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Today we are going to start a new topic and that is the eigenvalue problems. So, far we 

considered real vectors real matrices ,now even if matrix is a real matrix its eigenvalues 

they can be complex. So, that is why now our underlying field is going to be field of 

complex numbers. So, we will be considering complex matrices then the vectors also 

will be complex eigenvalues they are defined for square matrices. 

We will show that if A is n by n matrix either real or complex then its roots are the 

eigenvalues they are given by roots of a polynomial of degree n, now as a consequence 

of fundamental theorem of algebra. 

We know that if a polynomial has degree n then it has got exactly n 0 or n roots counted 

according to their multiplicity,that means, we will count if a 0 is repeated twice ,it will be 

considered as two zeroes. 

Now, when we consider polynomial of degree bigger than or equal to 5, then we cannot 

have a formula for finding its roots like, if you have got a quadratic polynomial then we 

can write its two 0 in terms of the coefficients of our polynomial. 

If you have got a x square plus b x plus c is equal to 0 ,then the roots can be written in 

terms of the coefficients a b c .This will not be possible, when your polynomial is of 

degree bigger than or equal to 5. 

So, that is why for calculating the eigen values our methods ,they are going to give us 

only approximation. This was not the case with solution of system of linear equations 



When we considered gauss elimination method or its variants, then the error came 

because of the finite precision whereas, the method was exact method in contrast for 

eigen values our method will be giving only an approximation. So, 1 tries to find as 

much information possible as of eigen values by say looking at a matrix. 

So, there are some special matrices for which we will study what are their their 

eigenvalues; that means, we can if the matrix is a real symmetric matrix then its 

eigenvalues they are going to be all real and similar results then we will have some 

localization results, that means, we will find a region in the complex plane which is 

going to contain all our eigen values. 

We are going to consider power method for finding the dominant eigen value of a matrix 

and then there are some variants of this method ,I am going to describe what is known as 

q r method for finding eigen values. 

At present that is the most popular and the best possible method available for calculating 

eigen values or rather calculating approximations to eigen values of our matrix a. Now it 

is beyond this course, to prove convergence of q r method the description of q r method 

can be given easily and that is what I will do. 

So, now we are going to start with complex vectors .When we consider the real vectors 

and complex vectors for real vectors ,what we had done was you can add 2 vectors. So, 

that is component wise addition you multiply a vector by a scalar. So, you multiply each 

component of your vector by that number. So, these things remain same for complex 

vector 

It will be the real numbers they are replaced by complex numbers. So, again addition of 

2 vectors will be component wise multiplication by a scalar will be same as before then 

matrix into vector multiplication will be exactly same as before. 

There will be a change in the definition of inner product because we have to take into 

consideration the complex numbers then we had defined one norm infinity norm for real 

vectors that definition remains exactly the same the corresponding induced matrix norm 

the proof will have slight modifications,,,, but ,, but ,,, but ,, but let me not get into those 

details. 



It they are the formula which you obtain is exactly the same as before. So, . So, now, let 

us quickly consider complex vectors then the inner product the vector norm and matrix 

norm. So, let us look at the complex vectors and the corresponding operations. 
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So, we have got z to be a complex vector z 1 z 2 z n. So, each z  is going to be a complex 

number w is another n by 1 vector as I said before z plus w will be component wise 

addition. So, it is z 1 plus w 1 z 2 plus w 2 plus z n plus w n alpha times’ z will be each 

component ,will get multiplied by alpha then inner product. 
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 So, here when we had real vectors then the inner product was x comma y was 

summation x i y i ,now here change is you’ll consider z i w i bar w i bar is the complex 

conjugate. 

Now, when you consider inner product of z with itself it will be summation i goes from 1 

to n z i z i bar. So, you have complex number you are multiplying by complex conjugate. 

So, it will be summation i goes from 1 to n mod z i square. So, thus inner product of z 

with itself will be bigger than or equal to 0 and it will be equal to 0 if and only if z is a 0 

vector. 

When you consider inner product of w with z it will be summation w i z i bar by our 

definition, which will be same as summation i goes from 1 to n z i w i bar and then 

complex conjugate. So that means, it is z comma w bar.  

So, we have got conjugate symmetry inner product of w with z is complex conjugate of 

inner product of z with w 
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This is linearity in the first variable z plus v w will be summation i goes from 1 to n z i 

plus v i into w i bar split the summation into two summations .The first summation will 

be nothing,,,, but ,, but ,,, but ,, but inner product of z with w and the second summation 

is inner product of v with w. 



Similarly, if you consider alpha z comma w this will be summation i goes from 1 to n 

alpha z i w i bar ,now alpha is independent of i. So, it will come out of the summation 

sign what remains in the summation that is inner product of z with w. So, our inner 

product will be linear in the 1 variable. 
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 So, these are the properties of the inner product the 1 is positive definiteness 2 is 

conjugate symmetry and 3 property is linearity in the 1 variable ,when you consider z 

comma alpha w ,then alpha will come out as alpha bar because of the conjugate 

symmetry. 

So, inner product is conjugate linear in the 2 variable. So, this the difference between 

real inner product and complex inner product that real inner product was symmetric now 

this is conjugate symmetric and we had linearity in both the variables for real inner 

product whereas, now complex inner product is going to be linear in the 1 variable 

whereas, conjugate linear in the 2 variable otherwise it is exactly similar. 

Now, we had cauchy-schwarz inequality for real inner product. So, there is cauchy-

schwarz inequality for complex inner product also and using this cauchy-schwarz 

inequality one considers the induced norm. So, that is induced norm by the inner product.  
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So, one show that it satisfies various properties of norm So, here is inner product of z 

with z is summation i goes from 1 to n mod z i square we define norm z 2 to be positive 

square root of z comma z and the cauchy-schwarz inequality is modulus of z comma w is 

less than or equal to 2 norm of z into 2 norm of w 

I want you to notice that our complex inner product it is a map from c n cross c n to c. 

So, in general our complex inner product is a complex number,,,, but ,, but ,,, but ,, but 

when you consider inner product of a vector z with itself, then it is going to be a positive 

real number and that is why you can take its positive square root and then obtain a real 

number. In fact, the number is going to be bigger than or equal to 0 and that is our 

euclidian norm.  

 

 

 

 

 

 



 (Refer Slide Time: 11:21) 

 

So, norm z 2 is positive square root summation goes from 1 to n mod z i square norm z 2 

will be bigger than or equal to 0 it will be equal to 0 .If and only if z is equal to 0 vector 

that will follow from positive definiteness of inner product norm ,alpha z will be equal to 

mod alpha times norm z ,it will follows from the definition and the triangle inequality 

norm of z plus w is less than or equal to norm z plus norm w. So, it is for the triangle 

inequality that we need the cauchy-schwarz inequality. So, this is about the 2 norm 

Now, analogously one can define 1 norm and the infinity norm. So, norm z 1 is going to 

be summation i goes from 1 to n mod z i and norm z infinity to be maximum of modulus 

of z i 1 less than or equal to i less than or equal to n. So, in the definition there is no 

difference instead of real numbers we have got complex numbers,,,, but ,, but ,,, but ,, but 

you are taking its modulus. 

For 2 norms we are taking summation mod z i square. So, this modulus is important for 

real inner product space or for if the vector is real ,whether I write x i square or whether I 

write mod x i square ,the answer is the same whereas, for the complex number it is 

important that you should take modulus of z i square. 

Now, we are going to look at the induced matrix norm. So, if you are given any vector 

norm then you define norm of the matrix to be maximum of norm a x by norm x x not 

equal to 0 and then for 1 norm and infinity norm; that means, if you are taking or if you 



are fixing vector norm to be 1 norm ,then look at the corresponding induced matrix norm 

for that we obtained an expression in terms of the elements of the matrix. 

Similar thing was possible for norm a infinity whereas, for the 2 norm we have to be 

satisfied only with an upper bound. So, here the expressions for norm a 1 and norm a 

infinity they are going to remain to be exactly the same. 
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So, we are looking at the induced matrix norm. So, we have norm A 1 to be column sum 

norm. So, summation i goes from 1 to n modulus of a i j. So, look at the first column take 

the modulus ,add it up do it for all the columns whatever is the maximum that is norm 

A1 norm A infinity the expression is obtained by interchanging j and i. So, column sum 

norm becomes row sum norm. So, we have got norm A infinity to be summation j goes 

from 1 to n modulus of a i j 1 less than or equal to i less than or equal to n. 
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 And then this is the frobenius norm. So, it summation over i summation over j mod a i j 

square raise to half norm A 2 is not computable ,,,, but ,, but ,,, but ,, but norm a 

frobenius here it is norm A 2 less than or equal to norm A F,  here this less than or equal 

to should be bigger than or equal to. 
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Then we have got this basic inequality norm A is maximum of norm A z by norm Z. So, 

from here we get norm A z to be less than or equal to norm A into norm z for z  



belonging to C n next we define conjugate- conjugate transpose. So, we defined the 

conjugate transpose for a vector as well as for a matrix 

So, you take complex conjugate of each entry and then you take transpose. So, if you are 

taking conjugate transpose of a vector column vector then its conjugate transpose will be 

a row vector if the matrix is square matrix then conjugate transpose is again going to be 

equal to the matrix of size n. 

So, this conjugate transpose we know that matrix multiplication is not commutative. So, 

if the conjugate transpose commutes with the matrix then it deserves a a special name it 

is a special class of matrices and those are known as normal matrices. 

So, we are going to define normal matrix and then self-adjoint matrix q self-adjoint 

matrix these matrices their eigen values they have got some special property. (Refer 

Slide Time: 16:49) 

 

So, here is definition z is vector z 1 z 2 z n z star is z bar transpose. So, it becomes a row 

vector z 1 bar z 2 bar z n bar. 

Now, inner product of z with w this is our definition summation z i w i bar. So, in this 

notation we can write it as w star z w star, is going to be a 1 by n vector z i is n by 1 

vector. So, when you take 1 by n vector multiplied by n by 1 vector you are going to get 

1 by 1 matrix or you are going to get scalar. So, inner product of z with w will be same 

as w star Z. 
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Next for a matrix A we define A star to be equal to A bar transpose conjugate transpose 

if you repeat the operation A star star is going to give you back matrix A then when you 

consider A B star this will be A B bar and then transpose A B bar will be same as A bar 

into B bar and then its transpose when you take A bar B bar transpose the order gets 

reversed. So, you get B bar transpose A bar transpose. 

So, this will be equal to B star A star. So, A B star is B star A star and inner product of A 

z with w will be we have seen that this is the w star A z then w star A I write as A star w 

star because when you take the complex conjugate it will become w star A star star; that 

means, w star A and this is nothing,,,, but ,, but ,,, but ,, but z comma A star w. 
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So, important property A z comma w a will go to the second variable as A star and here 

are the special matrices A star A is equal to A A star. So, that is class of normal matrices 

then A star is equal to A that is class of self-adjoint matrices if you consider A star is 

equal to minus A that is skew self-adjoint and lastly unitary matrix. So, we have got A 

star A is equal to identity and now for matrix we know that the left identity is same as the 

right identity left inverse is same as the right inverse. So, that is why you will have if A 

star A is equal to identity then automatically A A star is equal to identity. 

Now, if you take 2 self-adjoint matrix ,if you add it up then again you are going to get a 

self-adjoint matrix .This result will not be true for product of matrices, because when you 

will consider A B star then you are you are going to have B star A star. So, if A star is 

equal to A B star is equal to B does not mean A B star is equal to A B because A B star 

will be equal to B A. So, these are some of the special matrices and they are going to 

their eigen values they are going to be something special or we can say something more 

about their eigen values 

So, now we want to show we want to define eigen   value eigenvector ,and then we want 

to show that they are roots of a characteristic polynomial. So, here is eigen value 

problem our notation is going to be a will be either a real matrix or a complex matrix,,,, 

but ,, but ,,, but ,, but it has to be a square matrix one defines eigen value and eigenvector 

only for square matrix 
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So, definition is a complex number lambda is said to be an eigenvalue of A. If there 

exists a non-zero vector u such that A u is equal to lambda u, and in that case u is called 

an associated eigenvector .This non-zero part is important ,because if you take a 0 vector 

then when you apply matrix A to it you are going to get a 0 vector ,then A u will be 

equal to lambda u for any lambda. So, lambda will be eigenvalue provided you have got 

a non-zero vector u such that A u is equal to lambda u. 

Now, how to find a lambda like you cannot find,,,, but ,, but ,,, but ,, but at least we want 

some characterization. So, that characterization we are going to show that the lambda is 

nothing,,,, but ,, but ,,, but ,, but look at determinant of A minus lambda I A is matrix 

which is given to us then you look at matrix A minus lambda times identity 

Look at its the determinant is something which we can calculate. So, you will get a 

polynomial in lambda of degree n and our eigen value is going to be 0 of this 

polynomial. So, we start with the definition that lambda is eigen value, provided we have 

got a non-zero vector u such that A u is equal to lambda u 
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So, we have A u is equal to lambda u u not equal to 0 .This will imply that A minus 

lambda I u is equal to 0 vector which will mean that A minus lambda  it is A n by 1 

matrix. So, we can consider it has a map from C n to C n any vector in C n ,you apply A 

minus lambda I to it you again get A n by 1 vector. So, A minus lambda I from C n to C 

n it is a map this map is not 1 to 1 because we have got A minus lambda I ,u is equal to 0 

vector where u is a non-zero vector and A minus lambda I into 0 vector is also equal to 0 

vector. 

So, we have got 2 vectors u bar and 0 vectors which have the same image, and that is the 

0 vector. So, that is why A minus lambda I will not be 1 to 1 if A minus lambda I is not 1 

to 1 it cannot be invertible, because for inevitability what we need is our map should be 1 

to 1 and on 1 and in our case infinite dimensional spaces it is sufficient,,,, but ,, but ,,, but 

,, but if A minus lambda I is 1 to 1 then A minus lambda will be invertible or if A minus 

lambda I on 2 it will be invertible. So, our we are starting with lambda is an eigenvalue u 

is eigenvector. So, map A minus lambda I will not be 1 to 1; that means, A minus lambda 

I will not be invertible. So, you have got A minus lambda I to be a singular matrix now if 

it is singular; that means, its determinant has to be equal to 0. 
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So, you get determinant of A minus lambda I to be equal to 0. Now conversely suppose 

lambda I is a complex number such that determinant of A, minus lambda I is equal to 0. 

So, you look at homogeneous system A minus lambda I z is equal to 0 vector. Now this 

homogeneous system it is going to have a non-trivial solution, because the coefficient 

matrix as determinant equal to 0. So, it has a non-trivial solution u such that A minus 

lambda I u is equal to 0 vector and that precisely means A u is equal to lambda u u not 

equal to 0 vector. 
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So, thus the eigen values of A they are given by determinant of A minus lambda I is 

equal to 0. So, this is the determinant of A minus lambda I when you will expand the 

determinant you are going to have minus 1 raise to n lambda raise to n plus c n minus 1 

lambda raise to n minus 1 plus c 1 lambda plus c 0 is equal to 0. 

So, you have a polynomial in lambda of exact degree n because the coefficient of lambda 

raise to n is non-zero it is minus 1 raise to n  
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Now by consequence of the fundamental theorem of algebra ,this it is going to have n 

roots ,if you count them according to their multiplicities. 

So, thus we know that the n by n matrix it is going to have at the most n eigen values and 

they are going to be roots of this polynomial. So, thus the problem of finding eigen 

values it gets reduced to finding roots of a polynomial 
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So, this determinant of A minus lambda I this polynomial now we factorize it. So, it will 

be lambda 1 minus lambda raise to m 1 lambda 2 minus lambda raise to m 2 into lambda 

k minus lambda raise to m k where the m 1 m 2 m k they add up to n. 

So, you have got eigen values to be lambda 1 lambda 2 lambda k .These are distinct 

eigen values and the power m I that is known as the algebraic multiplicity of lambda i. 

So, you count lambda 1 m 1 times lambda 2 m 2 times and lambda k m k times and that 

is how you have got exactly n eigenvalues counted according to their algebraic 

multiplicity 

Now, there is another multiplicity associated with eigen value ,and that is known as 

geometric multiplicity. So, your geometric multiplicity is going to be number of linearly 

independent eigenvectors associated with a particular eigen value. 
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 So, we have A u is equal to lambda u u not equal to 0 vector if I consider A of alpha u 

this will be alpha times A u A u is lambda u. So, it is alpha time’s lambda u now alpha 

and lambda they are scalars those are complex numbers. So, they commute and then you 

can have lambda time’s alpha u. So, if u is an eigenvector alpha u will also be an 

eigenvector provided alpha is not equal to 0. So, eigenvector is not unique 

You have got infinitely many eigenvectors as soon as you find one eigenvector any non-

zero multiple of it is also going to be an eigenvector. 

Now, one defines what is known as eigen space. So, see what you have got is suppose ,   

I have got a eigenvector then I take a multiple. 

So, if you are in say r two you are going to have a straight line ,except what you do not 

want is multiply by 0. So, eigen space by definition is going to be all multiples and you 

add 0 to it. So, all non-zero vectors in your eigen space they are going to be eigenvectors 

associated with eigenvalue lambda and. So, there are infinitely many eigenvectors ,,,, but 

,, but ,,, but ,, but when you consider number of linearly independent eigenvectors they 

are going to be finite and. In fact, the that number is going to be less than or equal to 

algebraic multiplicity. 

So, if you have got lambda 1 to be an eigen value with algebraic multiplicity to be m 1. 

In that case you can have at the most m 1 linearly independent eigenvectors, the number 



can be less .We will consider an example where your number of linearly independent 

eigenvectors can be strictly less than algebraic multiplicity. 

Your algebraic multiplicity is you consider factorization of characteristic polynomial and 

in that you have lambda 1 minus lambda term whatever its power that is our algebraic 

multiplicity and geometric multiplicity is number of linearly independent eigenvectors 

associated with it. 
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 So, here is definition of eigen space null space of a minus lambda I is set of all z such 

that a minus lambda I z is equal to 0 vector, it is a subspace it consists of eigenvectors 

and a 0 vector the dimension of this sub space is called geometric multiplicity of our 

eigen value lambda then 
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 As I said it is same as number of linearly independent eigenvectors associated with 

eigenvalue lambda and geometric multiplicity ,will always be less than or equal to 

algebraic multiplicity. 

So, now let me give you an example of 2 by 2 matrix a simple matrix for which in one 

case geometric multiplicity is strictly less than algebraic multiplicity and in another case 

they are equal. If your matrix is upper triangular matrix ,then your eigen values are going 

to be diagonal entries. So, for upper triangular matrices you do not have to do any 

computation just look at the diagonal entries those are your eigen values. 

Now, when you considered gauss elimination method we reduced matrix a to upper 

triangular form,,,, but,, but ,,, but ,, but these elementary row transformations they do not 

preserve the eigenvalues .You have matrix a it has got certain eigen values you do 

elementary row transformations obtain to an upper triangular matrix,,,, but ,, but ,,, but ,, 

but the eigen values of upper triangular matrix which you have obtained will be 

completely different than your original eigen values. 

This elementary row transformations they do not change the solution of system a x is 

equal to b, that is why it was useful there whereas, here it is not useful. So, now, let us 

consider a example. 
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 So, here is upper triangular matrix 1 1 0 1 the determinant of A minus lambda I is 1 

minus lambda square. So, A has eigenvalue 1 with algebraic multiplicity 2. So, it is a 

repeated eigenvalue. 

I look at its eigenvector. So, 1 1 0 1 u 1 u 2 is equal to u 1 u 2. So, you get u 1 plus u 2 is 

equal to u 1 and u 2 is equal to u 2 this second equation gives us no information the first 

equation tells us that u 2 has to be 0; that means, null space of a minus I is going to be 

vector u 1 0 u 1 belonging to c. So,your null space of A minus I which is all u 1 0 u 1 

belonging to c. So,; that means, we have got multiples of vector 1 0. 
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 If you want eigenvector then it should be a non-zero multiple. So, for this example you 

have got 1 is eigenvalue with algebraic multiplicity 2 and geometric multiplicity to be 1. 

So, geometric multiplicity is strictly less than algebraic multiplicity now let me change 

this examples slightly let me make this 1 as 2.  
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So, when you look at matrix 1 1 0 2 its characteristic polynomial will be 1 minus lambda 

2 minus lambda. So, you have eigen values to be 1 and 2 with algebraic multiplicities in 

both the cases to be equal to 1. 



When we try to consider the eigenvector then you are going to have u 1 plus u 2 to be 

equal to u 1 and 2 u 2  is equal to u 2. So, that means, u 2 has to be 0 and eigen vector 

will be of the form u 1 0 with u 1 not equal to 0. So, one will be eigenvector with 

geometric multiplicity to be equal to1. 
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Next look at 1 1 0 2 u 1 u 2 into is equal to 2 times u 1 u 2. So, what will be the first 

equation it will be u 1 plus u 2 is equal to 2 u 1 ,second equation will be 2 u 2 is equal to 

2 u 2. So, again the second equation does not give us any information from the first 

equation you will get u 1 is equal to u 2. So, any eigenvector associated with 2 will be of 

the form u 1 u 1 u 1 is not equal to 0 or equivalently it is going to be a non-zero multiple 

of vector u 1 u 1. 

So, eigenvector of 1 will be 1 0 or any multiple eigenvector of 2 will be vector 1 1 or any 

non-zero multiple. So, . So, now, what we are going to do is we are going to consider 

eigenvalues of our special matrices. If the matrix is self-adjoint A star is equal to A then 

we will show that eigenvalues they have to be real if A star is equal to minus A then 

eigenvalues have to be purely imaginary or 0 

For normal matrix we do not have any such structure your eigenvalues can be complex,,,, 

but ,, but ,,, but ,, but still for eigenvalues of normal matrix it has got some special 

property if you look at two distinct eigenvalues and corresponding eigenvectors then 

they are linearly independent for normal matrix something more is true. 



Eigenvectors corresponding to distinct eigenvalues, they are going to be perpendicular to 

each other; that means, their inner product is going to be 0. If you consider eigenvectors 

of unitary matrix; that means, the matrix which satisfies A star A is equal to A. A star is 

equal to identity then the eigen values they are going to have modulus to be equal to 1. 

So, they will lie on unit circle, now what does these eigen values tell us. 

So, these are going to be precisely the points where a minus lambda 1 will not be 

invertible at all other complex numbers our matrix A minus lambda 1 will be invertible. 

So, when you have got n by n matrix there are going to be at the most n complex 

numbers for which A minus lambda I will not be invertible for all other complex 

numbers A minus lambda I will be invertible. 

So, let us show the properties of eigen values of special matrices the proofs are simple 

and straight forward.  
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So, look at A u is equal to lambda u u not equal to 0 vector lambda complex number pre 

multiply by u star. So, you have got u star A u is equal to u star lambda u. So, which is 

same as lambda times u star u. 

u star u will be summation I goes from one to n u i u i bar. So, that is summation i goes 

from 1 to n mod u i square u is not a 0 vector. So, that means, at least 1 u i will be non-

zero and hence this summation will not be equal to 0. So, I get lambda to be equal to u 



star A u divided by u star u which is equal to in the notation of inner product it is A u 

comma u divided by u comma u. 
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So, we have lambda to be equal to inner product of A u with u divided by inner product 

of u with u let me consider complex conjugate of lambda this is going to be complex 

conjugate of A u with u divided by complex conjugate of u with u now since inner 

product of u comma u is bigger than or equal to 0 here this u comma u bar will be same 

as u comma u and by conjugate symmetry the numerator is going to be inner product of u 

with A u divided by u comma u. 
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So, thus lambda is equal to A u comma u divided by u comma u and lambda bar is u 

comma A u divided by u comma u ,now lambda is also equal to this a when it goes to the 

second variable it goes as A star. So, it is going to be u A star u upon u comma u, now 

from here I can conclude that A star is equal to A, will imply that lambda bar is equal to 

lambda and which will mean that lambda is going to be real because lambda is a 

complex number its complex conjugate is equal to itself, that means, lambda has to be 

real. 

Similarly, if A star is equal to minus A then your lambda bar is minus lambda. So, if 

lambda is equal to x plus y. So, it is say minus x plus y and lambda bar is going to be x 

minus   y and hence in this case you are going to have if you have got A star is equal to 

minus A then lambda bar is equal to minus lambda and then this means that lambda is 

purely imaginary or zero. 
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 So, this is for self-adjoint and skew self-adjoint matrices now, for the normal matrix.  
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So, suppose A is normal. So, you have got A A star is equal to A star A consider norm A 

x its ecludian norm and its square this will be nothing,,,, but ,, but ,,, but ,, but inner 

product of A x with itself this a will go here as A start. So, it is x A star A x now use the 

property that A star A is same as A A star. So, it will be x A A star x which will be x 

now this A I can write as A star its star A star x. So, this is same as A star x A star x 



because this A star will go to the second variable as its star. So, this is nothing,,,, but ,, 

but ,,, but ,, but norm A star x 2 norm square. 

So, an important relation that if A is normal then euclidian norm of A x is same as 

euclidian norm of A star x how does this property helps us for saying something about 

eigenvalues. So, what we have to proved is if A is normal then norm A x is same as norm 

of A star x then suppose lambda is eigenvalue of a then we have got A minus lambda I u 

is equal to 0. 

So, norm of A minus lambda I u will be equal to 0 now a normal will mean that if I 

consider A minus lambda I its star that u into also will be 0. So, that will mean that 

lambda bar will be an eigenvalue of A star. 
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So, A normal implies norm A x is equal to norm of A star x its 2 norm then A u is equal 

to lambda u is not equal to 0 vector. So, norm of A minus lambda I u will be 0 this will 

be same as A minus lambda I star u is equal to 0 and this is equal to A star minus lambda 

bar I u is equal to 0 and thus A star u is equal to lambda bar u. 

So, now for normal matrices the A and A star if lambda is eigenvalue of a lambda bar   

will be eigenvalue of A star and eigenvector is going to be the same. So, using this fact 

in our next lecture ,we will show that eigenvectors of a normal matrix associated with 



distinct eigenvalues, they are perpendicular ,then I am going to state scherus theorem 

spectral theorem and then we will go to localization of eigenvalues. So, thank you. 

 


