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Today, we are going to solve some problems. So, first we are going to show that product 

of two lower triangular matrices is lower triangular, if the diagonal entries of both the 

lower triangular matrices, if they are equal to 1, then the product also has diagonal 

entries is equal to 1. 

Then, we will show that inverse of a lower triangular matrix is again lower triangular; 

and then we had used these results to show uniqueness of the LU decomposition. So, I 

will recall that result.  
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So, here is the first tutorial problem, that you have got two matrices L and M, say of size 

n by n, and they are unit lower triangular; that means, the diagonal entries, they are equal 

to 1. So, we want to show that L into M is also a unit lower triangular matrix. So, the 



proof is going to be straight forward, we will just look at the multiplication of these two 

matrices.  
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The structure of our matrix L is going to be of this form. Along the diagonal, we have 

got 1, the part which lies below the diagonal it can have non-zero entries or zero entries. 

But definitely, the elements which are above the diagonal they are going to be 0. So, that 

means, l ij is equal to 0, if i is less then j, i denotes the row index and j denotes the 

column index. And l ii is equal to 1 i is equal to 1 2 up to n. Matrix M is going to have 

similar form and now we look at the product of L into M.  
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So, we have l ij is equal to 0 m ij is equal to 0, if i less then j and l ii is equal to m ii is 

equal to 1 for i going from 1 2 up to n ijth element of matrix LM. We denote by LM in 

the bracket i,j. By definition of matrix multiplication, this will be given by summation l 

ik m kj k goes from 1 to n. So, it is ith row of L multiplied by jth column of m. 

Now, using the fact that l ij is equal to 0, if i less then j, you are going to have summation 

k goes from 1 to i, because when k is equal to i plus 1 l ii plus 1 will be 0. So, this is 

going to be summation k goes from 1 to i l ik m kj. We are interested in the elements of l 

m, when i is less than j. So, for that case i less than j m kj will be 0 for k going from 1 2 

up to i, because for k is equal to 1 2 up to i j will be bigger than k. And m has the 

property that m ij is 0, if i less than j. And hence this summation… in this summation m 

kj’s they are going to be 0. So, you get LM i, j is equal to 0. So, as in the case of L and M 

when you consider the elements LM ij when i less then j they are equal to 0. 

So, now it remains to show that the diagonal entries they are equal to 1. So, now, we will 

look at diagonal entry of LM say LM i, i that will be given by ith row of l multiplied by 

ith column of m.  
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And then we obtain LM i, i to be summation k goes from 1 to n l ik m ki. Now, as before 

this summation reduces to summation k goes from 1 to i l ik m ki. The only non-zero 

term in the summation is going to be when k is equal to i. So, you get this to be equal to l 

ii m ii and this is equal to 1. So, thus product of two lower triangular matrices is going to 

be a lower triangular matrix and if the diagonal entries of both the matrices they are 

equal to 1, then the product also has similar property. 

Now, the next example, which we want to consider is if L is a lower triangular matrix, 

then its inverse is going to be again a lower triangular. So, you start with a invertible 

lower triangular matrix and we want to show that its inverse is lower triangular; when we 

had discussed Gauss elimination method, we had said that finding a inverse using the 

classical formula is something not advisable, because it is very expensive. So, what one 

should do is, if one wants to find the inverse of a matrix, then you solve the system Ax is 

equal to b for right hand side b is equal to e 1, e 2, e n, which are the canonical vectors. 

And then, when you consider l x is equal to e j, whatever result you get you should write 

it as a jth column. So, that gives you inverse of A, it is this result we are going to use to 

show that inverse of a lower triangular matrix is lower triangular 
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 The computation of A inverse: A inverse is given by A inverse e 1, A inverse e 2, A 

inverse e j, A inverse e n . So, the jth column of A inverse is C j, which is equal to A 

inverse e j equivalently, you get a C j is equal to e jj going from 1 2 up to n. So, thus the 

column the jth column of A inverse is obtained by solving system of linear equations A 

C j is equal to e j, where e j is the canonical vector with 1 at jth place and 0 else where. 
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Look at L to be a unit lower triangular matrix, because it is unit lower triangular, 

determinant of L will be equal to 1. The product of the diagonal entries and hence it will 



be invertible. Now, we want to show that L inverse is also unit lower triangular. So, you 

write L inverse as its columns L inverse e 1 L inverse e 2 L inverse e n the jth column C j 

of L inverse is given by C j is equal to a 1j a 2j a nj, which is equal to L inverse e j. So, 

that gives you L of c j is equal to e j a, system of equation to solve.  
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Now, our matrix L it has got 1 along the diagonal entries 0 above the diagonal and below 

diagonal, it is given by this multiplied by say jth column I am denoting the jth column by 

b 1j b 2j b nj is equal to right hand side, which is ej; So, 1 at jth place and 0 elsewhere. 

Since the matrix L is lower triangular, we can use forward substitution. So, the first 

equation has only 1 unknown , but its b 1j and equating you get b 1 j to be 0. Now, 

second equation will be l 21 b 1j plus b 2j is equal to 0. Now, b 1j is already 0. So, you 

get the b 2j is equal to 0 and continuing in this fashion, you get b j minus 1 j is equal to 0 

when you look at jth equation, the jth equation will be l j1 b 1j l j2 b 2j l jj b jj. 

Where l jj is going to be 1 and since b 1 j b 2 j b j minus 1 j is equal to 0, you obtain b jj 

to be equal to 1, if you look at j plus first equation it will have l j plus 1 j b jj plus bj plus 

1 j is equal to 0. Now, b jj is equal to 1. So, you are going to get b j plus 1 j is equal to 

minus l j plus 1 j. So, that is how you can calculate the jth column and in the j th column. 

The important thing is you get first j minus one entries to be 0, the jth entry to be equal to 

1and then remaining entries they may be non-zero or they may be 0. 



It depends on your matrix l, but definitely in the jth column first j minus 1 entries they 

are going to be equal to 0 and jth entry is going to be equal to 1. So, that is what will 

make our inverse to be unit lower triangular.  
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So, when you look at L inverse it is going to have, 1 along the diagonal - star means 

either it is zero or it is non-zero and above you are getting all 0. So, we get L inverse also 

to be unit lower triangular. Now, when you look at upper triangular matrices, then 

whether product of two upper triangular matrices is upper triangular whether inverse of 

upper triangular matrix is upper triangular. So, the result is true and we can deduce this 

result for upper triangular matrices by taking the transpose, like we have proved that 

product of two lower triangular matrices is again a lower triangular. Now, if you are 

looking at two upper triangular matrices say U 1 and U 2, then when you take transpose, 

transpose of upper triangular matrix will become lower triangular matrix. So, take the 

transpose then use the fact that product of two lower triangular matrices is again a lower 

triangular matrices and then again take the transpose, same idea for showing that inverse 

of upper triangular matrix is upper triangular. 

And there we use the fact that the inverse and transpose, these two operations they 

commute in the sense that a inverse transpose is going to be same as a transpose inverse, 

whether I take inverse first and then take transpose or take transpose and then take 

inverse the result is going to be the same.  
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So, let us show this; now, for upper triangular matrices U and V are unit upper triangular 

take the transpose, then they become unit lower triangular. What we have proved just 

now is V transpose U transpose that is going to be a unit lower triangular matrix, but V 

transpose U transpose is nothing but transpose of U into V. So, if U into V transpose is 

unit lower triangular UV is going to be unit upper triangular. 

So, U and V unit upper triangular implies their product is also unit upper triangular. For 

the inverse now, U is unit upper triangular take its transpose it becomes unit lower 

triangular take its inverse that is going to be unit lower triangular, which we proved just 

now because the operation of transpose and inverse commute, this will be U inverse 

transpose. Now, if U inverse transpose is unit lower triangular, then U inverse has to be 

unit upper triangular. 
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And now using these two results, let us recall the result of uniqueness of LU 

decomposition. So, if you have A is equal to L 1 U1 is equal to L 2 U 2. Where L 1 and 

L 2 are unit lower triangular matrices U 1, U 2 are upper triangular matrices and 

invertible, then from this relation I can deduce that L 2 inverse L 1 is going to be equal to 

U 2 U 1 inverse I pre-multiply by L 2 inverse and post multiply by U 1 inverse now left 

hand side is a unit lower triangular matrix right hand side is a upper triangular matrix, if 

both are equal then both of them they should be diagonal matrix and then because the 

diagonal entries of L 2 inverse L 1 they are going to be 1, the diagonal matrix is nothing 

but the identity matrix. 

So, this is the uniqueness of LU decomposition. So, if a is invertible then A can be 

written uniquely as L into U, when we proved LU decomposition of the matrix A we had 

made an additional assumption that look at the principle leadings sub matrix that is 

formed by first k rows and first k columns of our matrix. So, you take a square matrix, if 

its determinant is not equal to 0 for k is equal to 1 2 up to n. 

Then we proved that under this assumption a can be written uniquely as L into U. Now, 

we want to prove the converse that suppose, A is a invertible matrix and it is given to us 

that it can be written as L into U. Where L is unit lower triangular, U is upper triangular 

then we want to show that determinant of a k is not equal to 0. So, thus what we are 

going to show is if A is invertible you can write a as equal to L into U, if and only if 



determinant of A k is not equal to 0 for k is equal to 1 2 up to n. Now, in order to prove 

this result, portioning of this matrix it helps. Let us do one thing, we have got our n by n 

matrix and we are already considering the leading principles of matrix. So, you have got 

sub matrix which is formed by first k rows and first k columns. So, look at our remaining 

sub matrices.  
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So, A is A 11 A 12, A 21 A 22, where A 11 is k by k matrix. So, this A 11 we have been 

calling it A k; A 12 will be formed by first k rows and next n minus k columns last n 

minus k columns. So, the size of A 12 is k into k by n minus k matrix A 21 that is formed 

by n minus k rows and k columns. So, it will be n minus k by k and A 22 will be matrix 

of size n minus k by n minus k. 



(Refer Slide Time: 17:44) 

 

Next, we look at multiplication of two n by n matrices A and B. So, C is equal to AB 

then, if you partition matrices AB and C in a similar manner. Then we are going to have 

C 11 is equal to A 11 B1 plus A 12 B 21, the result is also going to be true for C 12 like 

C 12 will be given by first row into second column. 

So, C 12 will be A 11 B 12 plus A 12 B 22 and so, similarly, for C 21 and C 22. So, it is 

as if we are treating this as 2 by 2 matrix, but for our result we need only the result about 

C 11. So, let us prove this result. Now, before we proceed notice that C 11is going to be 

k by k matrix A 11 is k by k B 11 is k by k. So, this is going to be k by k. A 12 is k by n 

minus k B 21 is n minus k by k. So, when you take their product you again get a k by k 

matrix. So, in order to prove this result we use the usual formula for matrix 

multiplication.  
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So, C ij will be given by ith row of a into jth column of b. So, it is summation p goes 

from 1 to n a ip b p j. This sum I split into two sums p going from 1 to k and p going 

from k plus 1 to n now you look at. So, our i and j they are going to be lie between one 

and k. So, 1 less than or equal to i j less than or equal to k then look at a ip. So, i is 

between 1 and k p is between 1 and k. So, a ip will be nothing but i pth element of A 11 

then b pj p is between 1 and k j is between 1 and k. So, b p j will be nothing but B 11 p j 

plus. Here i is between 1 and k, but p is between k plus 1 to n p means the column. 

So, that is why this a i p will be i pth element of A 12. So, it is A 12 i p and then b p j. 

So, b pj will be nothing but p is between k plus 1 to n j is between 1 and k. So, that is B 

21 p j. So, this proves C 11 is equal to A 11 B 11 plus A 12 B 21. Now, let us use this 

fact for lower triangular matrices.  
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So, suppose a is a invertible matrix which is given to us that it can be written as L into U. 

Let A k denote the principle leadings sub matrix of order k and our claim is that 

determinant of A k is not equal to 0 for k is equal to 1 2 up to n. 
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 So, this is given to us that A is equal to L into U L being a lower triangular matrix with 

diagonal entries is equal to one determinant of L will be equal to 1. So, determinant of U 

is equal to determinant of A, which is not equal to 0, because A is given to be invertible 

matrix. U being an upper triangular matrix determinant of U will be product of the 

diagonal entries u 11 u 22 u nn and this not equal to 0 implies u ii to be not equal to 0. 

Now, partition matrix A l and U as before. Because L is lower triangular L 12 is going to 

be a zero matrix, because U is upper triangular matrix U 21 is going to be a zero matrix. 

Now, A 11 will be given by L 11 into U 11, because the other L 12 U 21 term both of 

them they are 0. So, in our notation A k is going to be equal to L k into U k. So, 

determinant of A k is equal to determinant of U k, because again the diagonal entries of 

L k is equal to 1 determinant U k is U 11 U 22 U kk which is not equal to 0.  
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 And thus we have proved that if A is an invertible matrix, this invertible is important, 

which can be written as L into U. Then the determinant of the principle leading sub 

matrix of order k is going to be non-zero for k is equal to 1  2 up to n.  
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Now, as a simple example, let us calculate LU decomposition of this matrix. Now, at this 

stage I will like to recall that in order to find LU decomposition, what you can do is 

consider matrix A use Gauss elimination method to reduce it to upper triangular matrix. 

So, that is going to give you matrix U. And the matrix L will be unit lower triangular - 

constructed using the multipliers used in the Gauss elimination method. So, we are 

considering Gauss elimination without partial pivoting when we use gauss elimination 

with partial pivoting, we get LU decomposition of A. 

If you are using Gauss elimination with partial pivoting, which involves interchange of 

rows then LU decomposition is not of the matrix A, but it is the matrix P into A; where P 

is the permutation matrix obtained by finite number of row interchanges in the identity 

matrix. So, let us reduce this 3 by 3 matrix to upper triangular form and then find L and 

U? One can also find directly L and U by multiplying L and U and equating the 

corresponding entries. But the way I am proving is using Gauss elimination method. 
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 So, I want to reduce this to upper triangular form. So, first I want to introduce 0s in the 

first column, below the diagonal. So, I do second row minus 2 times R 1 and third row 

minus 3 times R 1. So, our multipliers are 2 and 3. So, they are going to appear in the 

first column of l. So, the first column of l will consist of 1 here and then these multipliers 

2 and 3 when I do these operations these two are 0, then 2 into 2 is 4. So, 5 minus 4 you 

will get 1 2 into 3 is 6. So, that gives you this entry to be 2 then 8 minus 3 into 2 that will 

give you 2 and then 14 minus 3 into 3 that will give you 5. 

So, this is the first stage of Gauss elimination method in the second step you look at the 

second column and try to make this entry to be 0. So, this can be achieved by R 3 minus 

2 times R 2 multiply second row by 2 and subtract from the third row. So, you will get 0 

here 2 into 2 is 4; 5 minus 4 this will be 1. Now, the multiplier is 2. So, that is going to 

occupy this place. So, you will get U to be matrix upper triangular given by here and L to 

be lower triangular, which is given by this. 
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So, now I want to consider some properties of positive definite matrices; for the positive 

definite matrix the definition is: it should be a symmetric matrix and x transpose A x 

should be bigger than 0 for every non-zero vector, now this second property something 

difficult to verify. For all non-zero vectors we want x transpose A x to be bigger than 0.  
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So, now, we are going to prove a necessary condition that if matrix A is positive definite 

then its diagonal entries they have to be strictly bigger than 0. So, if you are given a 



matrix A with one of the diagonal entry to be either a negative real number or 0 then 

such a matrix cannot be positive definite. 

Now, for special case of diagonal matrices we are going to show that d is positive 

definite, if and only if diagonal entries they are bigger than 0 for general matrices it is a 

necessary condition it is not sufficient that it can happen that diagonal entries are all 

bigger than 0, but still matrix is not positive definite. But for the diagonal entries they are 

for the diagonal matrices, it is a necessary and sufficient condition that the entries d ii 

should be bigger than 0 and proof of both these results they are simple, we are going to 

use a fact that ei and ej are canonical vectors. So, if I look at e j transpose A e ii get i jth 

entry of my matrix A.  
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So, the diagonal entries they will be given by e i transpose A e i a is positive definite. So, 

you look at e i transpose A e i. e i transpose is row vector with one at ith place, A ei is 

going to be ith column of A. So, it is a 1i a 2i a n i, when i take the multiplications, I get 

a ii since e i is a non-zero vector and a is positive definite e i transpose a ei is bigger than 

0 and hence we get the diagonal entries of a to be bigger than 0. Now, let us look at 

diagonal matrix. 



(Refer Slide Time: 30:09) 

 

 So, suppose D is diagonal matrix with diagonal entries to be d1, d2, d n, we are going to 

show that this is positive definite if and only if d i is bigger than 0. Now, this way 

implication that d positive definite implies d i is bigger than 0, this we just now proved 

for any general matrix. So, it is going to be true for diagonal matrix also. Now, let us 

look at the converse. So, this is given to us that D is a diagonal matrix d i's are bigger 

than 0. So, the first thing is d transpose is equal to D and now let us look at x transpose D 

x, you have got D to be diagonal matrix. So, x transpose D x will be nothing, but 

summation j goes from 1 to n d j x j square x is a non-zero vector. 

That means, at least one of the entry is non-zero which will make this sum to be bigger 

than 0 and that makes diagonal matrix D to be positive definite. I want to consider again 

Gauss elimination method. So, in the Gauss elimination method, we have proved LU 

decomposition for example, for positive definite matrices or for diagonally dominant 

matrices. So, you have got a matrix A, you do the first step of Gauss elimination method 

and then in the next step you are going to work only on the n minus 1 by n minus 1 sub 

matrix. So, I start with matrix A to be positive definite, now the next sub matrix, which I 

am going to work on or after first step of gauss elimination method, whether this 

property whether it will be preserved. 

 



Now, the answer to that is yes, but I am going to prove only the property that if your 

matrix A is a symmetric matrix, you do first type of the Gauss elimination method and 

the sub matrix which you are going to work in the next step, it retains the symmetric 

property. So, it is a important property, because it can help us to reduce our computations 

by half.  
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So, here is the first type of Gauss elimination method. This is a matrix A and we want to 

introduce 0s in the first column below the diagonal. So, our multipliers are going to be m 

i1 is equal to a i1 by a 11and then the operations which we perform are R i becomes R i 

minus m i1 R 1 multiply the first row R 1 by m i1 and subtract from ith row. When we 

do this, this is the matrix which we obtain. So, suppose a is symmetric then whether this 

n minus 1 by n minus 1 sub matrix, which is formed by second, third and nth row and 

second, third and nth column. So, this matrix is also going to be symmetric this is what 

we want to show. 

Now, the modified entries here they are given by a i j modified entry one is equal to a i j 

minus m i1 a 1j, because this is our operation we are subtracting the first row from the ith 

row. So, this is what we are doing a ij minus m i one a 1j, a ij will be a entry in the ith 

row, we consider the corresponding entry in the first row. So, that will be a 1j and 

multiply by m i1 and subtract.  
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So, our matrix A it becomes a 11 R 1 tilde 0 matrix and A 1, where A 1 is the n minus 1 

by m minus 1 sub matrix. 
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This is our question, if A is symmetric then whether A 1 is also symmetric. So, we look 

at a ij 1 by definitions it is a ij minus m i1 a 1j, what was m i1, it was a i1 by a11. So, I 

substitute now, I use the fact that A is symmetric; that means, a ij is equal to a ji. So, you 

get a ji minus a i1 will be same as a 1i, which I am writing here a 1j will be same as a j1, 

which I am writing here and then a 11. 



So, you get a ji minus a j1 by a 11 will be nothing but m j1 and then a 1i. Now, this will 

be nothing but a ji 1. So, thus if your matrix A is symmetric then a1 is also going to be a 

symmetric matrix. Now, it is also true that if a is positive definite, then a 1 is positive 

definite if A is diagonally dominant matrix, then A 1 will also be diagonally dominant. 

So, the matrix is diagonally dominant will mean that we do not have to do row 

interchanges then then the matrix is positive definite then. In fact, we have seen that we 

can write its Cholesky decomposition. So, again no row interchanges, we had introduced 

row interchanges for the sake of stability, when we looked at backward error analysis, 

we saw that we should not divide by a small number. 

So, you have to like that is why one considers or it is important that if you do not have to 

do row interchanges then it is it saves our computational efforts. Now, these two results 

they are a bit involved. So, I am not going to prove those results, but we are going to 

consider the effect on the solution if you multiply column of the coefficient matrix by a 

non-zero number. 

Look at the system of equations a x is equal to b, in this if I look at a say ith equation and 

multiply throughout by a non-zero number, then I am not changing the system my 

solution is going to remain the same. On the other hand, if I multiply column of 

coefficient matrix by a non-zero number then my solution will be different my system is 

different, now what we are going to show is that if you multiply jth column of the matrix 

A by say a number alpha whereas, phi is not equal to 0. 

The only change in the solution is going to be in the jth component and that jth 

component gets multiplied by one by alpha our matrix is invertible matrix. If I multiply a 

column by a non-zero number alpha determinant of the new matrix will get multiplied by 

alpha. So, if a is invertible my new matrix also will be invertible, because the 

determinant will be not equal to 0 in doing this, I am changing my system. So, I get a 

new solution. So, when you compare the new solution with the original solution the only 

difference will be in the jth component all other components of the original solution and 

a new solution they are going to be the same. 

The jth component effect will be what was earlier x j that will become one upon alpha 

times x j. So, when we consider later on about the scaling of the matrix in order to make 

it well conditioned, this result is going to be important. Now, the proof of this result is 



straight forward. What we are going to do is a x is equal to b. So, write xx is our column 

vector x1,x2, xn this x we can write as x 1 e 1 plus x 2 e 2 plus x n en where e j's are the 

canonical vector apply a and then see what you get.  
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So, we have a non-singular system; that means, the coefficient matrix A is invertible it is 

altered by multiplication of its jth column by alpha not equal to 0, then the solution is 

altered only in the jth component, which is multiplied by 1 by alpha.  
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So, we have got A x is equal to b x is column vector x1, x2, xn this will be equal to x 

1e1plus x 2e2 plus xn en. So, when you consider, when you apply A, then Ax will be x1 

A e1 plus x2 A e2plus x n A en is equal to b A ej is the jth column, we are going to 

multiply the jth column by alpha. So, the new system is a tilde which is equal to Ae1 A 

ej minus 1, these columns they remains as before the jth column becomes alpha times A 

e j and the j plus first column onwards up to th column they all remain the same. So, 

now, I can from this relation I can write this as x j by alpha and alpha times A e j. So, I 

am multiply and divide by alpha. So, I am going to have this is same as equal to b, 

because in this I am just multiplying and dividing by alpha. 

So, I will get now this is nothing, but A tilde x tilde is equal to b and what will be x tilde 

it will be x1 x2 x j minus 1 the jth 1 will be x j by alpha and the last 1 is going to be x n. 

So, we had original system Ax is equal to b and when you alter it then x tilde which is 

the new solution it gets altered by only dividing x j by alpha. So, these were some of the 

problems, which are based on our Gauss elimination method and also on the LU 

decomposition and in the next tutorial it will be based on norm of a matrix. So, for the 

gauss elimination method when we want to see the effect of of the perturbation then we 

need to talk about the norms and the norms come into picture. 

So, here where some of the problems now about the LU decomposition what you can do 

is you can try to find LU decomposition directly, you should get the same result and one 

of the important result which we proved in today’s tutorial is a invertible matrix has LU 

decomposition if and only if determinant of A k is not equal to 0, where A k is the 

leading sub matrix, leading principle sub matrix. We had similar result for positive 

definite matrix; that means, it was the if and only if, result that a is positive definite if 

and only if you can write a as mm transpose, where M is going to be an invertible matrix. 

So, thank you. 

 


