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We are considering perturbed systems, and today, we are going to study ill-conditioned 

matrices in more detail. Yesterday, we had considered first the perturbed system A of x 

plus delta x is equal to b plus delta b; that means, only there was perturbation in the right 

hand side; then we considered the system, when there is perturbation only in the 

coefficient matrix. Today, I am going to state the result for the perturbed system, when 

there will be perturbation in the coefficient matrix and also in the right hand side. I am 

just going to state the result, because the proof is something similar to what we have 

done before, and then after that, we will take up the study of ill-conditioned matrices. 

So, our exact system is A x is equal to b, if there is perturbation is only in the right hand 

side, then we proved that the relative error norm delta x by norm x is less than or equal to 

condition number of A into norm delta A by norm A, where the condition number is 

norm A into norm A inverse. And our assumption is A, is invertible operator, right hand 

side b is not equal to 0, so that will guarantee that x is also not equal to 0, so you can 

divide by norm delta A. 
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Here, this norm delta A by norm A, actually it should be norm delta b by norm b, then 

when you consider perturbation in the coefficient matrix, then you get norm delta x by 

norm x less than or equal to condition number of A and then 1 minus condition number 

of A into norm delta A by norm A. 

And this is the perturbation norm delta A by norm A, for this result, you assume that 

norm delta A by norm A is less than one upon condition number of A, that guarantees 

that A plus delta A is going to be invertible. And in the denominator, 1 minus condition 

number of A into norm delta A by norm A will be A number bigger than 0. 

Now, look at the case, when there is perturbation in the coefficient matrix, perturbation 

in the right hand side, the assumption will be the norm delta A by norm A is less than 1 

upon condition number of A. 
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In this case, the relative error norm delta x by norm x is less than or equal to condition 

number of A multiplied by relative error in the coefficient matrix plus relative error in 

the right hand side divided by 1 minus condition number of A norm delta A by norm A. 

So, if delta A is equal to 0, that means only perturbation in the right hand side, then you 

will have condition number of A norm delta b by norm b and denominator will be 1, so 

we get back our earlier result. If norm delta b is equal to 0, that means only perturbation 

in the coefficient matrix, then you have condition number of A multiplied by norm delta 

A by norm A divide by 1 minus condition number of A into norm delta A by norm A. 

And if there is perturbation in both, the coefficient matrix and right hand side, then this is 

the result. So, here what you have to notice is that the perturbation is small, it is suppose 

to be small and so norm delta A by norm A is going to be a small number. So, if the 

condition number is something reasonable, then the denominator is going to be 

approximately equal to 1. In the numerator, you have got condition number multiplied by 

the relative error in the coefficient matrix plus relative error in the right hand side. 

So, this condition number is going to play A crucial role, your starting error will get 

multiplied by this condition number. So, if the condition number is small, then we say 

that the system is well conditioned, if it is big, then we say that it is ill-conditioned. 

Last time we saw that the condition number is going to be bigger than or equal to 1, so 

the least condition number is equal to 1, now when we say that condition number is 



small, condition number is big, there is no precise boundary here, it depends on your 

computer, it depends on your starting error and it depends on how much accuracy you 

need. 
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So, you have suppose your norm delta b by norm b is approximately equal to 10 raise to 

minus 4, and if your condition number is about 100, then norm delta x by norm x is less 

than or equal to 10 raise to minus 2. So, you are starting with the error to be of the order 

of 10 raise to minus 4, after doing your computations, then your error in the computed 

solution is going to be 10 raise to minus 2. So, this can be acceptable, like if you are 

starting error is 10 raise to minus 6, then your error in the computed solution will be 10 

raise to minus 4. 

So, this can be something acceptable, but suppose your condition number is of the order 

of 10 raise to 4, and your starting error is 10 raise to minus 4, then your relative error 

norm delta x by norm x it is going to be about 1; that means, norm delta x is about the 

same as norm x, so the error is of the same order as of your solution. And then, this 

generally, it will not be acceptable, so  if the condition number is between 1 to 100, 

generally it is considered to be a well conditioned system, otherwise it is ill-conditioned. 

So, now, let us see whether we can do something about the condition number, our 

condition number is norm A into norm A inverse. Norm have property that if I look at 

norm of alpha times A, it is going to be equal to mod alpha times norm A, and if I 



multiply throughout by alpha, that means A x is equal to b is our exact system, and 

instead of that if I consider alpha times A x is equal to alpha times b, where alpha is A 

non-zero number, then I do not alter my system and then I can make norm alpha A to be 

as small as I want. Unfortunately this multiplication of the coefficient matrix A by A 

non-zero number is not going to change the condition number, because you have norm A 

into norm A inverse. So, when you look at norm alpha a, you have to look at norm of 

alpha A inverse, and then you are going to have exactly the same condition number. So, 

kappa A is norm A into norm A inverse, alpha not equal to 0, so kappa of alpha A is 

equal to norm alpha A into norm alpha A inverse. 
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This will be mod alpha times norm A, alpha A inverse will be A inverse divided by 

alpha, so that will be 1 upon mod alpha norm A inverse. So, A mod alpha and 1 upon 

mod alpha will get cancelled, and then you get exactly the same condition number. 

So, this trick of multiplying the system by A non-zero number that is not going to work, 

whether the condition number has something to do with the determinant, like we know 

that matrix A is invertible, provided determinant of A is not equal to 0. So, now, whether 

small determinant means ill-conditioned system, that means whether that will mean that 

the condition number is going to be big, so that is not the case like. The condition 

number of matrix has nothing to do with small determinant, so we can look at a simple 



example of diagonal matrix. So, look at diagonal matrix with diagonal entries to be 

epsilon and epsilon is greater than 0. 
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Now, if you look at any induced matrix norm, then norm A epsilon is equal to epsilon. 

Inverse of A epsilon is going to be diagonal matrix with diagonal entries as 1 by epsilon, 

so norm A epsilon inverse will be 1 upon epsilon and that gives you condition number of 

A is equal to 1, the best condition number we can have. So, now, determinant of epsilon 

A is epsilon square, I can make it as small as I wish by choosing my epsilon 

appropriately. So, as long as epsilon is greater than 0, the condition number is going to 

be equal to 1, determinant of A epsilon will be epsilon square, so I can make it as small 

as I wish. So, there is no connection between small determinant and ill conditioning. 
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Now, the ill conditioning, it can be because of poor scaling, so what I mean is you look 

at A system where the coefficient matrix is 1 0 0 epsilon x 1 x 2 is equal to 1 epsilon. So, 

our system is x 1 is equal to 1 and epsilon x 2 is equal to epsilon. If I have epsilon to be 

very small compare to 1, then our A inverse is going to be 1 0 0 1 by epsilon. When I 

consider norm A that is going to be equal to 1, because epsilon is much smaller than 1, 

when you look at compare 1 and mod epsilon, then 1 is going to be… and here take 

epsilon to be bigger than 0. 

So, norm A will be 1, whereas, norm A inverse will be 1 by epsilon, so that will give you 

condition number of A with respect to either 1 norm or infinity norm to be 1 by epsilon, 

and which is going to be, it will be big, because you can choose epsilon to be small and 

then 1 by epsilon will become big. Now, in this equation, if I multiply the second 

equation by 1 upon epsilon, then what I get is the system 1 0 0 1 x 1 x 2 to be equal to 1; 

1 this is the well conditioned system. 

In fact, the condition number is going to be equal to 1, the best possible condition 

number. So, see there is a difference between multiplying the coefficient matrix by 

alpha, and also right hand side by alpha and multiplying only one of the rows by alpha. 

You have system of linear equations, so you have n equations in n unknowns. If I 

multiply one of the equation by a non-zero constant, so I multiply the left hand side as 

well as right hand side, in that case, my solution is not going to change. So, I will have 



the same solution as before, but as we saw just now, it can change the condition number 

of your matrix. So, if you multiply one row or more than one row, several rows by non-

zero constants, and you multiply the corresponding right hand side also by the same 

constant, then your system remains the same, the solution remains the same, but the 

condition number of your matrix can change. What if I multiply the columns? Like I 

look at one of the column, and then I multiply by a constant, then you are changing the 

system, but in tutorial problem, we will see that this multiplying say jth column by a 

non-zero constant c, its effect on the solution will be the corresponding component, will 

get multiplied by 1 by c. So, let me repeat, you have got coefficient matrix a, you are 

looking at system A x is equal to b, I look at jth column, I multiply jth column by A non-

zero constant c. 
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So, I am going to get a different system, but the solution of this system, the new system 

will get affected only in the jth component, all other components of the solution they will 

be same as the earlier solution, and jth component will get multiplied by one by c. It is 

easy to show this and this, we will do as a tutorial problem, but when you multiply a 

column by a non-zero constant, it can change the condition number of your matrix. 

So, you have got a system A x is equal to b, we are going to see that if your say columns 

or rows, they are out of scale; that means, one of the column, you take some norm, we 

have decided that we are going to take either one norm, two norm or infinity norm. So, 



suppose one of the columns has a big norm, and you have got another column which has 

got small norm, then your matrix is going to be ill condition, this is what like we are 

trying to understand. What well conditioned matrix and what ill-conditioned matrix 

means, so it has nothing to do with small determinant, but it has something to do with the 

norms of the columns or norms of the rows. And then what one can do is, multiply rows 

and multiply by columns by numbers, so as to have the norms of all the columns and 

norms of all the rows to be about the same, it may not be possible to do this always, but 

that is one of the ways of making your system to be well conditioned. 

So, you have scaling A x is equal to b, multiply an equation by c not equal to 0, you get 

the same solution, this is known as row scaling, multiply jth column by c not equal to 0. 
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 So, this is our exercise and this is known as column scaling. 
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Now, I define maximum magnification of A, that is maximum of norm A x by norm x, x 

not equal to 0. So, this is nothing but our norm A, induced matrix norm, you define 

minimum magnification of A to be minimum of norm A x upon norm x, x not equal to 0, 

so minimum magnification of by A. We are going to show in tutorial that condition 

number of A is equal to maximum magnification of A divided by minimum 

magnification of A. Now, what happens if minimum magnification of A is equal to 0? 

Because I am looking at when I consider maximum magnification of A, that means it is 

norm of a. We know that if your matrix A is A non-zero matrix, then the norm of A has 

to be non-zero, because if you get the maximum of norm A x by norm x, x not equal to 0, 

vector is equal to 0, then it will mean that norm A x is zero for all non-zero vectors. 

So, you look at the canonical vectors and then you conclude that A is a zero matrix, but 

now it is something different, we are looking at minimum of norm A x by norm x, x not 

equal to zero vector. So, what if this minimum is equal to 0? Now, this minimum cannot 

be equal to 0, because our matrix A is invertible; in fact we will show that minimum 

magnification of A is nothing but one upon norm A inverse, and that will give us 

condition number of A to be equal to maximum magnification of A divided by minimum 

magnification of A. 

Now, using these ideas about maximum magnification and minimum magnification, we 

are going to show that if the columns of the matrix are out of scale; that means, one of 



the columns has big norm as compare to some other column, then such a matrix is going 

to be necessarily ill-conditioned. 
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So, let us show this now. So, you choose the vector norm to be either 1 norm, 2 norm or 

infinity norm, condition number of A is going to be norm A into norm A inverse, and we 

are going to show that norm A inverse is 1 upon minimum magnification. So, condition 

number of A is equal to norm A divided by minimum magnification of A. Since, norm A 

is maximum of all these quotients, if I look at x is equal to e j, canonical vector with one 

at j th place and 0 elsewhere. So, I will have norm A to be bigger than or equal to norm e 

A e j, but A e j is nothing but the jth column, so you get norm c j. When you consider 

minimum magnification of A, that is minimum of norm A x by norm x, x not equal to 0, 

so this minimum magnification of A will be less than or equal to norm A e i, which is 

equal to norm c i. 

So, thus condition number of A is bigger than or equal to norm c j by norm c i, so j and i 

they can be any numbers, like that they denote the jth column and ith column. We have 

proved that condition number of A is bigger than or equal to norm c j by norm c i. If j is 

equal to i, this result tells us that condition number of A is going to be bigger than or 

equal to one, that result we have already proved. But, suppose your norm c 1 is ten cube, 

and your norm c 3 is 10 raise to minus 3, then your condition number will be bigger than 



or equal to 10 raise to 3 divided by 10 raise to minus 3, so it is going to be bigger than or 

equal to 10 raise to 6. 

It will also be bigger than or equal to 10 raise to minus 3 divided by 10 raise to 3, but we 

know that we have better result. So, condition number of A is bigger than or equal to 

norm c j by norm c i, where c j denotes the jth column and j and i can take any values. 

So, if you have got one column with A big norm compare to norm of another column, 

your condition number is going to be big and then your system will be ill-conditioned. 

Now, I am going to go back to our example of ill-conditioned matrix, which we had 

considered last time, and for that matrix we will calculate, or we will try to find out the 

direction of maximum magnification and the direction of minimum magnification. 
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So, we have A to be a two by two matrix, 1000 999 999 and 998, inverse of this matrix is 

given by diagonal entries to be minus 998 and minus 1000 of diagonal entries are 999 

and 999. So, these are symmetric matrices, norm A infinity is equal to norm A inverse 

infinity is equal to 1999 and that gave us condition number to be of the order of 10 raise 

to 6. 

If you look at A of 1 1, that is 1999 and 1997, so norm of A x infinity divided by norm x 

infinity, x is 1 1, so its infinity norm is going to be 1 1. Infinity norm of this is 1999 and 

that is norm of A infinity, so this 1 1, it is going to be direction of maximum 



magnification by A, look at A inverse of minus 1 1, this you get it to be 1997 and 1999. 

So, norm A inverse x infinity will be maximum of these two entries. 

So, that is 1999 and norm x infinity will be 1, so it is norm A inverse infinity. So, this 

minus 1 1 is going to be direction of maximum magnification by A inverse, and this is 

going to be direction of minimum magnification by A, this equation tells you that A of 

this is going to be equal to minus 1 1. 

So, 1 1 is direction of maximum magnification by A, and this 1997 and 1999, this is 

going to be direction of minimum magnification by A inverse. So, the example, which 

we considered last time where the exact solution was 1 1, you perturb it slightly… and 

then you get a solution, which is completely different than the original solution. 

So, this example was constructed to illustrate the effect of ill-conditioned matrix. So, 

what one had done was this 1 1, it was the direction of magnification, maximum 

magnification by A, so that is what we choose. And in the right hand side, the 

perturbation which we choose, so the perturbation was 0.01 and minus 0.01, so that was 

chosen in the direction of maximum magnification by A inverse, that is why we got such 

spectacular result, so that was for the sake of illustration. 

So, now we are going to look at what does ill conditioning means geometrically, so what 

we will do is, we will look at a two by two system, like consider two equations in two 

unknowns and then we will try to interpret the ill conditioning of the system for this 

particular two by two system. So, we are not going to take a example, we will just take 

two equations in two unknowns and then try to see what does ill conditioning means. 
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If A is A ill-conditioned matrix, whose rows and columns are not severely out of scale, 

that means we take out this or we rule out the possibility, that ill conditioning is coming 

because of the rows and columns which are out of scale. So, suppose this is not the case, 

they are approximately the same, now you normalize A, so that norm A is equal to 1. 

We have seen that the condition number does not change if you multiply A matrix by a 

non-zero constant, so without loss of generality I can assume that norm of A is going to 

be equal to one. Now, suppose the condition number is much big, so we write this as one 

is to two times less than norm a. So, now, condition number of A is norm A into norm A 

inverse. 

We have normalized A, so that norm A is equal to one. So, our condition number of A is 

equal to norm A inverse. So, that means our norm A inverse is going to be A big number, 

but what was norm A inverse is going to be? One upon minimum magnification of a, so 

we have got condition number of a, which is equal to norm A inverse, which is equal to 

one upon minimum magnification of a. So, this one upon minimum magnification of A, 

is going to be much bigger. So, that means, if you take its reciprocal, minimum 

magnification of A will be much small, so we have minimum magnification means, you 

look at minimum of norm A x by norm x, x not equal to zero vector. 

Now, if minimum magnification is small, that means there will exist A vector such that x 

such that norm A x by norm x is going to be small, it will not be zero, because our matrix 



is invertible, but norm A x by norm x is going to be small. So, once again I normalize 

now vector x to be two one, so norm x is equal to one, so this minimum magnification of 

A is much small, will mean that there exist A vector x of norm one for which norm A x 

is small or it means the vector A x is going to be about a zero vector. So, minimum 

magnification of A less than or equal to 1, so there exist x belonging to r n, norm x is 

equal to one such that norm A x is much less than 1. e j’s are our canonical vectors, so 

we write our x belonging to r n, it can be written as x is equal to x 1 e 1 plus x n e n, 

where e j is canonical vector with 0 everywhere except 1 at jth place, then A x is going to 

equal to x 1 A e 1 plus x n A e n. 
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Now, what is A e 1? It is going to be c 1 plus x n A e n that is nth column which is c n, 

so this is about 0, 0 vector and that means, c 1, c 2, c n; these are almost linearly 

dependent and norm x is equal to 1. So, linearly dependent will mean that there exists a 

non scalar x 1, x 2, x n such that x 1 c 1 plus x 2 c 2 plus x n c n is equal to A zero 

vector. Our matrix A is invertible, so that means the columns are linearly independent. 

But then, the condition number is big means that the columns are about or almost 

linearly dependent. So, the ill conditioning has nothing to do with small determinant, but 

it has to do something with linear independence and linear dependence of the columns. 
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So, now, we go will look at two by two system. So, it is A 1 1 x 1 plus A 1 2 x 2 is equal 

to b 1 and A 2 1 x 1 plus A 2 2 x 2 is equal to b 2. If you look at only one equation, A 1 1 

x 1 plus A 1 2 x 2 is equal to b 1, this is going to be an equation of a straight line, then 

second equation also depend, it is also an equation of A straight line. The straight line 

defined by the first equation, this straight line will be perpendicular to the vector A 1 1 A 

1 2, so think about it. 

The second line which is given by A 2 1 x 1 plus A 2 2 x 2 is equal to b 2, so this second 

line is going to be perpendicular to A 2 1 A 2 2, so we are looking at two equations into 

unknowns, each of the equation represents A straight line. Now, the x 1 x 2, which 

satisfy both the equations, that means, your x 1 x 2 should lie on the first straight line, 

and your x 1 x 2 also should lie on the second straight line. So, that means, the solution is 

given by intersection of these two straight lines, so you have two equations in two 

unknowns, its solution is nothing but intersection of two straight lines, the first straight 

line is going to be perpendicular to vector A 11 A 12 and second straight is going to be 

perpendicular to vector A 21 A 22. 
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So, now let us look at the straight line which are given by 1000 x 1 plus 999 x 2 is equal 

to b 1 and 999 x 1 plus 998 x 2 is equal to b 2. So, this is the same example which we 

had considered yesterday and today for the maximum magnification. So, now, the slopes 

of these two straight lines, they are given by slope of the first straight line, will be minus 

1000 divided by 999, slope of the second straight line is given by minus 999 divided by 

998. So, the first slope is about minus 1.001001, the second slope is minus 1.001002; 

that means, the two straight lines they are nearly parallel. 

So, you have say the two straight lines, they are shown by solid straight line. So, these 

are our straight lines, then when you perturb, so if instead of b 1, I consider some b 1 

plus delta b 1, then what I am doing is, I am looking at a parallel straight line. 

I am not changing the slope, the slope is determined by 1000 and 999, but if I change the 

right hand side, I am looking at A parallel straight line. So, the first equation or the first 

system of equation, its solution was given by intersection of these two straight lines. So, 

this is going to be your original solution and then now you are looking at, your taking 

instead of this straight line, you are looking at this parallel straight line, which is 

obtained by perturbing b 1 slightly. So, now, I have to look at intersection of this new 

doted straight line and then the other straight line. And I look at the intersection, so this 

is the original intersection and this is the new intersection. So, there is a lot of change, 

and that is the geometric interpretation of ill conditioning that we had, two straight lines 



where almost parallel, so when I take slight change in the right hand side, it changes my 

solutions completely. So, when we look at this matrix, the example which we have 

considered, which has 1999, 199 and 999. 
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When you look at their columns, then the columns, their one norms or their infinity 

norms, they are they do not defer much, same thing for the rows, it is a symmetric 

matrix. So, the ill conditioning is not coming from the scaling problem, but it came from 

the fact that its two rows or two columns they are almost linearly dependent. So, let me 

summarize what we have learnt about the ill conditioning today, that the condition 

number will not change if I just multiply the coefficient matrix by a number alpha, it will 

change if I multiply only some of the rows by non-zero constants and similarly for the 

columns. 

Then, if the rows or columns, if they are out of scale, then they are going to make your 

system to be ill-conditioned. And ill conditioning has nothing to do with small 

determinant, but it has it has a relation with linear independence or linear dependence of 

columns. So, now, you start with a system A x is equal to b, what you can try to do is try 

to make the columns and the rows to have about the same norm, you do as much as it is 

possible, so that is the columns scaling. And then row scaling, after that the system is 

given to you, so you do not have much control over it, but at least you should know that 

you are solving some system of equations, you are getting approximate solution.  



So, then how reliable that solution is; that means, how near it is to the exact solution, 

because we are interested in the exact solution, this is our limitation, that we have to use 

computer, so then you are going to solve A perturbed system, but then at least one should 

know that what is the limitation of my method, this much one can do. Other thing which 

is in our hands is not to make our system which was well conditioned to become ill-

conditioned in the process, that we have got to look at gauss elimination method.  

We look at our coefficient matrix; we want to introduce zeros in the first column below 

the diagonal, so we subtract appropriate multiples of the first row from the second row 

third row and so on. Then in the next stage, we work on only n minus one by n minus 

one sub matrix, which consist of the second, third and nth row and second, third and nth 

column. So, your matrix A is well conditioned, but this new sub matrix, you have to be 

careful that you are not going to make it ill condition, so I am going to illustrate this by 

an example. 
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So, here is the system, you have got three equations in three unknowns, for three by three 

matrix you can calculate its inverse and you can verify that it is going to be a well 

conditioned matrix. Now, here the whatever analysis we are going to do, we are going to 

assume that you are doing computations using four digits, like no matter how powerful 

your computer is, your number of digits, number of significant digits that is going to be 



limited. Like you consider representation of any number, so that number one will 

represent as 0 point and then we want the first digit to be a non-zero number. 
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So, we have got 0 point, then say alpha 1 up to alpha n into 10 raise to, and then here you 

will have some exponent. So, this is going to be representation of here number, I am 

writing to the base of 10, it can be a binary base or it can be 16. And then you consider 

alpha 1 to be not equal to 0, so any number you are going to represent in this form, so 

this n, this is going to be something fixed, and no matter how powerful your computer is, 

this n is going to be something finite. 

So, there is going to be always some error, some numbers you can represent exactly, but 

most of the numbers there will be floating point representation and then there is going to 

be some error. So, here given a number, say suppose you are looking at 1 by root 2, then 

you look at its approximation 0 point Alpha 1 alpha 2 alpha n 10 raise to something, this 

is what you do. Now, in the process, you are going to do, you are going to multiply, you 

are going to add, you are going to subtract, so at every stage, you will have to either chop 

or you will have to do round off. So, that means always you are going to have say your 

number, it should be always of the form 0 point d 1 d 2 d n into 10 raise to some 

exponential. 
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So, for this example, in order to illustrate, we will assume that we have got four digits 

available, and then we will see that this number 0.002, it is a small pivot, if you it is non-

zero, so I can very well do the gauss elimination method, but this small pivot is going to 

create problem, and your well conditioned matrix in the second step it becomes ill-

conditioned, so this is what we will like to avoid. So, this thing we will consider next 

time, and we will consider some related issues like whether I can make this small pivot 

to be big arbitrarily by multiplying the row by a constant. So, we will see these things in 

the next lecture and we will consider also backward analysis; thank you. 
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