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Gauss-Seidel Method 
 

We are considering iterative methods for solving system of linear equation, n equations 

in n unknowns, last time we have found a sufficient condition for convergence in the 

Jacobi method. Today, we are going to look at the Gauss-Seidel method and we will 

show that the sufficient condition, which we obtained in the Gauss-Seidel method; this 

will be satisfied, if the sufficient condition in the Jacobi method that is satisfied, and the 

condition which we get is going to be that coefficient matrix should be diagonally 

dominant by row. 

In fact, if the matrix is diagonally dominant strictly by column, then also the result is 

going to be true, but I will not prove that result. So, we will first consider the Gauss-

Seidel method; obtain sufficient conditions or convergence of it. Then compare this 

sufficient condition with the sufficient condition which we obtained yesterday for 

convergence of Jacobi iterates then we will look at a specific example. 

If the coefficient matrix a, happens to be upper triangular then we will show that for a 

system of size n, when you will do n iterates to obtain an exact solution. If the system is 

upper triangular then we do not need to use these iterative methods, because you can do 

the back substitution, but this is just to illustrate that; if you apply your Jacobi iterates or 

Gauss-Seidel iterates, then infinite number of iterates you are going to obtain the exact 

solution. 

Then we will consider a specific example, and if we will see, we may solve some more 

problems, which are using or which are based on the Newton’s method, secant method or 

fix iteration for solution of non-linear equation. So, this is going to be plan of today’s 

lecture. So, now let us look at the Gauss-Seidel iterate. 
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We are considering n equations in n unknowns. So, this is the relation satisfied by the 

exact solution, b i they are known; the coefficient matrix a is known, hence you know a i 

j. So, you have got x i is equal to b i minus summation over j, j not equal to i, a i j x j 

divided by a i i. Our assumption is that, coefficient matrix is invertible and all the 

diagonal entries they are non-zero. So, that is why we can divide by it. 

This sum we split as, summation j goes from 1 to i minus 1 and summation j going from 

i plus 1 to n, with the understanding that if i is equal to 1, this term will be absent; if j is 

equal to n or if rather i is equal to n, then this term is going to be absent. So, this is the 

equation satisfied by the exact solution. Now we are going to define the iterative method, 

we had done it yesterday already, but let me recall. 
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So, this is the Gauss-Seidel iterates x i k, the k th iterate will be equal to b i minus 

summation j goes from 1 to i minus 1 a i j x j k. So, we are going to proceed 

systematically. So, you would have already calculated x 1 k, x 2 k, x i minus 1k; these 

are the recent values used here, minus summation j is equal to i plus 1 to n a i j x j k 

minus 1, we have come up to x i. So, x i plus 1 up to x n you have to use the values from 

the k minus first iterate, divided by a i i.  Take the subtraction, you are going to have x i 

minus x i k is equal to b i will get cancelled, minus summation j goes from 1 to i minus 1 

a i j by a i i x j minus x j k minus summation j is equal to i plus 1 to n a i j by a i i x j 

minus x j k minus 1. So, this is our e i k, this will be e j k, this will be e j k minus 1. So, 

now take the modulus of both the sides and you are going to get modulus of e i k to be 

less than or equal to alpha i. 
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 So, alpha i is, summation j goes from 1 to i minus 1 modulus of a i j by a i i ; beta i is 

this summation; alpha 1 is defined to be 0; beta n to be defined to be 0; modulus of e j k 

will be less than or equal to norm e k infinity, and modulus of e j k minus 1, it will be 

dominated by norm of e k minus of 1 infinity. So, this is the relation we obtain for error, 

in case of the Gauss-Seidel iterates. So, the things are little more complicated than the 

Jacobi method. 

Now, what we have got is modulus of e i k; that means, it is the error in the i th 

component of the k th iterate. On the right hand side, you have got terms which involve 

norm e k infinity and norm e k minus 1 infinity. Our aim is to find, norm e k infinity to 

be less than or equal to some constant times norm of e k minus 1 infinity; that means, the 

maximum error in the k th iterate should be less than or equal to constant times 

maximum in the k minus first iterate. 

If we can obtain such a relation, then one uses this successively and one gets the 

maximum error in the k th iterate to be less than or equal to constant; it is raise to k and 

then multiplied by the error at 0th stage. So, suppose I call that constant to be eta. So, I 

want to get norm e k infinity to be less than or equal to eta raise to k into norm of e 0 

infinity. e 0 is the starting error. So, that will give us the condition that, if eta is less than 

1, then you are going to have convergence. The error will tend to 0. 



So, now we have got the relation we obtained, we had modulus of e i k; that means, k th 

iterate. On the right hand side, you have got norm e k infinity, norm e k minus 1 infinity . 

So, you have got such a relation for i goes from 1,2 up to n. Now, norm e k infinity will 

be achieved for sum value of i. Suppose that value is i is equal to m, then you use that 

particular equation to obtain the desired estimate. 

So, let us look at it. You have got modulus of a i k to be less than or equal to this. Now 

suppose, the norm e k infinity that is maximum of modulus of e i k, when i varies 

between 1 to n. Suppose this is attained, when i is equal to m. So, you have got modulus 

of e m k. So, look at this estimate, when i is equal to m. So, norm e k infinity is equal to 

modulus of e m k, which is less than or equal to; now i am looking at i is equal to m. 
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So, it is alpha m times norm e k infinity plus beta m times norm e k minus 1 infinity. So, 

take this term on the left hand side and you will get, norm e k infinity to be less than or 

equal to beta m upon 1 minus alpha m into norm of e k minus 1 infinity. So, we will be 

assuming that, alpha m is less than 1. So, that 1 minus alpha m will be bigger than 0. It 

will preserve the inequalities and you are dividing. So, we have to make sure that, 1 

minus alpha m is not equal to 0. 

So, we have obtained an estimate, it is norm e k infinity to be less than or equal to beta m 

upon 1 minus alpha m norm e k minus 1 infinity. What was m? m was the index when 

the norm e k infinity is equal to modulus of e m k. So, e m k is the error in the m th 



component. In the error you have got your modulus of e m k is going to be modulus of x 

m; x is the exact solution. So, x m minus x m k ; x m k is something which we compute, 

but what about x m? If we knew the exact solution, we do not have to do all these things. 

So that means, for the analysis, it is ok. 

 We can say that, the norm of e k mean infinity that is, when i is equal to m. But as such 

this bound, in that bound beta m upon 1 minus alpha m, we do not know what is m. So, 

the best we can do is, look at maximum of beta i upon 1 minus alpha I; 1 less than or 

equal to i less than or equal to n. So, that is going to be our constant eta. So, what i want 

is, norm e k infinity less than or equal to some constant into norm of e k minus 1 infinity 

and for that constant, then we put a condition that, constant should be less than 1 which 

will give us convergence. 
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So, we have norm e k infinity to be less than or equal to this. Look at eta to be maximum 

of beta i upon 1 minus alpha i ; 1 less than or equal to i less than or equal to n. I do not 

know what m is, but this m if i take eta to be maximum of this quotients, then beta m 

upon 1 minus alpha m is going to be less than or equal to eta. So, we have norm e k 

infinity to be less than or equal to eta times norm of e k minus 1 infinity that means, 

norm e k minus 1 infinity will be less than or equal to eta times norm of e k minus 2 

infinity. 



 So, continuing this argument, you get norm e k infinity to be less than or equal to eta 

raise to k norm of e 0 infinity. So, if this eta is less than 1, then that will guarantee that, 

norm e k infinity will tend to 0 as k tends to infinity. So, this is the sufficient condition 

for convergence, in the case of Gauss-Seidel iterates. Now, next we want to compare this 

sufficient condition with the sufficient condition which we had obtained in case of Jacobi 

iterate. 
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So, for the Jacobi iterates, the condition was mu which is maximum of summation j goes 

from 1 to n modulus of a i j by a i i , maximum taken over 1 less than or equal to i less 

than or equal to n. This mu should be less than 1. For the Gauss-Seidel method, we have 

got eta should be less than 1, where eta is defined in terms of beta i and alpha i. Our 

claim is that, mu less than 1 will imply that eta is less than 1. 

In fact, we will show that, eta is going to be less than or equal to mu. So, I want you to 

observe that, in beta i , you are taking summation j goes from 1 to i minus 1 modulus of a 

i j by a i i ; in alpha i , summation j is equal to i plus 1 to n modulus of a i j by a i i. If you 

look at alpha i plus beta i , it will be nothing but, summation j goes from 1 to n j not 

equal to i mod a i j by a i i. 

So, mu is going to be equal to maximum of alpha i plus beta i. So, eta is this maximum; 

mu is this maximum. So, what we will show is, alpha i plus beta i minus beta i upon 1 

minus alpha i is bigger than or equal to 0. Or we want to show that, beta i upon 1 minus 



alpha i is less than or equal to alpha i plus beta i and the proof is going to be straight 

forward. So, here mu is maximum of alpha i plus beta i 1 less than or equal to i less than 

or equal to n; eta is maximum of beta i upon 1 minus alpha i. 
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I consider alpha i plus beta i minus beta i upon 1 minus alpha i ; This will be equal to 

alpha i minus alpha i square, this beta i and this beta i will get cancelled. So, you will 

have minus beta i alpha i divided by 1 minus alpha i. So, this is nothing but, alpha i times 

1 minus alpha i plus beta i upon 1 minus alpha i ; then mu is maximum of alpha i plus 

beta i. 

And hence, 1 minus alpha i plus beta i will be bigger than or equal to 1 minus mu. So, it 

is alpha i upon 1 minus alpha i , then mu is less than 1. So, 1 minus mu will be bigger 

than 0; alpha i is summation j goes from 1 to i minus 1 modulus of a i j by a i i ; mu less 

than 1 will also imply that, alpha is also less than 1. So, this number is going to be bigger 

than 0. 
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So, the maximum which you are taking here, this number is bigger than this number. So, 

that proves that, your eta is less than or equal to mu less than 1. So thus, if mu is equal to 

maximum of this summation less than 1, then we are going to have convergence both in 

the Jacobi method and Gauss-Seidel method that means, your A should be strictly row 

diagonally dominant. So, now we have got a sufficient condition which guarantees 

convergence of both Jacobi iterates and Gauss-Seidel iterates. 

As I had mentioned before, we are not claiming that, if the Jacobi iterates converge, then 

Gauss-Seidel iterates have to converge in the Gauss-Seidel iterates, because you are 

using the most recent value of your iterate; it is likely to give better results, but when can 

construct a pathological example, when the Jacobi methods converges, Gauss-Seidel 

method does not converge.  

So, we have compared some sufficient conditions and then we said that, if the sufficient 

condition in the Jacobi method is satisfied, then the sufficient condition in the case of 

Gauss-Seidel method also will be satisfied. So, if your A is strictly row diagonally 

dominant, then both the Jacobi method and the Gauss-Seidel method or these iterates are 

going to converge to the exact solution. So, let us look at a simple example. We will take 

4 by 4 system and we will look at the first few iterates in the Jacobi method and in the 

Gauss-Seidel method. 
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So, here is the system, you have got 4 equations in 4 unknowns. The diagonal entries are 

4, super diagonal and sub diagonal are minus 1. So, it is a tri-diagonal system and it is 

diagonally dominant. The right hand side is so chosen that, the exact solution is nothing 

but 1 1 1 1. We are going to chose the initial iterates to be all 0. So, x 0 is going to be a 0 

vector. 

 In the case of Jacobi iterates, you are going to have x i 1 is equal to b i divided by 4, i is 

equal to 1 2 3 4. We are taking all these 0s. So, the x i 1s first iterates will be given by b i 

4. When you consider the second iterate in the Jacobi. So, x 1 2 . Look at the first 

equation. Here x 1 2 will be 3 plus 1 times x 2 1 divided by 4 then, when you consider x 

2 2, this is going to be equal to 2 plus x 1 1 plus x 3 1 and then divided by diagonal entry, 

that is 4. 

So, when we calculate x 2 2, we have already calculated x 1 2. Here if instead of x 1 1, 

we use x 1 2, the recent value available then that becomes the Gauss-Seidel method. 

Here what we are going to do is, then you look at x 3 2 that is going to be equal to 2 plus 

x 2 1 plus x 4 1 divided by 4. Eventhough x 1 2 is available, we are not using it here; that 

is for the Jacobi iterates. 
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In the case of Gauss-Seidel iterates, what we do is when you look at, you have the first 

iterate for the Jacobi; you had x i 1 is equal to b i by 4, i is equal to 1, 2, 3, 4. In the case 

of Gauss-seidel, the first component x 1 1 is going to be b 1 by 4; when you calculate x 2 

1, this x 2 1 will be equal to b 2 plus x 1 1 plus x 2 0 divided by 4. Now, whatever is the 

recent value of x 1 1 that we are using for Jacobi, what we did was it was all 0s. So, our x 

2 1 was b 2 by 4 whereas, here x 2 1 will be b 2 plus x 1 1 by 4 because, x 2 0 will be 0. 

When you consider x 3 1, for x 3 1 again x 2 1 is available; whereas, x 4 1 we have not 

yet reached. So, we are forced to use x 4 0. So, this is the difference between Gauss-

Seidel and Jacobi iterates.  
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So, let us calculate the iterates. So, the first for the Jacobi iterate. You have got x 0 is 

equal to 0 vector. So, x 1 1 will be 3 by 4; x 2 1 will be 2 by 4 that means, 1 by 2; x 3 1 

will be 2 by 4 and x 4 1 is equal to 3 by 4. So, you are replacing sort of coefficient matrix 

by the diagonal matrix. This was for the first iterate.  

For the second iterate, x 1 2 is going to be equal to 3 plus, what we had calculated for x 1 

or other it is going to be x 1 2 is equal to b 2 plus x 2 1 divided by 4. So, x 2 1 is 1 by 2. 

So, that gives you x 1 2 to be equal to 7 by 8. When you look at second iterate, the 

second component that is going to be equal to the right hand side 2, then the value of x 1 

1 ; that is 3 by 4 then plus the value of x 3 1. So, that is going to be 2 by 4 divided by     

4. So, you get it to be 13 by 16 you can check that, you get the same value for x 3 2 and 

you get the value x 4 2 to be 7 by 8.  
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So, for this particular example what you are getting is, for the Jacobi method, we start 

with the iterate to be 0 0 0 0, that is our x 0. Then our next iterate x 1 is going to be 3 by 

4, then 1 by 2, 1 by 2 and again 3 by 4. So, this is our x 1 and the next iterate which we 

get is 7 by 8, then 13 by 16, 13 by 16 and again 7 by 8. So, this is our x 2.The exact is 1 1 

1 1 and then one can continue. 
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Now let us look at the Gauss-Seidel iterates. For the Gauss-seidel, x 1 1 is 3 by 4 

whereas, when you calculate x 2 1, you are going to use the value to be x 1 1, the recent 



value; whereas, for x 2 0, you have to choose it to be you had to take it to be 0 only. So, 

you get 11 by 16. In case of x 3 1, again x 2 1 is we have calculated. So, you will use that 

value; whereas, x 4 0 you have to take it to be 0 and then you get these values. 
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So, in the case of Gauss-Seidel method , your x 1 vector is going to be 3 by 4, then 11 by 

16, 43 by 64 and then something you will get here. So, this is x 1. So, here it looks like 

that, the Gauss-Seidel iterates are going to converge faster. The exact solution was 1 1 1 

1. So, if you use the recent value, then the result, the error will be small. So, this was just 

an illustrative example and as I have been mentioning that, whatever we consider in this 

course, it is not for hand computations. 

It all makes sense, when you are going to use big systems using a computer. So, here one 

can when has to write a program, it will not be difficult to write a program for Jacobi 

method or Gauss-Seidel iterates. You have to give some stopping criteria and then you 

can see that, it will give you an approximate solution in contrast to the direct solution, 

but if n is big, then one may have to resort to indirect methods because, the direct method 

may be too expensive. 

So, now I want to quickly tell you or show you that, if the coefficient matrix is upper 

triangular matrix, then in n iterates you are going to reach the exact solution. So, now we 

look at a x is equal to b, Jacobi method and a is assumed to be an upper triangular matrix. 



So, in case of Jacobi method, this is our formula that, x i k is equal to b i minus sum j not 

equal to i divided by a i i , i goes from 1, 2 up to n. 
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A is upper triangular that means, a i j will be 0, if i is bigger than j. If we take the initial 

approximation to be all 0s or infact , whatever approximation you take. So, when you 

have got A to be upper triangular, then your first equation is going to be a 1 1 x 1 plus a 

1 n x n is equal to b 1. Your second equation will be a 2 2 x 2 plus a 2 n x n is equal to b 

2 and your last equation will be a n n x n is equal to b n. So, in the last equation, there are 

no x 1 x 2 x n minus 1. So, whatever are your initial iterate or initial approximation, it 

just does not come into picture. 
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So, in the case of Jacobi method, put i is equal to n then it tells you that, x n 1 is going to 

be b n upon a n n. So, whatever is your initial approximation for the n th component, you 

have already obtained an exact value. So, we are starting with some approximation x 1 0, 

x 2 0, x n 0. We calculate the Jacobi iterate, you are going to get these iterates x 1 1, x 2 

1, x n 1; of which, the last component x n 1 is going to be the exact value. 
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If your matrix is upper triangular, now when you go to the next iterate, then what will 

happen will be the nth component is already exact; then n minus first component will 



become exact. So, like that when you will do n iterates, in the end the nth iterate is going 

to be equal to the exact solution. 
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So, we have x n minus 1 2 is equal to b n minus 1 minus a n minus 1 n x n 1 divided by 

this n th component is already exact. So, now in the second iterate n minus first 

component also is exact. When you consider n iterate, then we obtain the exact solution. 

This is about the iterative solution of system of linear equations. So, what we have 

considered is, we looked at solution of non-linear equations and now iterative solution of 

system of linear equations. 

Our next topic is going to be approximate solution of differential equations, but before 

we start that topic what I want to do is, solve some problems which are for the Newton’s 

method, secant method and bisection method based on truths. We are going to look at 

some of the problems based on those and there are some results about the norms. So, we 

are also going to look at those problems. In the lectures we have seen that, we had left 

something to be done in the tutorial. So, we are going to look at truth problems also. 
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Now, first let us look at the first problem. So, the problem is, g is from a b to a b. It is a 

continuously differentiable function and M is maximum of modulus of g dash x 

belonging to a b ; this is less than 1. Under this condition, g is going to have a unique 

fixed point in the interval a b. So, I call that fixed point to be c. We look at the Picard 

iterates. So, it starts with x 0 in a b and define x n plus 1 is equal to g of x n, then we 

want to show that modulus of x n plus 1 minus c is less than or equal to m upon 1 minus 

m modulus of x n plus 1 minus x n.  

What is the importance of this example or this problem? When we will prove the 

convergence of the Picard’s iteration method? We had modulus of x n plus 1 minus c to 

be less than or equal to m times modulus of x n minus c. Continuing the argument, we 

got modulus of x n plus 1 minus c to be less than or equal to m raise to n plus 1 modulus 

of x 0 minus c, since m is less than 1; m raise to n plus 1 tends to 0. So, that proves x n 

converging to c. 

So, now I know that, if some conditions are satisfied then this Picard’s iterates are going 

to converge. Now in practice, I want to know where to stop that. If I require some 

accuracy, say the error should be less than 10 raise to minus 6, then how many iterates I 

should calculate. I cannot calculate modulus of x n minus c. c is the fixed point, which 

we do not know because we are trying to find the approximation.  



Unless I am considering an illustrative example, the modulus of c minus x n I cannot 

calculate, but what I can compare is, the distance between the 2 successive iterates. So, 

mod of x n plus 1 minus x n, now suppose, the 2 successive iterates modulus of x n plus 

1 minus x n, if they are small whether that will mean that, modulus of x n plus 1 minus c 

also is small. So, the answer is yes and that is where, this example shows or this is the 

result which we are going to show. That modulus of x n plus 1 minus c is going to be less 

than or equal to M upon 1 minus M modulus of x n plus 1 minus x n.  

So, M is less than 1. Suppose M is equal to half, then this is going to be equal to half. We 

will have M upon 1 minus M to be equal to 1, then if modulus of x n plus 1 minus x n is 

less than 10 raise to minus 6; that also guarantees that, x n plus 1 minus c will be less 

than 10 raise to minus 6. This is something one can compute; this gives you the stopping 

criteria and proof of this result is not difficult. So, let us prove this result.  
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So, our assumption is, g is continuously differentiable on interval a b; c is the unique 

fixed point; g of c is equal to c; modulus of g dash x is less than or equal to M less than 

1, that is our assumption. Then x n plus 1 minus c will be equal to, x n plus 1 is g x n; c 

is g c; g x n minus g of c. Using the mean value theorem, this will be equal to g dash d n 

x n minus c where, d n lies between x n and c; modulus of g dash d n will be less than or 

equal to M.  



So, you will have modulus of x n plus 1 minus c to be less than or equal to M times mod 

of x n minus c. Now, here I add and subtract x n plus 1. So, I write x n minus c as x n 

minus x n plus 1 plus x n plus 1 minus c, use the triangle inequality. So, it is less than or 

equal to M times mod of x n minus x n plus 1 plus M times modulus of x n plus 1minus 

c. 

Take this term on the other side and then you will get, modulus of x n plus 1minus c to 

be less than or equal to M divided by 1 minus M modulus of x n minus x n plus 1. So, 

this is the error in the successive iterates, this is going to be the error in the n plus first 

iterate and we have related these 2 errors. Now, the next problem which we are going to 

do is, we will try to find that, how big n I should choose in a particular situation. So, that 

is going to be our next problem.  
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So, we look at c to be the smallest positive root of f x, this calculating the 0 of a function 

an f; we relate it to calculating a fixed point of another function. So, if I define g x is 

equal to x cube minus x square minus x by 4 plus 1 by 5, then f of c is equal to 0, if and 

only if, g of c is equal to c; we are going to show this. Take x 0 to be equal to 0 and x n 

plus 1 is equal to g x n. So, these are our Picard’s iterate. We want to find n such that 

modulus of c minus x n is going to be less than 10 raise to minus 3. 

We are first going to look at, how the 0s of f are going to be to. So, it is a cubic equation. 

So, it is going to have 3 roots; we look at the smallest positive root. So that, its 



approximation we are considering, we will show that f c is equal to 0, if and only if, g of 

c is equal to c and finally, find n which will imply that, the error is less than 10 raise to 

minus 3. 
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So, this is our f x; this 25 x I split as 5 x and 20 x, then g x is our function x cube minus x 

square minus x by 4 plus 1 by 5. So, g x is nothing but, f x divided by 20 and then plus x. 

This is our g x when I divide by f x by 20. I will have x cube then minus x square minus 

x by 4 and then plus 1 by 5. So, that is our g x and then I am dividing by 20. So, this is 

will be g x f x by 20 will be, g x minus x or equivalently g x is equal to f x by 20 plus x 

that gives us f of c is equal to 0, if and only if, g of c is equal to c. 

Now, we will want to look at how the 0s of f are situated, f is a cubic polynomial. So, it 

is going to have 3 roots; it can happen that, all the 3 roots are real or there will be 1 real 

root and 1 pair of complex roots. Now if I can find points, like suppose I have got value 

of f at 2 points; if it is of opposite sign, then there is at least one 0 that can be more than 

one 0s, but there is at least one 0. So, that is why we will try to find 3 intervals, in which 

there are going to be f has 0s. 
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So, we will look at value of f at, say minus 1, 0, 1 and 2. So, f of minus 1 you can check 

that it is minus 11, f of 0 is 4. So, f minus 1 and f of 0 they are of opposite sign; it has 

atleast 1 root in the interval minus 1 to 0; f of 1 is going to be minus 21. So, in the 

interval 0 to 1, there is atleast 1 root and f of 1 is minus 21, f of 2 is 34. So, f 1 and f 2 

are opposite signs. So, there has to be atleast 1 root in 1 to 2. Now f can have a atmost 3 

roots. So, in each interval, there is going to be exactly 1 root and we are concentrating on 

c which belongs to 0 to 1, the smallest positive root of our function f. 
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Now, g x is our function given by this, you want to calculate. So, for a fixed point iterate, 

we need to calculate the maximum of modulus of g dash x over an appropriate interval 



because, that is our sufficient condition; that modulus of x n minus c is going to be less 

than or equal to M raise to n into modulus of x 0 minus c. So, we need to calculate M, 

which is maximum of modulus of g dash x over interval, in our case it is going to be 

interval 0 to 1. 

G is a polynomial function. So, we can calculate its derivative. When you want to find 

absolute value of a continuous function, you have to compare the values at the 2 end 

points and at the critical point. The critical points are those, points at which either 

derivative vanishes or derivative does not exists. In our case, g is a polynomial. So, we 

will have to only look at the points, where the derivative vanishes. 

Now, hopefully one gets only finitely many such points. So, one compares the values at 

those points and decides which is the absolute maximum and which is the absolute 

minimum. One did not consider the second derivative, the second derivative test tells you 

only about the local maximum and local minimum. So, now we are going to look at the 

derivative, the value at the 2 end points and the value where the derivative vanishes; that 

means, the second derivative should be equal to 0. 

So, g x is given by x cube minus x square minus x by 4 plus 1 by 5; its derivative will be 

3 x square minus 2 x minus 1 by 4; the second derivative will be given by 6 x minus 2. 

So, this will be 0 when x is equal to 2 by 3. So, we need to compare the value at the 2 

end points 0 and 1, and at the critical point 2 by 3; these values are minus 1 by 4, minus 1 

by 4, 3 by 4 which will give us M to be equal to 3 by 4. 
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And then modulus of c minus x n will be less than or equal to 3 by 4 raise to n and now 

one thing here we do not know c; x 0 is 0, but we know that, c is going to be in the 

interval 0 to 1. So, I dominate modulus of c by 1. So, this should be less than 10 raise to 

minus 3. So, that gives you condition that, your n should be such that 10 cube is less than 

4 by 3 raise to n. So, in our next lecture, we are going to consider some more problems 

and then we will start the new topic, approximate solution of differential equations. So, 

thank you. 


