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Lecture-25

Non-linear Optimization Models-I1

Dear students, we will continue with our previous discussion on non-linear optimization
models in this lecture.

Agenda

* Local And Global Optima
* Dual Values
+ Constructing an Index Fund

So, the agenda for this lecture is I will explain what is local and global optima then I will
interpret the meaning of dual values for non-linear programming. After that, | took a sample
problem on non-linear programming. The problem name is an index fund. So, for this

problem, I am going to formulate it in the form of a non-linear problem, and then | am going
to solve it.



Local and Global Optima
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Before going to our problem, first, we will understand a little bit about concepts of local and
global optima. Look at this picture; here, at the bottom, there is a point called local minimum.
So, among this minimum, which is the global minimum? This point is the global minimum,
and the same thing you see: there is a local maximum, then there is a global maximum. So,

this is an example of the problem of what the local and global optima are.

Local Optimum-Local maximum

+ A feasible solution is a local optimum if
no other feasible solutions with a better
objective function value are found in the

immediate neighbourhood. \
* For example, for the constrained Par, / X
Inc., problem, the local optimum N

corresponds to a local maximum; a point ) 3
is a local maximum if no other feasible
solutions with a larger objective function

value are in the immediate

neighbourhood.
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First, 1 will discuss the local optimum in the context of the local maximum. A feasible
solution is a local optimum if no other feasible solutions with a better objective function
value are found in the immediate neighborhood. This is the meaning of your local optimum.
So, when we say a problem is local optimum, a solution is local optimum, no other value is

better than this value in the neighborhood.



For example, in the problem that you have discussed, the local optimum corresponds to the
local maximum. So, this point was our local optimum, and the same point was also the local
maximum. So, a point is a local maximum if no other feasible solutions with a larger

objective function value are in the immediate neighborhood. That is the meaning of your
local maximum.

Local and Global Optima- Minimisation problem

+ Similarly, for a 6 I I
minimization problem, a . \glnhal maximum
point is a local minimum if ocal maximum
no other feasible solutions 2 - B
with a smaller objective
function value are in the 0

immediate neighbourhood.

e
local minimum

.
global minimum

Similarly, for a minimization problem context, a point is a local minimum if no other feasible
solutions with a smaller objective function value are in the immediate neighborhood. Look at
this point; suppose there may be some other point. This is a local minimum, but when you
compare it to this, this is also a local minimum; this is also a local minimum because no other

values are in the immediate neighborhood, which minimum, so it is a local minimum.

Global Optima- Maximisation

* Nonlinear optimization problems can have
multiple local optimal solutions, which means

Glohal optimum ===« - -{\'
we are concerned with finding the best of the ’%’
local optimal solutions. Lacal ,,‘,l;,,‘_m__‘,,--“?‘\ || ".I

* A feasible solution is a global optimum if no Ao f H". [
other feasible points with a better objective i .'. f."l v Illl
function value are found in the feasible region. * \ |

* Inthe case of a maximization problem, the
global optimum corresponds to a global
maximum.
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Then, what is the meaning of global optimum in the maximization context? Look at these,

these points are maximum local. This is one local maximum, local maximum, local



maximum, local maximum. So, among this local optimum, which is maximum, this point is
the highest point. So, this is called global optimum. Previously, we discussed the local
optimum, but now | am discussing the global optimum. Non-linear optimization problems

can have multiple local optimal solutions which means we are concerned with finding the
best of the local optimal solutions.

Look at this picture. There are multiple local optimums; among these multiple local
optimums, we are going to find out which is the best one. A feasible solution is a global
optimum if no other feasible point with a better objective function value is found in the
feasible region. So, you see this is our global optimum because no other value is better than

this. In the case of the maximization problem, the global optimum corresponds to a global
maximum.

Global Optima

* A point is a global maximum if no other
points in the feasible region give a strictly
larger objective function value.
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A point is a global maximum if no other point in the feasible region gives a strictly larger
objective function value. See among these different local optimum values, so this is called

global optimum because it provides a strictly larger objective function value.



Global Optima- Minimisation

* For a minimization problem, a point is a
global minimum if no other feasible -
points with a strictly smaller objective \ Global
function value are in the feasible region. Optirfium

* Obviously a global maximum is also a Local Optima f
local maximum, and a global minimum is
also a local minimum

Then what are the global optima for a minimization problem? Look at this picture. There are
different local minimums available; among these local minimums, which is the best solution
among these minimums? So, this point is the minimum among these minima. So, this point is
called your global optimum. So, for a minimization problem, a point is a global minimum if
no other feasible points with a strictly smaller objective function value are in the feasible
region. This point obviously, a global maximum is also a local maximum, and a global
minimum is also a local minimum. This is also one of your local minimums, but at the same

time, it is the global minimum.

Global Optima- Minimisation _nJ | N
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+ Nonlinear problems with multiple local optima are difficult to solve.

= Butin many nonlinear applications, a single local optimal solution is also the
global optimal solution.

* For such problems, we only need to find a local optimal solution.
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Non-linear problems with multiple local optima are difficult to solve if there are different
local optima is there. For example like what we discussed in the previous lecture, this is local
maximum, local maximum, local maximum. In that situation, if this kind of problem is

difficult to solve, but in many non-linear applications, a single local optimal solution is also



the global optimal solution. Sometimes, there may be one single solution that is also a global
optimal solution. For such a problem, we need to only find the local optimal solution because

that local optimal solution is equal to your global optimal solution.

Concave function: Local maximum = Global Maximum

* Consider the function f(X,Y) = —X% — Y2 The fX,Y)==X*-Y?
shape of this function is illustrated in the figure.

* A function that is bowl-shaped down is called a
concave function.

= The maximum value for this particular function is
0, and the point (0, 0) gives the optimal value
of 0.

* The point (0, 0} is a local maximum, but it is also
a global maximum because no point gives a
larger function value.

The objective function for the
nonlinear Par, Inc., problem is
another example of a
concave function.

Andesson, O R, Sweeney, 0.1 Wilkams, T. 4., Camm, 1. 0, & Cochran, .1, {3018, an introduction to management science: quantitative apgenach. Cangage learning

Now, we are going to discuss some important concepts in non-linear programming. So, we

are going to classify the function into two categories: concave and convex.

Consider if the f(X, Y), = - X2 - Y2,

The shape of this function is illustrated in this figure; look at the right-hand side. This
example is taken from Anderson et al. A function that is bowl-shaped down is called a

concave function. It is ball-shaped, but it has a down concave function.

The maximum value for this function is 0, so this point is the maximum value, and the point
(0, 0) gives the optimal value of 0. So, point (0, 0) is a local maximum, but it is also a global
maximum because no point gives us a larger function value. So, if a function is a concave
function there, the local maximum is equal to the global maximum. That is the point at which
the local maximum is equal to the global maximum. So, the objective function for the non-

linear problem that you have discussed is another example of a concave function.

How can we call it a concave function? look at this shape — S? and — D?; if the objective
function is this form so, then we can call it a concave function. In a concave function context,

your local maximum is equal to the global maximum.



.
Concave function: Local maximum= Global Maximum

* In other words, no values of X or Y result in an objective
function value greater than 0. Functions that are
concave, such as [(X,Y) = —X? — Y2, have a single
local maximum that is also a global maximum.

* This type of nonlinear problem is relatively easy to
maximize.
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In other words, no values of X or Y result in an objective function value greater than 0. The

fX,Y) = =X2-y?

functions that are concave, such as f(X, Y), = - X2 — Y?, have a single local maximum that is
also a global maximum. So, in a concave function, the local maxima are equal to the global

maximum. This type of non-linear problem is relatively easy to maximize.

Convex function: Local minimum = Global minimum

* Let us now consider another type of function
with a single local optimum that is also a global fX,Y)=X*+v?
optimum.
= Consider the function f(X,¥) = X2 + V2.
+ The shape of this function is illustrated in
Figure.
* Itis bowl-shaped up and called a convex — I
function. v
* The minimum value for this particular function
is 0, and the point (0, 0) gives the minimum
value of 0.
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Now we are going to see another set of functions that is called convex function. So, in the
convex function context, the local minimum is equal to the global minimum. As you have
seen previously, if the function is concave, the local maximum is equal to the global
maximum, but if the function is convex, the local minimum is equal to the global minimum. |
will explain how it is. Let us now consider another type of function with a single local

optimum that is also a global optimum.



The function f(X, Y), = X? + Y2 The shape of this function is illustrated in the figure, so the
bowl is shaped up and called the convex function; this looks like a bowl upside; this is a
convex function. So, in the convex function, the minimum value for this function is 0, here, it
is 0, and the point (0, 0) gives the minimum value of 0.

I —

Convex function: Local minimum = Global minimum

* The point (0, 0) is a local minimum and a global fXY)=x*+y?
minimum because no values of X or Y give an
objective function value less than 0.

The point (0, 0) in each figure is a local minimum and a global minimum because no values
of X or Y give an objective function value less than 0. So, learning from the convex function
concept the local minimum is equal to the global minimum.

Advantage of concave and convex function

* Functions that are convex, such as, have a
single local minimum and are relatively fXY)=Xx*+V?
easy to minimize.

* For a concave function, we can be assured
that if our computer software finds a local z
maximum, it is a global maximum.

* Similarly, for a convex function, we know T e
that if our computer software finds a local v !
minimurm, it is a global minimum.

* Concave and convex functions are well
behaved.
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The advantages of concave and convex functions, as | discussed before, are that functions
that are convex have a single local minimum and are relatively easy to minimize, and there is
a guarantee that if you recommend a solution that is a local minimum at the same time, that is
global minimum also. For a concave function, we can be assured that if our computer

software finds a local maximum, it is also a global maximum.



Similarly, for a convex function, we know that if our computer software finds a local
minimum, it is a global minimum, also. So, concave and convex functions are well-behaved
and easy to solve. That is why before solving any non-linear problems, we have to test

whether the function is convex or concave.

I

non-concave and non-convex function

* However, some nonlinear functions have multiple local optima.

* For example, the given Figure shows the graph of the following function:
% . 2 (V4+1)2 X 2 [ /2 _y2 2_y2

° /(X.Y):S(I_X2)€ x“=(Y+1) _lU(T_X.{_Y.v)()){ Y _(),’l Yer
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* The hills and valleys in this graph show that this function has several local
maximums and local minimums.

What will happen non concave and nonconvex functions? Some nonlinear functions have
multiple local optima; for example, in the given figure, you see that there are different
optimum values and different maximum values, different minimum values.
The figure shows that the graph of the following function
F(X,V)=s(1-X?) eN—x*—(Y+1)? )—10(X/5-X3~Y®) eN—X?~Y? )—eN—X?-Y?)
—eN—(X+1)>-Y?)/3

So, the hills and valleys in this graph show that this function has several local maximum and
local minimums. So, solving these kind of non-linear optimization problems is very difficult
and difficult in the sense we can provide a solution but there is no guarantee that the solution

is global minimum or global maximum.



non-concave and non-convex function

* From a technical standpoint, functions with multiple local optima pose
a serious challenge for optimization software; most nonlinear
optimization software methods can get “stuck” and terminate at a local
optimum.

* Unfortunately, many applications can be nonlinear, and there is a severe
penalty for finding a local optimum that is not a global optimum.

* Developing algorithms capable of finding the global optimum is
currently an active research area.

I

So, it indicates two local minimums and three local maximums. See that there are two local
minimums and 3, 1, 2, and 3 local maximums. So, one of the local minima is also the global
minimum, so this one, this point. Similarly, one of the local maximums is also the global
maximum. So, from a technical standpoint, functions with multiple local optima pose a

serious challenge for optimization software.

So, most non-linear optimization software methods can get stuck and terminate at a local
optimum. Unfortunately, many applications can be non-linear, and there is a severe penalty
for finding a local optimum that is not a global optimum. So, developing algorithms capable

of finding the global optimum is currently an active research area.

Local and Global Optima

* But the problem of minimizing a convex quadratic function over a
linear constraint set is relatively easy, and for problems of this type
there is no danger in getting stuck at a local minimum that is not a
global minimum.

+ Similarly, the problem of maximizing a concave quadratic function
over a linear constraint set is also relatively easy to solve without
getting stuck at a local maximum that is not the global maximum.
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However, the problem of minimizing a convex quadratic function over a linear constraint set

is relatively easy. Why it is easy? Where the local minimum is equal to the global minimum,



and for a problem of this type, there is no danger of getting stuck at a local minimum. That is
not a global minimum. Similarly, the problem of maximizing a concave quadratic function
over a linear constraint, linear constraints it is also relatively easy to solve without getting
stuck at a local maximum that is not the global maximum because we know if a function is a
concave function where the local maximum is equal to the global maximum. Suppose the

function is convex in nature, where the local minimum is equal to the global minimum.

Dual Values
* The interpretation of the dual value for nonlinear models is exactly the
same as it is for linear programs.

+ However, for nonlinear problems the allowable increase and decrease are
not usually reported.

The next is the interpretation of the dual value in non-linear problems. So, what is the dual
value of the right-hand side constraint? If the right-hand side of the constraint is increased by
1 unit, what is that corresponding effect on our objective function? So, in the non-linear
programming context the interpretation is also the same. So, the interpretation of dual values
for a non-linear model is the same as it is for linear programs. However, the non-linear
problems that allowable increase may be a right-hand side constraint. The allowable increase

and degrees are not usually reported in the software outputs.



Example of NLP: Constructing an Index Fund

* Inthe financial applications lecture, we studied portfolio and asset
allocation models for a company.

+ Several linear programs were built to model different client attitudes
toward risk.

* Index funds are an extremely popular investment vehicle in the
mutual fund industry.

A
I

So, an example of a non-linear programming problem is constructing an index fund. In the
financial applications lecture, we studied portfolio and asset allocation models for a company.
Several linear programs were built to model different client attitudes towards risk. So, index

funds are an extremely popular investment vehicle in the mutual fund industry.

Constructing an Index Fund

* The key idea behind an index fund is to construct a portfolio of stocks,
mutual funds, or other securities that matches as closely as possible
the performance of a broad market index such as the S&P 500.

Anderson, . R, Sweeney, D: L, Wilkams, T. &, Camm, J. O, & Cochran, 1. . {Z118). &n introduction to management science: quanzitative aoproach, Cengage learning

The key idea behind an index fund is to construct your portfolio of stocks, mutual funds, or
other securities that match as closely as possible the performance of a broad market index
such as the S&P500. So, the idea is that we have to construct a portfolio that matches the
index of the S&P500.
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Constructing an Index Fund

* Assume that a company has a substantial number of clients who wish to own
a mutual fund portfolio with the characteristic that the portfolio, as a whole,
closely matches the performance of the S&P 500 stock index.

* What percentage of the portfolio should be invested in each mutual fund in
order to most closely mimic the performance of the entire S&P 500 index?

Assume that a company has a substantial number of clients who wish to own a mutual fund
portfolio with the characteristics that the portfolio closely matches the performance of the
S&P500 stock index. So, they were saying that these investors want to have a portfolio that
has to match the performance of the S&P500 stock indexes. So, what percentage of the
portfolio should be invested? In each mutual fund in order to most closely mimic the
performance of the entire S and P 500 index. So, what do we have to suggest? We have to
suggest what percentage of the portfolio should be invested. This will mimic the performance
of the entire S&P500 index.

Constructing an Index Fund

g | e | vearz | vears | veara | vears

Foreign Stock 10.06 13.12 13.47 4542 -21.93
Intermediate-Term Bond 17.64 3.25 Tl -1.33 7.36

Large-Cap Growth 3241 18.71 3328 41.46 -23.36
Large-Cap Value 3236 20,61 12.93 7.06 -5.37
Small-Cap Growth 33.44 19.40 3.85 58.68 -9.02

Small-Cap Value 24.56 25.32 -6.70 5.43 17.31
S&P 500 Return ( 25) za ( E) (30 (10)

So, here we have solved this already; see, there are different mutual funds, foreign stock,
immediate-term funds, large-cap growth, large-cap value, small-cap growth, and small-cap
value. Year 1, year 2, year 3, year 4, year 5 are different scenarios. What extra things added
in this table is that standard and poor 500 written index is given. So, here for scenario 1 in the



index is 25. For year 2, this is a different scenario. The index is 20. So, here, the index is 8,
30, and -10. So, what we are required to do? We have to suggest the portfolio, so that it

closely matches with the index provided by this S and P company.

Constructing an Index Fund
[ bsond e | et | s | erd | Vewrs

Farewgn Stock 1006 pER Y 1347 as.4a 2193
Intermediate-Term Bond 1764 325 751 133 136
Large-Cap Growth 24 1871 EERY] s 233
Large-Cap Value 236 2061 1293 706 537
Small-Cap Growth EERT) 19.40 385 5868 a0
Small-Cag Value 2456 B2 6.70 5.4 1731
S&P 500 Return €5) 20 8 30 10

* In the above Table we reproduce all the data with an additional row that gives the
S&P 500 return for each planning scenario.

* Recall that the columns show the actual percentage return that was earned by each
mutual fund in that year.

* These five columns represent the most likely scenarios for the coming year.

* The variables used in the model is the proportion of the portfolio invested in each
mutual fund.
ot imilonlin i a , .

In the above table, we reproduce all the data, the data which you have discussed in the
previous lecture on portfolio, but we have introduced an additional row that gives S and P
500 returns for each planning scenario. So, this was our additional row. Recall that columns
show the actual percentage return that was earned by each mutual fund in that year. So, these
5 columns represent the most likely scenario for the coming year. The variable used in the
model is the proportion of the portfolio that should be invested in each mutual fund, which

was our decision variable.

Constructing an Index Fund

« Consider, for example, variable scenario represented by year 1 reflects what
happens over the next 12 months, the portfolio return under scenario 1 is
R1 =10.06F5 +17.64]1B + 32.4LG + 32.36LV + 33.445G + 24.565V
Similarly, if scenarios 2-5 reflect the returns obtained over the next 12
months

For example, the variable scenario represented by year 1 reflects what happens over the next

12 months. The portfolio return under scenario 1 is R1 = 10.06FS. How did we get this



10.06? When you return this one, 10.06FS, then 7.641B, LG, LV, SG, and SV. Similarly, we
have repeated. This is written one if scenario one is repeated. Similarly, R2, R3, R4, and R5

also have been written for the other 5 scenarios.

Constructing an Index Fund

Scenario 2

* R2=1312F5+ 3.25IB + 18.71LG + 20.61LV + 19.405G + 25.325V
Scenario 3

* R3=1312F5+ 75118 +33.28LG + 1293LV + 3.855G — 6.70SV
Scenario 4

* R4 =4542F5 - 1.331B + 41.46LG + 7.06LV + 58.685G + 5.435V
Scenario 5

* R5=-2193FS5+7.36IB —23.26LG — 5.37LV —9.025G + 17.315V
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So, this slide shows scenario 2, scenario 3, scenario 4, and scenario 5.

Constructing an Index Fund

Next, for each scenario we compute the deviation between the return for the
scenario and the S&P 500 return.

* Based on the last row of Table, the deviations are

+ R1-25, R2—-20, R3-8, R4—30, RS — (~10)

* The objective is for the portfolio returns to match as closely as possible the
S&P 500 returns.

* To do so, we might try minimizing the sum of the deviation given in the above
equation as follows:

MIN  (R1-25)+ (R2-20) + ( R3_: 8) + (R4 —30) + (R5 - E_—lD)}

...... " "

Next, for each scenario we compute the deviation between the return for the scenario and the
S&P 500 return. So, based on the last row of the table, the deviations are seen. For example,
if scenario 1 is repeated, the deviation will be (R1 — 25), (R2 — 20), (R3 - 8), (R4 — 30), and
(R5 — (-10)). So, the objective is for the portfolio returns to match as closely as possible the S
and P 500 returns. So, this has to be matched.

That means this deviation has to be minimized. To do so we might try to minimize the sum of

deviations given in the above equation. So, we have some of the deviations that has to be



minimized, so what will happen to minimize? So, this is a deviation 1, deviation 2, deviation

3, deviation 4, deviation 5 for all 5 scenarios.
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+ Unfortunately, if we use the above expression, positive and negative .
deviations will cancel each other out, so a portfolio that has a small VS
value for expression might actually behave guite differently than the J 4
target index.

Also, because we want to get as close to the target returns as L
possible, it makes sense to assign a higher marginal penalty cost for
large deviations than for small deviations. ,,: =h

A function that achieves this goal is LSE =25

1 -

MIN (R1 = 25)° + (R2 — 20)% + ( R:
Andean, G B 4, 0.1 watkams, . &, Camm 1, 0, ;
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Unfortunately, we know that if the Y (x - X), when you sum it, it will be 0. So, what will

ST o o) el 4Tk Gt 1))

happen if you use the above expression that is just a summation of deviation? The positive
and negative deviations will cancel each other. So, a portfolio that has a smaller value for
expression might actually behave quite differently than the target index. There is a logic

behind this, and in the next lecture, we are going to study the mean-variance theorem.

So, that is Y (x - X) = 0. So, what do you have to do? You have to square this.
This logic is also behind the variance formula:
¥(x — x)’
n—1
So, we have to square this sigma of the deviation has to be squared otherwise it will become
0. So, also, because we want to get as close to the target return as possible, it makes sense to

assign a higher marginal penalty cost for larger deviations than for smaller deviations.

So, what will happen? So this is called the squared transformation. What is the meaning of
the square transformation? If the deviation is 0.5 when you square it, it will be only 0.25.
Suppose the deviation is higher, for example, 5, so when you square it, it will become 25. So,
what is the logic behind this when you square the deviation, we are giving a larger penalty for

a larger deviation and a lesser penalty for a lesser deviation.



That is the logic behind squaring the deviation, so when you square the deviation, this will
become (R1 — 25)? and (R2 — 20)2. This is like the least square estimate in your regression;
what are we used to doing there? We must minimize some of the squares of the error the
same thing. So, what we are doing here is minimized. So, what is the square here that is the
(R1 — 25) is the deviation? There is nothing but error. So, we are all the squared error; when
you sum it, that has to be minimized. So, if you want to minimize, then what should be our

portfolio strategy? That is what we are going to do.

[

Constructing an Index Fund

MIN (R1-25)? + (R2—-20)*+ (R3—8)%+ (R4 — 30)* + ( RS — (—10))

ST.
R1 = 10.06FS + 17.64/B + 32.4LG + 32.36LV + 33.445G + 24.565V
R2 = 13.12FS + 3.25IB + 18.71LG + 20.61LV + 19.40SG + 25.32SV
R3 = 13.12FS + 7.511B + 33.28LG + 12.93LV + 3.855G — 6.705V
R4 = 4542FS — 1.33IB + 41.46LG + 7.06LV + 58.685G + 5.435V
R5 = —=21.93FS + 7.361B — 23.26LG — 5.37LV — 9.025G + 17.315V
FS+IB+LG+LV +SG+SV =1
FS,IB,LG,LV,SG,SV = 0
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Now, | have brought up the complete problem of index funds. So, how can we know this is

non-linear? You see this power is 2. So, now, this problem is a non-linear problem. What are
the constraints? The R1 is this much, R2, R3, and other things one more constraint because it

is a percentage the sum of the percentage; some of the probability should be 1. So, this is the

final complete non-linear problem that I will solve with the help of a solver.

L




Now, | am going to solve this non-linear problem with the help of a solver. So, | have
brought a screenshot of my formulation of this problem.

So, minimize (R1 — 25)? +(R2 — 20)?,

and there are constraints is there. Now | have formulated. Now, | am going to explain how I
have formulated it cells F10 to K10 are the decision variables where we are going to get the
answer. Now look at this E12; E12 is a sum product of F10 to K10 and F12 to K12. That is
R1, R2, R3, R4, R5.

The last cell that is E17 is some of the probabilities, so F10 to K10 and F17 to K17 because it
is 1; it is just some of the probabilities, some product that will be equal to some of the
probabilities. Now, | am going to date. So, solver, now | am going to explain what our
objective function is. Object function is written on E5. Where is E5? Please look at this E5.

So, if E5 is (R1 — 25)?, what is R1 here?

E12 is my R1, so (R1 - 25)? and (R2 — 20)?, what is R2, U13

then (E14 — 8) + (E15 — 30)? + (E16 — (-10))?

That is my objective function. Now, when | go to Solver, what are the constraints here? The
constraint is that the sum of the probability should be 1, and the changing cell should be F10
to K10. So, here I am selecting non-linear options instead of simplex. | am choosing non-
linear GRG, which is non-linear.

When | solved it, so | needed to answer everything | needed, now | got that in the FS, 30% of
the stock should be invested in FS 36% of the stock should be invested in LV, 22% of the
stock should be invested in SG, and 10.513% should be invested on SV. So, that is the case.
The sum of the squares of the deviations here is 4.42. So, our deviations will be minimized,
so it is on par with the index provided by S and P company. Now, | have taken this output in

the presentation; there, 1 am going to interpret the result.
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Objective Cell (Min)  (Answer Report)
_Cell__Name _ Original Value Final Value

SESS Objective Fn  316.3182737 ‘:4268‘3245—! )

Varisble Cells

Coll  Name  Original Value final Value Integer
$7$10 Variable Cell ] 0.303337408 _Contin
$GS10 Variable Cell 0.168619308 0 Contin
$HS10 Variable Cell 0.723130933 0 contin
41510 Variable Cell 0 o g&aex:osb Contin
$1$10 Variable Cell 0 0226551478 Contin

$XS10 Variable Cell 0.108249758 _0,105125033 Contin_

Constraints

Cell Name Cell Value Formula  Status Slack
$E517 Cls 1.000000005  $€$17e1  Binding 0 ~
Andesson, 0. .. Sweeney, 0. |, Willams, T. A, Camm, D, & Cochran, . J. {2018). An introduction to mansgement scance: quantitative apgroach, Cengage learning

Yes, here my objective function is 4.42. That is the sum of the squares of the deviations. So,
my constraint on the slack is 0; it is fully satisfied. So, we are getting this F10 at 30%, 36%,

22%, and 10%.

Constructing an Index Fund

. R . g Objective Cell (Min}  (Answer Report)
* The solution for the Hauck Financial Services Cell  Name  Original Value FinalValue

problem is given in Figure. The optimal value 55 objectivern 3163182737 4.426892454
of the objective function is 4.42689, the sum

of the squares of the return deviations. Variable Cells
* The portfolio calls for approximately 30% of Coll_Neme Oy _FinalValve _integer
$FS10 Variable Cell 0.303337408 ntin

the funds to be invested in the foreign stock $G810 Variable Cell0.168819308 A toot
fund (FS 5 0.30334), 36% of the funds to be $HS10 Variable Cell 0723130933 0 Contin
X N 51510 variable Cell 0 0.364982086 Contin
InVEStEd m the |arge-cap Value fund (LV 5 $IS10 Variable Cell 0 0.226551478 Contin
0.36498), 23% of the funds to be invested in $KS10 Variable Cell 0108249758 0105129033 Contin_
the small-cap growth fund (SG 5 0.22655),

and 11% of the funds to be invested in the Constraints

small-cap value fund (SV 5 0.10513). Cell _Name  CellValve  Formula Status Slack
$ES17 Cls 1.000000005 $ES1751  Binding 0



Constructing an Index Fund

A = A Objective Cell (Min}  {Answer Report)
* The solution for the company is given in Cell  Name  Original Value Final Value

Figure. SES5 ObjectiveFn 316.3132737 4.426892454

* The optimal value of the objective function is

4.42689, the sum of the squares of the return variable ceiis 3
deviations. Cell  Name  Original Value Final Value Integer

" . $F$10 Variable Cell 0 .303)37408 Contin
* The portfolio calls for approximately 30% of 5GS10 Variable Cell 0.168619208 0 Contin

the funds to be invested in the foreign stock $HS10 VariableCell 0723130933 . 0 Contin

- $i510 Variable Cell 0 10.364982086 Contin
fund (FS = 0.30334), 36% of the funds to be o —— Qz;ms s
invested in the large-cap value fund (LV = $KS10 Variable Cell 0.108249758 (0.104129033 Contin_
0.36498), 23% of the funds to be invested in
the small-cap growth fund (SG = 0.22655), Constraints
and 11% of the funds to be invested in the Cell__ Name CellValue __formula__ Status_Slack

smal[—capvalyefund_(_S}/=0.10513)._ s ol ! 5 SESIBL Ginding O

The solution for the company is given in this figure. The optimal value for the objective
function is 4.42, which is the sum of the square of return deviations. The portfolio calls for
30% of funds here, 30% of funds to be invested in the foreign stock FS and 36% this one,
36% of the funds to be invested in the large-cap value and 23, see 22.6% of funds to be
invested in small-cap growth and 11% this one, 11% of the funds to be invested in the small-

cap value. That is why SV = 0.10.

Constructing an Index Fund

PORTFOLIO RETURN VERSUS S&P 500 RETURN

[ Scenario | Portfolio Return | S&P 500 Return |
1 25.02 7 a5
2 18.56 20
3 8.97 7 8
4 30.22¢ 30
5 8,84 -10

So, we got these proportions when you substitute these proportions in the return expression
function. We are getting R1 value of 25, R2 of 18, R3 of 8.97, and R4 of 30.22. You see the S
and P returns given by this indexing company. Now, we are finding that if you follow that
portfolio strategy, there will be a close match between the index provided by this company

and what we will be getting the return from our own company.



Constructing an Index Fund
PORTFOLIO RETURN VERSUS S&P 500 RETURN

* The table shows a comparison of the Scenario Portfolio S&P 500
portfolio return to the S&P 500 return for Return Return
each scenario. . 1 25.02 25

*  MNotice how closely the portfolio returns
match the S&P 500 returns. 2 18.56 20

* Based on historical data, a portfolio with this 3 897 8

4
5

mix closely match the returns for the S&P

30.22 30
500 stock index.

-8.84 -10

Anderson, D, R, Sweeney, 0. 1 Wilkams, T. &, Camm, §. 0, & Cochran, 1. . (2018}, &n introduction to managemen science: quantitative apgroach, Cengage learning

So, what are we interpreting? This table shows a comparison of the portfolio return to the
S&P 500 for each scenario. Notice how closely the portfolio returns match the S&P 500
returns. So, based on historical data, the portfolio with this mix closely matches the return of
the S&P 500 stock index. In this lecture, | have explained the concepts of convex and
concave functions and their advantages. By using the concept of convex and concave

function | explained the local optima and global optima. What is that?

If the function is a concave function, the local maximum is equal to the global maximum. If
the function is a convex function, the local minimum is equal to the global minimum. Then, |
explained the meaning of dual values in the context of non-linear problems. After that, | took
a sample problem to construct an index fund. So, that problem is a non-linear problem that |
have solved using a solver, and then | have interpreted the result. In the next class, we are
going to have an interesting problem, which is Markowitz portfolio models; we will see you

in the next class; thank you.



