to norm A. This norm can be any induced matrix norm. It can be 1 norm, it can be 

infinity norm, it can be 2 norm or whichever norm you take. You fix a vector norm 

consider the induced matrix norm, then your mod lambda is going to be less than or 

equal to norm of a. This result tells us that if i take any z outside this disc, then my a 

minus z i is going to be invertible. If your matrix is a special matrix like, if it is a self-

adjoint matrix, then what we know is the Eigen values they are going to be real. So, we 

can say that for self-adjoint matrix, the Eigen values they will lie in the interval, closed 

interval, minus norm a to plus norm A. We have to take intersection of the close disc 

with the real line. 

If you are considering or if your matrix is skew self-adjoint, then you have to take 

intersection of this close disc with the imaginary axis. Now, we are going to consider 

what is known as Gerschgorin theorem. So, that again gives us regions in the complex 

plane, which are going to contain all our Eigen values and as a consequence of 

Gerschgorin theorem, we will show that if the matrix is diagonally dominant, then such a 

matrix is invertible. 
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So, here is the Gerschgorin theorem A is n by n complex matrix, you look at D i to be the 

disc with center a i i and radius to be sum of half diagonal entries in that particular row. 

So, you are going to have n such discs, then the eigen values of a, they are going to be 

contained in the union of this disc. So, the matrix a is given to us. We look at the disc 

with center a i i. So, look at the ith row. So, take the center to be a i i and radius to be the 

entries in the same row except the diagonal entry, take their modulus and then sum. So, 

that is going to be the radius. So, you have such n disc, so all our eigen values they will 

lie in the union of this n disc and the proof is not difficult. So, let us prove this. 
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So, we have got A to be a n by n matrix whose i jth entry is given by a i j. Then suppose 

you have got a u is equal to lambda u, where u is a non-0 vector. Let me write u as u 1 up 

to u n, a column vector. Now, here a u is equal to lambda u, this is equality of 2 vectors. 

So, this means you have got ith component of a u is equal to lambda times u i, i goes 

from 1 to up to n. Now this is nothing but, summation a i j u j, j going from 1 to n 

lambda times u i . So, what I will do is, the term which contains u i, i will take on the 

other side and the remaining terms, i will keep here. So, we have got summation j goes 

from 1 to n a i j u j, j not equal to i is equal to lambda minus a i i u i. 
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So, we have got a u is equal to lambda u and from here we deduced that lambda minus a 

i i u i is equal to summation j goes from 1 to n, j not equal to i a i j u j, i going from 1 to 

up to n. Let modulus of u k be norm u infinity norm; that means, maximum of modulus 

of u j 1 less than or equal to j, less than or equal to n. This is true for i is equal to 1 to up 

to n. So, in particular it will be true for i is equal to k. So, i will have lambda minus a k k 

is equal to summation j goes from 1 to n, j not equal to k, a k j u j divided by u k. u is a 

non-0 vector. So, u k will not be equal to 0. Take modulus and use triangle in equality. 

So, we will have modulus of lambda minus a k k to be less than or equal to summation j 

goes from 1 to n, modulus of a k j j not equal to k and then mod u j by u k, and this is 

going to be less than or equal to 1. So, we have got this. 
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So, we started with a eigen value lambda. Then we looked at corresponding eigen vector. 

For this eigen vector, we looked at component u k, where mod u k is equal to norm u 

infinity. There can be more than 1 such k, if your vector is a constant vector then k will 

be any component. Any way it does not matter. So, mod u k is equal to norm u infinity 

and then we showed that modulus of lambda minus a k k is less than or equal to 

summation j goes from 1 to n, j not equal to k and then modulus of a k j. So, here the 

catch is, we do not know lambda, we do not know eigen vector u. Then if I do not know 

eigen vector u, I cannot know what is the k, where mod u k is equal to norm u infinity. 

So, this whatever estimate I have got it is not of much use. It says that your eigen value 

lambda is going to lie in the disc with center a k k and radius to be some of the moduli of 

half diagonal entries in that kth row, but we do not know what is the that row. So, that is 

why what we do is I do not the row. So, I will do it for each such row and then take their 

union. So, then I will know that my lambda has to be in the 1 of the disc. 
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Is your a u is equal to lambda u, u is vector non-0 vector, then we have got we looked at 

a u i is equal to lambda times u I, i is equal to 1 to up to n, wrote down what it means 

mod u k was norm u infinity. And then we got modulus of lambda minus a k k to be less 

than or equal to summation j goes from 1 to n j not equal to k modulus of a k j. Since we 

do not know k, we are going to look at all such discs. So, d i is set of all z belonging to c 

such that modulus of z minus a i i to be less than or equal to this and then the eigen 

values of the A they are going to be contained in union of d i i goes from 1 to up to n. 
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So, let us look at a example and try to find that the region in which your eigen values are 

going to lie by using our first estimate, that modulus of lambda is less than or equal to 

norm A. So, that norm we can take either 1 norm or infinity norm and another result 

which we have got is this Gerschgorin theorem. 
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So, here is a 3 by 3 matrix, the matrix is a symmetric matrix, you can see that 1 norm is 

equal to infinity norm is equal to 11, because for infinity norm, we are going to look at 

the rows. So, it will be 4 plus 1 plus 2. So, that is going to be 8, then second row it will 



be 9 and third row it is 11. So, norm a 1 is equal to norm a infinity is equal to 11. As the 

matrix is a real matrix, eigen values they are going to be real. So, eigen values they will 

lie between minus 11 to plus 11. 

Now, let us look at Gerschgorin disks. So, D 1 will be modulus of z minus 4 less than or 

equal to 1 plus 2 that is 3. D 2 is going to be set of all z belonging to c, such that modulus 

of z minus 5 is less than or equal to sum of half diagonal entries. So, 1 plus 3 is equal to 

4. Then d 3 will be set of all z belonging to c, such that mod z minus 6 less than or equal 

to 5. As I know that the eigen values are real, it is suffices to look at the intervals. So, D 

1 will be interval 1 to 7, d 2 will be interval 1 to 9 and d 3 will be interval 1 to 11. When 

you take the union of these 3 intervals, it is going to be 1 to 11. So, here Gerschgorin 

theorem tells us that eigen values, they will be in the interval 1 to 11 whereas the norm 

thing, it gave us interval to be minus 11 to plus 11. Also look at the interval. It does not 

contain 0, so that means, 0 cannot be an eigen value of a, because all eigen values they 

have to be in the interval 1 to 11. So, 0 not an eigen value; that means, A is going to be 

invertible matrix. So, now is the result which I said that if the matrix is strictly row 

dominant; that means, the diagonal entry modulus of a i i is bigger than sum of the 

moduli of remaining entries. Then such a matrix is going to be invertible. 
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So, you have summation j goes from 1 to n modulus of a i j, j not equal to i to be strictly 

less than modulus of a i i, then A is invertible. Our D i is set of all z belonging to c, such 



that modulus of z minus a i i is less than or equal to this number. Now, 0 cannot be in D 

I, because if 0 belongs to D I, it will mean that modulus of a i i is less than or equal to 

this. So, it will contradict this. So, 0 does not belong to any of the discs and all eigen 

values they are in the union of these discs. So, a strictly row dominant matrix is going to 

be invertible. 

Now, what about strictly column dominant? That means, in a column, suppose the 

diagonal entry modulus of a i i is going to be bigger than sum of the half diagonal entries 

in the column. Earlier we have looked at rows, now we are looking at columns. Will such 

a matrix be invertible? So, the answer is yes, because what we can do is, if you have such 

a matrix look at its transpose. So, if a matrix is diagonally column dominant, then a 

transpose will be diagonally row dominant and diagonally row dominant means 

invertible we have seen just now. So, if A is diagonally column dominant, then a 

transpose will be invertible, but if a transpose is invertible, then a also is invertible, 

because a transpose inverse is same as a inverse transpose. 
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So, when we started eigen values, I said that till now we were restricting ourselves to real 

numbers. Now we have to go to complex numbers. If your matrix is real symmetric 

matrix, then you can restrict yourselves to real numbers. So, the matrix is real symmetric; 

that means, it is going to be self-adjoint a star is equal to a. So, the eigen values they are 

going to be all real. Now the question is what about eigen vector? If i can show that it 



has a real eigen vector, then i need not go to complex numbers. Now that is so, let me 

show you, so, we have got a to be real symmetric matrix. So, we have got a transpose is 

equal to a and a star which is a bar transpose, it will be equal to a transpose, it will be 

equal to a. So, our eigen values, they are going to be real. 
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Now, look at A z to be equal to lambda z, where z belongs to c n and z is not equal to 0; 

that means, z is eigen vector. So, this z, I can write as x plus i y where x and y, these are 

in r n. Now let me substitute, so i will get a of x plus i y is equal to lambda times x plus i 

y. Elements of a are real lambda is real. So, this gives you a x is equal to lambda x a y is 

equal to lambda y. Since z is not a 0 vector, we have got either x is not 0 or y is not 0 or 

both are not 0. So, we have got, we started with z to be a eigen vector, then we looked at 

its real and imaginary parts. So, you have got vector x, vector y, both x and y are going 

to be satisfying a x is equal to lambda x a y is equal to lambda y. So, they will be eigen 

vectors provided they are non-0 

Since z is not equal to 0 vector, either x is not 0 or y is not 0 or both are not 0 and x and 

y, these are real vectors. So, thus for a real symmetric matrix, eigen values are real, the 

entries of the matrix are real and you can choose your eigen vector to be a real vector. 

So, there we can restrict ourselves to the real numbers. Now when we look at eigen value 

problem, it is that simultaneously we have to find a complex number lambda and a 

complex vector u, such that a u is equal to lambda u. So, this is what it makes it difficult, 



that you have to simultaneously calculate or find lambda and u. Suppose lambda is given 

to you and you want to find u, such that a u is equal to lambda u, then it is easy. You 

have got lambda is known, you want a u is equal to lambda u, so u is going to be solution 

of a minus lambda I, u is equal to 0 vector, lambda is eigen value. So, a minus lambda i 

will be a singular matrix. So, you get a homogeneous system with coefficient matrix to 

be singular. So, it will have always have a non-trivial solution and we know how to 

calculate the solution of system of linear equations. So, if lambda is known, you can 

calculate eigen vector. On the other hand if eigen vector is known then lambda is nothing 

but constant of proportionality. So, u is given to you, matrix a is known. So, calculate a 

u, calculate u and then they are going to be multiple of each other. So, whatever is that 

multiple, that is lambda. Or you can look at lambda to be equal to u star a u divided by u 

star u. So, thus if eigen value is known you can calculate eigen vector, if eigen vector is 

known you can calculate eigen value. 
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So, now here is the method, which is known as power method for calculating 

approximation to a dominant eigen value. So, these are our assumptions, that the eigen 

values of a are such that mod lambda 1 is strictly bigger than mod lambda 2, bigger than 

or equal to mod lambda 3, bigger than or equal to mod lambda n. So, such a matrix, this 

is known as dominant eigen value. So, here you have to notice this strictly bigger than, 

this is essential. The second assumption is a has n linearly independent eigen vectors. So, 

you have a u j is equal to lambda j u j, j is equal to 1 to up to n, lambda j’s can be 

repeated except for the first 1. This biggest eigen value, this should be simple, it should 

not be repeated. So, now these are our assumptions and the second assumption will be 

satisfied for class of normal matrices or if a has n distinct eigen values, then also the 

second assumption is satisfied and if the matrix a is a normal matrix then. In fact, a has n 

orthonormal eigen vectors. 
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So, what is the method? The method is you choose z to be a non-0 vector. This z you can 

write as a linear combination of u 1 u 2 u n. So, z is equal to alpha 1 u 1 plus alpha 2 u 2 

plus alpha n u n. Apply a to this. So, a z will be alpha 1 a u 1 plus alpha 2 a u 2 plus 

alpha n a u n. a u 1 is equal to lambda 1 u 1, so this will be lambda 1 alpha 1 u 1. a u 2 is 

lambda 2 u 2 so it is lambda 2 alpha 2 u 2 plus lambda n alpha n u n. a raise to k z will be 

lambda 1 raise to k alpha 1 u 1 plus lambda 2 raise to k alpha 2 u 2 plus lambda n raise to 

k alpha n u n. 



So, see what is happening? You start with a non-0 vector, any vector z. This z will have 

component in the direction of u 1. So, you write z as alpha 1 u 1 plus alpha 2 u 2 plus 

alpha n u n, then you keep applying a. So, the component in the direction of u 1, which 

was that alpha 1, that is getting multiplied by lambda 1 raise to k. The component in the 

direction of u 2, that is getting multiplied by lambda 2 raise to k. We are assuming mod 

lambda 1 to be bigger than mod lambda 2. So, this component in the direction of u 1 will 

become more significant. So, that is the idea of the power method that if you consider a 

raise to k z divided by lambda 1 raise to k. So, we have got a raise to k z to be alpha 1 

lambda 1 raise to k u 1 plus alpha 2 lambda 2 raise to k u 2 and so on. 
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So, take lambda 1 raise to k common and when you look at a raise to k z by lambda 1 

raise to k, this is going to converge to alpha 1 u 1 as k tends to infinity. Now, we do not 

know lambda 1, we do not know lambda 1, we do not know u 1. So, this a raise to k z by 

lambda 1 raise to k, even if it is converging to a multiple of eigen vector u 1, this is not 

something which you can calculate. 
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But this is just a normalization. So, you look at a raise to k z divided by norm of a raise 

to k z. So, here you have lambda 1 raise to k, alpha 1 u 1 plus lambda 2 by lambda 1 

raise to k alpha 2 u 2 and so on, when k tends to 0, this is going to tend to 0, this is going 

to tend to 0, then if lambda 1 is bigger than 0, then lambda 1 will be equal to mod 

lambda 1, this will get cancelled and a raise to k z divided by norm of a raise to k z will 

tend to alpha 1 u 1 divided by norm of alpha 1 u 1. 

If lambda 1 is less than 0, then even subsequence will tend to alpha 1 u 1 divided by 

norm of alpha 1 u 1. So, now we have got this convergence. It is a raise to k z divided by 

norm of a raise to k z. The matrix a is given to us its very simple to implement. If your 

matrix a, it is a spars matrix; that means, there are lot of 0. Then calculating a raise to k z 

will not involve much computations and then it is going to give us approximation to the 

eigen vector to an eigen vector corresponding to dominant eigen value. For the sake of 

stability, this a raise to k z by norm of a raise to k z, we will write it in a different form. 

So, we have, suppose you consider so, z is our starting vector, u divide by its norm and 

then call it z 0. Then you apply a to this, so, you will be a z 0 and immediately divide by 

its norm. 



(Refer Slide Time: 39:58) 

 

So, here is the sequence, z 0 is equal to z upon norm z and z k is a z k minus 1 divided by 

norm of a z k minus 1. Now, it is equivalent formulation. This was our z k is equal to a 

raise to k z divided by norm of a raise to k z. So, here what we are doing is, we are 

applying a raise to k to z and then dividing by its norm. Here at each stage, you are 

applying a and immediately dividing by its norm. And this proof is by induction, if k is 

equal to 0, then it will be a raise to 0; that means, identity. So, z upon norm z. So, that is 

our z 0, assume the result to be true for k is equal to n consider z n plus 1. This is our 

definition. z n plus 1 will be a, z n divided by norm of a raise a z n by induction 

hypothesis, z n will be a raise to n z divided by norm of a raise to n z. You are applying 

a. So, the numerator will be a raise to n plus 1 z divided by norm of a raise to n z and 

denominator will be norm of this. So, it will be norm of a raise n plus 1 z by norm of a 

raise to n z. So, this will get cancelled and we get 1 for n plus 1. So, you assume for k is 

equal to n and then u obtained for n plus 1. So, this is power method. 

Now, there is only one slight catch, what we said was z is arbitrary vector. You write z as 

alpha 1 u 1 plus alpha 2 u 2 plus alpha n u n, then you define our power iterates and it is 

going to converge to alpha 1 u 1 divided by norm of alpha 1 u 1, z is a arbitrary vector. 

What if alpha 1 is equal to 0? We are saying take any vector z which is non-0. So, it can 

very well happen, that alpha 1 is equal to 0 and still z is a non-0 vector, because z will be 

alpha 1 u 1 plus alpha 2 u 2 plus alpha n u n, alpha 1 is 0. In that case, what we will get 

is, our vector that a raise to k z divided by norm of a raise to k z, that will tend to a 0 



vector. We are trying to find an eigen vector. So, this is of no use, but what we are doing 

is z is chosen randomly c n is n dimensional space. So, it is unlikely that the vector 

which is chosen arbitrarily lies in n minus 1 dimensional subspace, like look at r 2, in r 2 

1 dimensional subspace will be a straight line. So, it is really highly unlikely that the 

vector which you are choosing arbitrarily is going to lie along that particular line. 

We have been always talking about round off errors, the problems it creates. Now here is 

an example, where it is rather useful, that suppose by stroke of luck, the vector which we 

are choosing, it is in the span of u 2 u 3 u n; that means, alpha 1 is equal to 0, but round 

of error is there. So, alpha 1 will never be equal to 0, it will be a small number, and now 

when you go on applying a, because our lambda 1 is the dominant eigen value that 

component will go on increasing. So, even though the starting point alpha 1 was a small 

number, when you perform the iterates, it is going to become big. 

So, this power method, it is going to give us approximation, 2 eigen vector 

corresponding to the dominant eigen value. So, this is rather restrictive, that only the 

largest eigen value in modulus we can approximate. But then there are some extensions, 

suppose your matrix a is invertible matrix and lambda 1 lambda 2 lambda n, these are 

eigen values of a, then 1 upon lambda 1, 1 upon lambda 2, 1 upon lambda n, they will be 

eigen values of a inverse. So, apply power method to a inverse and then you can 

approximate 1 by lambda n. 
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So, we have a invertible mod lambda 1 bigger than or equal to mod lambda 2, bigger 

than or equal to mod lambda n minus 1 and here now, we have got strict in equality. We 

have a u j is equal to lambda j u j, j is equal to 1 to up to n. So, a inverse a u j will be 

equal to lambda j a inverse u j, this is identity. So, it will be u j, so a inverse u j will be 1 

upon lambda j u j, j is equal to 1 to up to n and 1 upon mod lambda n will be strictly 

bigger than 1 upon mod lambda n minus 1 bigger than or equal to 1 upon lambda 1. So, 

thus 1 upon lambda n is dominant eigen value of a inverse. So, you apply power method 

to a inverse. 
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So, you consider. So, 1 upon lambda n is dominant eigen value of a inverse, apply power 

method to a inverse and obtain approximation to u n. So, I know how to calculate the 

eigen value of biggest modulus, how to calculate or how to rather calculate 

approximations to eigen value of least modulus. Now what about the eigen value in 

between? So, if you have some initial approximation to an intermediate eigen value, then 

we have got a inverse power method and using that inverse power method, we can find 

eigen vector corresponding to the intermediate eigen value. 

So, that is going to be that we are going to do in the next lecture. So, in the next lecture, 

we will consider inverse power method and then we will start our discussion towards q r 

method, which is the most popular method for calculating eigen values of matrix a at 

present. So, thank you. 


