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In our last lecture, we have considered Eigen values of some special matrices like, if 

matrix is self adjoint, then we saw that Eigen values are real. If A is Q self adjoint, that 

means, the conjugate transpose is equal to minus of the matrix A, then the Eigen values 

are purely imaginary or they are 0. Then, for normal matrix; that means, if A star A is 

equal to AA star, we saw that if lambda is an Eigen value of A, then lambda bar, the 

complex conjugate is Eigen value of a star, whereas Eigen vector, it remains the same. 

Now, using this result, we are going to show that for a normal matrix, Eigen vectors 

corresponding to distinct Eigen values; they are going to be perpendicular to each other. 

If we are looking at a general matrix, then Eigen values corresponding to distinct Eigen 

values, they are linearly independent. For normal matrices, we have got something more. 

So, we are going to look at this and then, we will consider Eigen values of unitary 

matrices. 
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So, our notation is, A is n by n, either real or complex matrix. Au is equal to lambda u, 

where lambda is a complex number and u is a non 0 vector in c n. A star is equal to A bar 

transpose, that is the conjugate transpose. 
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Self-adjoint matrix, that means, A star is equal to A, they have real Eigen values. Skew 

self-adjoint A star is equal to minus A, then the Eigen values are either purely imaginary 

or 0. For a normal matrix, A star A is equal to A star and using this, one shows that norm 

of Ax 2 norm, Euclidian norm is going to be equal to norm of A star x 2 norm and as a 

consequence of this result, Au is equal to lambda u if and only if A star u is equal to 

lambda bar u. Now, let us look at a unitary matrix, that means, A star A is equal to AA 

star is equal to identity. 
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So, we have in particular, unitary matrix is a normal matrix. So, Au is equal to lambda u 

apply A star. So, we will have A star Au is equal to lambda times A star u, but A star u 

will be lambda, lambda bar u. So, it is going to be equal to lambda, lambda bar u and 

thus, we get u is equal to modulus of lambda square u. Since, u is a non 0 vector; it 

implies that mod lambda is equal to 1. So, thus for a unitary matrix, all the Eigen values, 

they are going to lie on unit circle. 
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So, now we look at the case of distinct Eigen values for normal matrices. So, A star A is 

equal to AA star. Let Au v equal to lambda u. Av is equal to mu times v. So, we look at 2 

distinct Eigen values, lambda and mu and u and v are associated Eigen vectors. So, we 

want to show that, inner product of u with v is going to be equal to 0. So, u is going to be 

perpendicular to v.  
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So, we have A star A is equal to AA star, Au is equal to lambda u, Av is equal to mu 

times v, where lambda is not equal to mu, u being a Eigen vector, it is not a 0 vector, v 

also is a non 0 vector. So, let us look at, so consider lambda times inner product of u with 

v. This will be lambda u, v using linearity of inner product in the first variable. So, this 

lambda goes inside as lambda u. Now, Au is equal to lambda u, so this will be inner 

product of Au with v. We have seen that A will go to the second variable as A star. So, it 

will be u A star v. Now, since Av is equal to mu times v, A star v will be equal to mu bar 

v. 

So, this will be equal to u mu bar v and now, the inner product is conjugate linear in the 

second variable, so this mu bar will come out as mu. So, this will be mu time inner 

product of u with v. Since, lambda is not equal to mu; we get inner product of u with v to 

be equal to 0. So, if u and v are Eigen vectors corresponding to distinct Eigen values, 

then we get them to be perpendicular. So, this is property of normal matrices. In general, 

it will not be true. 



Now, what we want to do is, we want to consider similar matrices. We want to show that 

similar matrices, they have the same set of Eigen values and algebraic multiplicity as 

well as geometric multiplicity that is going to be preserved. 

So, let us first define what a similar matrix is. So, we have A and B, 2 matrices. They 

will be similar, if there exists an invertible matrix P, such that P inverse AP is equal to B. 

So, this is definition of similar matrices. 

We are going to show that, they have they are going to have the same Eigen values. So, 

when you want to find Eigen values of A, if you want to simplify your matrix, then what 

is allowed, is similarity transformation elementary row transformations, which we used 

in Gauss Elimination method. They will change the Eigen values. So, they are not 

allowed, but similarity transformations, they will preserve Eigen values with algebraic 

multiplicity as well as geometric multiplicity.  
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So, this is 2 matrices A and B of the same size are said to be similar, if there exists an 

invertible matrix P, such that B is equal to P inverse AP. 
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Now, this is our claim that similar matrices, they have the same set of Eigen values. So, 

what we are going to do is, we are going to look at the characteristic polynomial. We will 

show that the characteristic polynomial of matrix B is same as the characteristic 

polynomial for matrix A. 

The Eigen values are nothing, but roots of the characteristic polynomial. So, if we show 

that they have the same characteristic polynomial, it will mean that they will have the 

same Eigen values. Then, the algebraic multiplicity is defined as you factorize. So, you 

have got characteristic polynomial in that, suppose lambda 1 is one of the Eigen value, 

then you look at lambda 1 minus lambda raise to m 1. You factorize. So, whatever is the 

power that is the algebraic multiplicity. 

So, once we show that matrix B and matrix A, they have the same characteristic 

polynomial. It will also follow that the algebraic multiplicities, they are preserved and 

showing the characteristic polynomial. They are the same is by using properties of 

determinant. 
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So, we have to look at say, we have got our B is equal to P inverse AP, then we look at 

determinant of B minus lambda I. That is the characteristic polynomial. This is going to 

be equal to determinant of P inverse AP minus lambda I substituting for B. This will be 

determinant P inverse AP minus lambda times P inverse P. For the identity I write P 

inverse P. This is determinant P inverse A minus lambda I P. 

Now, using the property of determinant, this is going to be equal to determinant P 

inverse determinant A minus lambda I and determinant P. Now, let me combine these 

two. So, that is going to be determinant P inverse P, determinant A minus lambda I, and 

determinant of identity matrix is 1. So, we get determinant of A minus lambda I. So, thus 

both B and A, they have the same characteristic polynomial and hence, the same set of 

Eigen values with preservation of algebraic multiplicity. 

Now, let us look at geometric multiplicity. The definition of geometric multiplicity is 

number of linearly independent Eigen vectors associated with the Eigen value. So, now 

we want to show that, matrix B, which is P inverse AP and matrix A, they have Eigen 

values with the same geometric multiplicities. B is equal to P inverse A P. So, Bu will be 

equal to P inverse AP u. 
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Suppose, Bu is equal to lambda u, then what we get is, so we have got P inverse APu is 

equal to lambda u. So, that implies A of Pu is equal to lambda times Pu. I am pre 

multiplying by P to get this. Now, u naught equal to 0 vector, it is an Eigen vector. P 

invertible, it implies that P of u also naught equal to 0 vector because if it were equal to 

0, we can multiply by P inverse and get u to be equal to 0. So, that means, u Eigen vector 

of B implies Pu Eigen vector of A and converse also is true. So, this is going to be if and 

only if, let us look at the number of linearly independent Eigen vectors associated with B 

and lambda. 

(Refer Slide Time: 14:08) 

 



Suppose, you have got u 1, u 2 up to u k, these are linearly independent associated with 

B and lambda. That means, B of u j is equal to lambda times u j, j is equal to 1 to up to k. 

Now, just now we have seen that this implies that A Pu j is equal to lambda times Pu j. 

Our B was P inverse AP. So, this will mean that Pu 1, Pu 2 up to Pu k, these will be 

Eigen vectors associated with A and lambda. So, I am assuming that lambda is Eigen 

value of B with geometric multiplicity k. Then, I got k Eigen vectors associated with A 

and lambda. If I can show that these are linearly independent, then that will mean that 

geometric multiplicity of lambda as an Eigen value of A also is going to be k. 

So, see there is a one to one correspondence between Eigen vectors of B and Eigen 

vectors of Au is Eigen vector of B. That will mean that P into u is Eigen vector 

associated with A and conversely. So, now, we are assuming that lambda is Eigen value 

of B with geometric multiplicity, say k. Then, you look at k linearly independent Eigen 

vectors associated with B and lambda. Then, Pu 1, Pu 2, Pu k, these will be Eigen 

vectors of A. So, only thing which remains to show is that Pu 1, Pu 2, Pu k, they are 

linearly independent. 

Now, they will be linearly independent because P is invertible matrix. If P is not 

invertible, then such a result is not true. So, let me show quickly the linear independence.  
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So, we have got our assumption is u 1, u 2, u k, these are linearly independent. This is 

given. Then, P is invertible. Claim Pu 1, Pu k are linearly independent and for the proof 



of this claim, we start with alpha 1, Pu 1 plus alpha k, Pu k is equal to 0 vector. If this 

implies that alpha 1, alpha 2 and alpha k, they all have to be 0, then that will mean that 

these are linearly independent. Now, in order to show that I am going to make use of the 

fact, that u 1, u 2, u k, are linearly independent and P is invertible. So, multiply by P 

inverse. So, we will have alpha 1 P inverse Pu 1 plus alpha k P inverse Pu k is equal to 0 

vector. You are multiplying by P inverse P inverse into 0 vector is 0 vector. Now, this is 

nothing, but alpha 1 u 1 plus alpha k u k to be 0 vector and by using the fact, that this is 

linearly independent, it follows that alpha 1 is equal to alpha k is equal to 0. So, this 

proves our claim. 

Similar matrices, they have got the same Eigen values with preservation of algebraic 

multiplicity and geometric multiplicity. So, if we have got matrices which are upper 

triangular matrices or diagonal matrices, we can calculate their Eigen values. In these 

two cases, the Eigen values, they are nothing but the diagonal entries. So, it will be good 

if I can find an invertible matrix P, such that P inverse AP is either a diagonal matrix or 

an upper triangular matrix. Now, P inverse AP is equal to D. Such matrices, they are 

known as diagonalizable matrices. That given a matrix A, if you can find the invertible 

matrix P, such that P inverse AP is equal to D, then the matrix is called diagonalizable. 

All matrices, they are not diagonalizable.  
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So, what we are going to do is, we are going to prove a characterization for the 

diagonalizable matrices and then, using that the characterization, one can give a counter 

example to show that not all matrices are diagonalizable. So, a matrix A is said to be 

diagonalizable, if there exist an invertible matrix A and a diagonal matrix D, such that P 

inverse AP is equal to D. So, this is the definition. 
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Now, what is P inverse AP is equal to D diagonal matrix d 11, d 22, d nn? So, this will 

mean that A into P is equal to P into D. Let me write columns of P as P 1, P 2, P n. So, 

we have got A times P 1, P 2, P n is equal to P times D.  
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So, when you consider A and then, P 1, P 2 up to P n is equal to P into D. Now, this is 

nothing, but AP 1, AP 2 up to AP n. That is the property of matrix multiplication. What 

will be P into D? It will be P 1, P 2 up to P n multiplied by diagonal matrix d 11, d 22, d 

nn. 

So, when you post multiply by a diagonal matrix, the first column will be d 11 P 1. The 

first column will get multiplied by d 11, second one will be d 22 P 2 and d nn P n. So, 

this is first column, second column and nth column. Here, you have got first column, 

second column, nth column and hence, what we have is AP j is equal to d jj P j. P is 

invertible matrix. P j is its jth column because it is invertible; P j will not be a 0 vector. If 

you have got one column to be 0, then that matrix is not invertible. So, this will mean 

that d jj, they are Eigen values of A and P j, these are Eigen vectors. P j is jth column of 

P and again, since P is invertible, P 1 P 2 up to P n, this set is linearly independent. 
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So, thus our matrix A will be diagonalizable if and only if, you have got n Eigen vectors 

linearly independent associated with A. We have seen example of a 2 by 2 matrix. For 

that matrix, it was upper triangular matrix with all entries to be equal to 1. So, the only 

Eigen value is 1 and there was only one Eigen vector associated. So, this one Eigen value 

1 had algebraic multiplicity to geometric multiplicity 1, so only 1 linearly independent 

Eigen vector. So, it is a 2 by 2 matrix and you have got only 1 linearly independent 

Eigen vector. 

So, now we have seen that a matrix is diagonalizable if and only if, you are looking at a 

matrix of size n, then it should have n linearly independent Eigen vectors. So, thus not all 

matrices, they are going to be diagonalizable, but we will see there is a big class of 

matrices which is going to be diagonalizable. 
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So, we have A is diagonalizable if and only if, there are n linearly independent Eigen 

vectors of A and that will mean that Eigen vectors of A, they will form a basis of C n 

because the dimension of C n is n. It is a finite dimensional space. So, if there are n 

independent Eigen vectors, they will also form a basis.  
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So, here is that example, A is equal to 1 1 0 1 is the only Eigen value. 1 0 or any non-0 

multiple of it is going to be an Eigen vector. So, such a matrix is not diagonalizable. So, 

now not all matrices are diagonalizable, but when we are looking, we are interested in 



Eigen values of matrix. So, even if I cannot reduce it to a diagonal form, if by using 

elementary, not elementary low transformations, by using similarity transformations, if i 

can reduce it to upper triangular form, then that will suffice because then I have got P 

inverse AP is equal to upper triangular matrix. 

The Eigen values of A, they are same as Eigen values of upper triangular matrix and 

Eigen values of upper triangular matrix, they are the diagonal entries. So, whether all 

matrices, they can be equivalent similarly or whether, they can be similar to an upper 

triangular matrix. So, the answer is yes and that is Schur’s theorem. 
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So, we have got, suppose A is n by n real or complex matrix. Then, there exist a unitary 

matrix u. So, not only invertible, but we have got something better. A unitary matrix U 

and an upper triangular matrix T, such that U star AU is equal to T. 

Now, look at the statement of Schur’s theorem. It is very important that it says, then 

there exists. So, the statement which we are making is existential, that we are saying that 

there exist some U, which is unitary, such that U star AU is equal to T. A and T, they are 

going to have the same Eigen values. There cannot be a constrictive proof for this 

theorem because if you have got constrictive proof, it will mean that you can find its 

Eigen values. Given any matrix A, you can find its Eigen values. Eigen values, they are 

related to finding the roots of the polynomial. Now, as soon as your polynomial is of 

degree bigger than or equal to 5, there cannot exist a formula. Like, if you have got a 



quadratic polynomial, then we know how to write down its roots. So, such a thing is not 

possible, but still it is an important theorem and the proof is by induction, but I am going 

to skip the proof. 

What we are going to do is we are going to look at the special cases. Like now we know 

that for any matrix U, you can write U star AU is equal to T. So, what happens if your 

matrix is self-adjoint or if it is Q self-adjoint? So, let us see what one can deduce for 

these special matrices.  
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So, we have got by Schur’s theorem. U star AU is equal to T, where T is upper 

triangular. So, what will be T star? T star will be U star AU its star. Now, this will be AB 

star is B star A star. So, it will be U star A star and then, U star its star. So, it is going to 

be equal to U star A star U. So, thus we have got T is equal to U star AU, then T star will 

be equal to U star A star U. So, if a star is equal to A, this will imply that T star is equal 

to T, T upper triangular. Then, T star is going to be lower triangular. 
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So, you have got a lower triangular matrix is equal to upper triangular matrix, and that 

will imply that T is going to be a diagonal matrix D because left hand side is lower 

triangular, right hand side is upper triangular. So, it has to be diagonal and because you 

have got D star is equal to D, you are taking here conjugate transpose. So, that will mean 

that D is going to be real diagonal. 

Now, it fits in our, whatever we have been saying. The Eigen values of A are same as the 

Eigen values of T. Now, we showed that T is going to be a diagonal matrix and the Eigen 

values of A are the diagonal entries. It is going to be a real diagonal matrix. So, for self-

adjoint matrix, the Eigen values which are going to be diagonal entries, they are going to 

be real. This part we have seen earlier, that self-ad joint matrices, they have got real 

Eigen values. 

Now, the same idea or the same proof, it tells us that if A is Skew self-adjoined, then 

your again T will be a diagonal matrix, but now the entries, diagonal entries, they will be 

either 0 or purely imaginary. 
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So, we have got U star AU is equal to T, U star A star U is equal to T star, A star is equal 

to minus A implies T star is equal to minus T. This is lower triangular, this is upper 

triangular. So, it has to be equal to a diagonal matrix D and D star will be equal to minus 

D. So, diagonal entries will be 0 or purely imaginary. 

Now, let us look at normal matrix. So, for the normal matrix, it is not (()) to see that in 

this case also T is, in fact a diagonal matrix. So, that we are going to do as a tutorial 

problem. So, that means, the self-adjoint matrices, then skew self-adjointer matrices and 

more generally, normal matrices, they are going to be diagonalizable. 
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For diagonalizability, what we wanted was existence of an invertible matrix, such that P 

inverse AP is equal to D. Now, we have got something more. We have got a unitary 

matrix, where U star is equal to U inverse. So, we have got U star AU is equal to D for 

normal matrices and this is known as Spectral theorem. So, we have for the normal 

matrix, let me write down U star AU is T, U star A star u is equal to T star. So, consider 

TT star, that is going to be equal to U star AU and U star A star U. This is identity. So, 

this will be U star AA star U.  

Now, normal matrix, so this will be U star A star AU and now, let me introduce UU star 

here, which is identity, AU and this is nothing, but TT star and this implies T to be a 

diagonal matrix, that is going to be a tutorial problem. 
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So, normal matrices, they are going to be diagonalizable. So, not all matrices are 

diagonalizable, but at least we have got a big class of matrices, which is the class of 

normal matrices, they are going to be all diagonalizable. Now, there is another class of 

matrix, that is, if your matrix has n distinct Eigen values. In that case, the corresponding 

Eigen vectors, they are going to be linearly independent. So, in C n, we will have n 

linearly independent vectors. They will form a basis and we saw that diagonalizability, it 

means existence of a basis of Eigen vectors.  
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So, if you have got a matrix with distinct Eigen values, then you are going to have P 

inverse AP is equal to D. In this case, matrix P will be only invertible, it need not be 

unitary, the unitary matrix, that is for normal matrices. So, we have, this is the Spectral 

theorem. If A is normal, that means, A star A is equal to AA star, then there exists a 

unitary matrix U and a diagonal matrix D, such that U star AU is equal to D. So, once 

again, I want you to notice that they exist. We are not giving a recipe. If we could have 

done, that would have been ideal, but that is just not possible. So, we are going to have U 

star AU is equal to D. 

Now, using Spectral theorem, I want to calculate or I want to get an expression for 

Euclidian norm of matrix A. We had defined matrix norms, induced matrix norm. So, we 

had norm A 1, norm A infinity and norm A 2. Norm A 1 is nothing, but column sum 

norm. Norm A infinity is the row sum norm. So, these 2 norms, you can compute. We 

have got a formula in terms of the elements of the matrix, whereas for norm A 2, we had 

only an upper bound. Upper bound is that Frobenius norm. We are going to show that if 

A is a normal matrix, then norm A 2 will be modulus of the biggest Eigen value. 
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Now, before we do that, I want you to notice that U star U is equal to identity. It means 

the columns of U, they are Orthonormal. So, we have got U is a matrix. I denote its 

columns by U 1 U 2 U n. U star will be U 1 star U 2 star and U n star. So, when I look at 

U star U, this is going to be this multiplied by this. So, it is going to be U 1 star U 1, U 1 



star U 2 and U 2 star U n. Then, U 2 star U 1, U 2 star U n and U n star U 1, U n star U n 

and this is equal to identity matrix. It will mean that U 1 star U 1 will be 1. So, that is 

nothing, but the Euclidian norm of U 1. U 1 star U 2 will be 0, which we mean that U 1 

and U 2 are perpendicular. Similarly, U 1 and U n will be perpendicular. So, this U 1 U 2 

U n, which are columns of u, so we are going to have columns of U are Orthonormal. 
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So, if you have got an invertible matrix, then its columns, they are linearly independent. 

If you have got a unitary matrix, that means, the inverse of U is nothing, but its conjugate 

transpose. Then, the columns of U, they are Orthonormal. That means, any 2 distinct 

columns, they will be mutually perpendicular and the Euclidian length of each column 

vector is going to be equal to 1. Similar result is true for row vectors. 

So, for the row vectors, we have to use the fact that UU star is equal to identity. Now, we 

have got by spectral theorem for normal matrix u star Au is equal to D. So, the entries on 

the diagonal of D, those are our Eigen values and columns of u, those are our Eigen 

vector. So, that means, for normal matrix, we have got Eigen vectors to be orthonormal. 

We already saw this for distinct Eigen values. 

If you have got A to be a normal matrix, lambda and mu to be distinct Eigen values 

corresponding Eigen vectors, they are mutually perpendicular. What we are saying now 

is, if A is a normal matrix, there is a basis of, there is an orthonormal basis which 

consists of Eigen vectors. 
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So, we have u star u is equal to identity. That means, inner product of u j with u i is 1 if i 

is equal to j and 0, if i not equal to j. The columns, that means, the columns of u are 

orthonormal. u star Au is equal to D. That means, Au is equal to u into D. So, the 

columns of u are nothing, but Eigen vectors.  
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So, we can state Spectral theorem as if A is normal, then A has n orthonormal Eigen 

vectors, not just vectors, but Eigen vector. So, you have got Au j is equal to lambda j u j, 



j is equal to 1, 2 up to n. These lambda j’s, they need not be distinct. Those are the Eigen 

values which may be repeated. 

Now, consider any z belonging to C n a vector in C n. U 1, u 2, u n is going to form a 

basis. So, I can express z as a linear combination of u 1, u 2, u n. So, z is summation j 

goes from 1 to n alpha j u j. If you take inner product of z with u k, this is going to be 

equal to summation j goes from 1 to n alpha j u j u k. Using linearity of inner product in 

the first variable, this will be summation j goes from 1 to n alpha j, u j, u k. This is going 

to be one only when j is equal to k. So, this is equal to alpha k. So, any vector z can be 

written as summation j goes from 1 to n, z, u j u j.  
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So, we have for normal matrix Au j is equal to lambda j u j norm u j to be equal to 1. Let 

me arrange Eigen values lambda 1 in the descending order of modulus, mod lambda 1 

bigger than or equal to mod lambda 2 bigger than or equal to mod lambda n. Then, just 

now we saw that z can be written like this, this combination. So, A z will be take A 

inside A u j is equal to lambda j u j. So, this is going to be for A z. 
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Now, norm z square is going to be nothing, but summation j goes from 1 to n modulus of 

z, u j square. So, we are going to look at what I am trying to show is Euclidian norm of A 

or norm A 2 is going to be equal to modulus of lambda 1. So, for that, we make use of 

fact that if A is normal, there are n orthonormal Eigen vectors, write any vector z as a 

linear combination, consider A z because for norm A 2, we have to look at maximum of 

norm A z by norm z. So, this proof, I will complete in the next lecture and then, we are 

going to look at some localization results for Eigen values and then approximate methods 

for calculating Eigen values. So, thank you  


