Econometric Modelling
Professor Sujata Kar
Department of Management Studies
Indian Institute of Technology Roorkee
Lecture 38
Stationarity & Unit Root Testing - I

Hello everyone this is module 38 of the course on econometric modeling. We are at the last

leg of the course.
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So, this is the last part, modelling long-run relationships and in that, the first two modules are

on stationarity and unit root testing. So, the first module of these two that is module 38 is on
primarily the concept of stationarity and how we can deal with or remove stationarity. In the

module 39, I will be discussing how to test for stationarity.



(Refer Slide Time: 0:58)

A
Stationary Process
* A stationary time series process is one whose probability distributions
are stable over time in the following sense: if we take any collection of
random variables in the sequence and then shift that sequence ahead h
time periods, the joint probability distribution must remain unchanged.
* Formally, a stochastic process {x,: t = 1, 2, ...} is stationary if for every
collection of time indices 1 <t, < t, < ... < t,, the joint distribution of
( Xt Xp, 0 Xe,,) i the same as the joint distribution of
(Xe, +ho Xt 4k - Xt +n) fOr all integersh > 1.
* This simply implies that first, x, has the same distribution as t = 2 3
and second, the joint distribution of (x,, x,) must be the same as the
joint distribution of (x, x,,) for any t > 1.
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So, a stationary time series process is one whose probability distributions are stable over time

in the following sense, that if we take any collection of random variables in the sequence and
then shift that sequence ahead h time periods, the joint probability distribution must remain

unchanged.

Formally, a stochastic process (refer slide time: 1:24- 2:25). This definition of stationarity

refers to strict stationarity.

(Refer Slide Time: 2:32)
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Stationary Process
* A weaker form of stationarity is covariance stationarity and it is defined as a
stochastic process {x,:t =1, 2, ...} with finite second moment if
i) E!x,lls_a constant 1 ' ')Eg_- AR
i) Var (x) is a finite constant and q
i) Foranyt h21, Coy(i: x..») depends only on hﬁ\d notont.

+ If a stationary process has a finite second moment, then it must be covariance
stationary, but the converse is certainly not true. Covariance stationary processes
are also called weakly stationary or second order stationary processes.

+ This implies that the first two moments of the series are independent of time,
and the covariance between any two values of the series although independent
of time, is a function of the distance between the two time periods considered.
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Often, we deal with something which is actually a weaker form of stationarity and that is

denoted by covariance stationarity. This stationarity was introduced also while we were

discussing the univariate time series modeling, that is AR, MA, and ARMA processes.



So, covariance stationarity is defined as a stochastic (refer slide time: 2:55) that is we are
considering the stochastic process in the two time periods, then the covariance between the
two time periods should actually depend on the distance between the two time periods, that is

h , and not on the time periods themselves.

So, this implies that, if I am considering time period 1 and time period 5. So, there is a
distance of 4, the covariance between them will be equal to the covariance
betweenxg and x,,, where again we have a difference of 4. If a stationary process has a finite

second moment, then it must be covariance stationary, but the converse is certainly not true.

Covariance stationary processes are also called weakly stationary or second-order stationary
processes. This implies that the first two moments of the series are independent of time and
the covariance between any two values of the series although independent of time is a

function of the distance between the two time periods considered.

(Refer Slide Time: 4:33)
A
Stationary Process
* Aseries which is not stationary is called a non-stationary series.
* Consider the simple AR(1) model
/y, =a+tpy- +u, ; u,~IID(0 o ) (1)

— e S

* In this model the assumption| |P@IS crucial for the series to be stable.
Alternatively, we will prove that theconditions for stationarity hold if [p|< 1.

* Letus rewrite (1) using a lag operator (L)as (1= pL)y, = a + u,

* Or =(cz+ut)(1—pL)'l ’Yb o g
il o d¢ e
¢« 0Or/| (a+ut)(1+pL+p2L2+ +oo -—-+Zl op’ u, j

. Therefore F(y )= i,, = constant  [E(u,) = 0 -3 E(E,‘P’Ur j 0]

@ o (i com
A series that is not stationary is called a non-stationary series. Now, we consider a simple
AR(1) model, this is how we used to write an AR(1) model, where we are considering 1lag
length of the AR term, that is an autoregressive process, the endogenous variable. We assume
that u;, the error term is identically and independently distributed with 0, mean and constant

variance at sigma square.

So, in this model the assumption that, |p| <1, is crucial for the series to be stable.
Alternatively, we will prove that the conditions for stationarity hold, if |p| < 1. So, we have

mentioned so far the conditions that are required for stationarity, that a constant mean, a



constant variance, that is they are not dependent on time and covariance which is basically a

function of the distance between the two time periods, and again not a function of time.
So, we can prove that for values of (refer slide time: 5:40- 8:07).
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Stationary Process

2 v

+ We then have, Var(yt):b‘[y, yr]z E[—+E; Dp u, i lan]
2

E[Z p‘u, ﬁ-o‘ +pzcrz+p 0‘2 ;- constant .

+ Therefore, Var{yr]:-oforlpwl @O«Ql{{ \'Q”t ]
¢ And, W?(J’r,}’[-l =E[(}’r‘f)()’t—;_‘%)l @—t[}ﬁ (ﬁ m‘)

I 2

- E[(y(yr 1) }f;) ;E(}'E_l) +{:7
2 @
_‘”_L@ sce E(y) = E-1) = 15
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Stationary Process
*Aseries which is not stationary is called a non-stationary series.
* Consider the simple AR(1) model
e = a4 pyeg +g ___w~IID(0,0 ) (1)
* In this model fﬁassumptlo @IS crucial for the series to be stable.
Alternatively, we will prove th conditions for stationarity hold if |p[< 1.
* Letusrewrite (1) using a lag operator (L)as (1= pL)y, = a + u,

. = - -1 > . 1
Or (a+ut)(1 pL)! 'ﬁg( },. l RN
‘ Or,‘yﬂ—(a+ut)(1+pL+M ——~+Z} Op b

> )
* Therefore, E(yt) = = constant  [E(u,) :9 = E(ij’u, , 0]
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Now, we consider (refer slide time: 8:08- 11:55).

(Refer Slide Time: 11:54)



Stationary Process
* Let us denote E(y, ;) by y(@ for =0...t Multiplying both sides of (1) by
¥;, and taking expectations, we obtam 7 t} ”}L \ o

}’U b{J’zyr—ll aE[}’r L]"'ﬂE[J’t 1]"'__5[3’: lut]_ +py(Q) ) % (2) =

+ Substituting (2) in the expressmn for covariance b_etween ¥t and Yi-1, We get

aZ
CW[J’EJ’: 1]‘9}: +1Tp‘“_p)z
— e ey
a a
J Slm'|af|\";m“[]’r,yg—2l-E[U’r'g)(}'r—z'ﬁ E[}’t}’r z] o
e Fua— -
=105
-
+ From (2) it follows directly that y(2) =:'Tp+p}'(1r) (3)
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Stationary Process
*Aseries which is not stationary s called a non-stationary series.
* Consider the simple AR(1) model
e=atpygtu  u~lD00%) (1)

* In this model the assumptlo /Ipl < Dis crucial for the series to be stable.
Alternatively, we will prove that'the'Conditions for stationarity hold if [p[< 1.

* Let us rewrite (1) using a lag operator (L)as (1= pL)y, = a +u,

. = - -1 L= »- .'
Or (a+u,)(1 2sz) 7_}{ RN
. Or,‘ytw—(a+u,)(l+pL+pL + 4 ) -—+Z} 0,o u, i

4 o

* Therefore, E(yt) D— constant  [E(u,) :Q 2 EQply,_) = 0]
‘\:). ‘W

Stationary Process
+ Wethenhave, Var(y,) = Ely.-E(y) ]z E[—+):,°° np u, i

—_—

1 r v
)

a?
E[E p‘u, ,fﬂ-o‘z+pzcz+p ot + 1_p¢ constant

= L
+ Therefore, Var{yr]>0for|p <1 (@\ U, *QLLL ]
+ And, mv(y:}’t- El( ip) (J’:-l_‘ :_p)l E@L_ r_L(Q_)kdl 2 m‘}

@ 2
—E[(y,y,, %o YI)‘EE(}'H)‘F{:T]

= E(yeye-1) -

‘ ______ﬁg)_. since, E(y;) = E(y-1) = 1
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Let us denote (refer slide time: 11:56- 14:45)




(Refer Slide Time: 14:45)

Stationary Process
+ Substituting for the value of y(1) in (3) we have y(Z) =— + e + p?y(0)

at
: Thereore,  Cov(y,ye-2) = YD) - 7 = pH0) + ;ﬁﬂ;,)
. FoHowingthisiterativeprocessncan be shown that i z
at ;L - —rf’

Am - (4)

 Notethat0) = Vartm [yf'l—E[y:]z=Y -~

—'——-—-—q

a?

a?
= constant

+ Therefore,

_l_
e Pt (1-p)
* From expression (4) it is clear that the covariance of the process in (1) wil
converge to a constant value onlyif |p| < 1.

Stationary Process
* Let us denote E(y,);_) by y(*’r)) for 1 =0...t Multiplying both sides of (1) by
¥, and taking expectations, we obtam T t} ”}L \ 5/_

y(Q) = Elyeye-1l= aE[}’r k]"’ﬂE[}’[ 1]+__E[Yt lut]_ +py([D A 2y~

*  Substituting {2} in the expression for covariance between Yt and Vi-1, We get

at at
CDV[J’[?[ 1] = Py l_p‘“_p)z
—— -l —
a
! 5|m||3f|¥;f91’[yr}’: 2] = E{U’r'_ )7 z'—)]' [}’t}’: z] (1-p)?
B il —
V@) (1-p)?
2 ———
*+ From (2) it follows directly that ¥(2) = —+ py(1) ~(3)
- Ap = =& e

0'"":"7'“" mll\ll "amu oursH
So, substituting the value of (refer slide time: 14:46- 17:30).

(Refer Slide Time: 17:31)
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Stationary Process
+ Therefore, the stationarity condition is that the absolute value of the
coefficient of the one period lagged value of the dependent variable of an AR
(1) series must be less than unity. Two alternative statements of the
stationarity condition are,

1. The coefficient of y,_; in (1) must lie within the unit circle

2. The absolute value of all the roots of the polynomial lag operator, 1 - pL=0
must lie outside the unit circle.

* Here 1-pl = 0has a single root equal to 1/p. Therefore, [1/p]>1or|p| <1
is the stationarity condition. If |p| = 1 then there is a unit root problem as the
root of the polynomial lag operator becomes unity. Further, if the roots of the
characteristic equation are greater than unity, i.e. when |p| >1 the series is
called an explosive series. -

o WPTIL OHLINL
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Therefore, the stationarity condition is that the absolute value of the coefficient of the one
period lagged value of the dependent variable of an AR(1), series must be less than unity.

Two alternative statements of the stationarity conditions are, (refer slide time: 17:49- 18:25)

Further, if the roots of the characteristic equation are greater than unity, that is when |p| > 1,

the series can be called an explosive series, or the series is actually an explosive series.



(Refer Slide Time: 18:40)

S
Highly Persistent Series
* Many economic time series are better characterized by an AR[1) model with p =
1. Let us write the AR(1) process as
V=V t=1,2,..and u~I1D(0,c?) ~(5)

+ We assume that the initial value y, is independent of u, forall t> 1.

+ The processin (5) is called a__rariﬂo_m walk, a special case of unit root process. The
name comes from the fact that y at time t is obtained by starting at the previous
value, y,_4, and adding a zero mean random variable that is independent of y,_;.

* By repeated substitution we will get
Ye = Up F Uyt U 1Yo (6)
* Taking the expected value of both sides gives

E(y,) = B+ E(ul_ﬁf;-_-LELu;ﬁ-.ELyﬁ)_:M forallt21.
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So, now we talk about the properties of having a non-stationary process. So, non-stationary

processes are generally highly persistent. So, now I discuss why do we call it a highly
persistent series. So, many economic time series are better characterized by an AR(1) model

(refer slide time: 19:00- 19:49).

So, basically, the entire process, the changes, whatever we are observing in y;, that is
generated by the random component. So, it is absolutely random, if we remove that
randomness my current observation would be exactly equal to my previous observation, the
entire movements in y; are caused by the random term that is the disturbance term, and that is

why it is called a random walk process.
By repeated substitution in equation 5, we get, (refer slide time: 20:23- 20:57).

(Refer Slide Time: 20:57)



I
Highly Persistent Series

+ Therefore, the expected value of a random walk does not depend on t. A
popular assumption is that y, = 0, in which case E(y,) = 0 for all t.

* By contrast, the variance of a random walk does change with t. For simplicity,
let us assume Var(y,) = 0. Then

* Var(y) = Var(u) +Var(ue-y) + -+ Var(u) = ait

e ot — — —

+ This shows that the variance of a random walk increases as a linear function of
time and the process cannot be stationary. Even more importantly, a random
walk displays highly persistent behavior in the sense that the value of y today
is important for determining the value of y in the very distant future. To see
this, write equation (6) for h periods ahead as,

Yevn = ut+_n_+ Upppr o +_“r+1 +. o

= WPTIL OHLINE
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L
Highly Persistent Series

* Many economic time series are better characterized by an AR(1) model with p =
1. Let us write the AR(1) process as
Vi = Yeop U t=1,2,..and u~I1D(0,0?) (5)
* We assume that the initial value ¥, isindependent of u, forall t > 1. o

* The process in (5) is called a random walk, a special case of unit root process. The
name comes from the fact that y at time t is obtained by starting at the previous
value, y,_4, and adding a zero mean random variable that is independent of y,_;.

* By repeated substitution we will get

Ye=UtUpg t ot Uty (6)
+ Taking the expected value of both sides gives
E() = EOY + EGu 44 EQu 4 B} = Efyl, foralle21.

. T ROORKTE

Therefore, the expected value of a random walk does not depend on t. A popular assumption

is that (refer slide time: 21:03- 21:47).

This shows that the variance of a random work increases as a linear function of time and the
process cannot be stationary. Even more importantly a random walk displays highly
persistent behavior in the sense that, the value of y today is important for determining the

value of y in the very distant future.
To see this write equation 6 (refer slide time: 22:11).

(Refer Slide Time: 22:28)



Highly Persistent Series
+ Attimet, the expected value of y,,,, is
E(eanlye) =y forallh21.
* This means that, no matter how far in the future we look, our best prediction of
Yean IS today's value, y{. In contrast to this, a stable AR(1) process will have

E(yranly:) = forallh2L 5 P Gl
« Under stability |ﬁ|_< herefore,F(y“Hy[ @pproaches zero 35 hoso, T8, the

value of y, becomes Tess and less important, and £y, |y, ) gets closer and closer
to the unconditional expected value, E(yr) 0.

+ Also, if Var(y,) = 0, it can be shown that corr(Y, Yesn) =t/ (t+h)

« Thus, the correlation depends on the starting point/f and it becomes close to 1 for
large t when {y} follows a random walk. Further, although for fixed t the
correlation tends to zero as h = «, it does not do so very quickly. In fact, the
larger t is, the mare slowly the correlation tends to zero as h gets large.

’ T ROORKTE

Highly Persistent Series

+ Therefore, the expected value of a random walk does not depend on t. A
popular assumption is that y, = 0, in which case E(y,) = 0 for all t.

* By contrast, the variance of a random walk does change with t. For simplicity,
let us assume Var(y,) = 0. Then

* Var(y,) = Var(ut) + Var(ut ,) vk Var(u) = cru

+ This shows that the variance of a random walk increases as a linear function of
time and the process cannot be stationary. Even more importantly, a random
walk displays highly persistent behavior in the sense that the value of y today
is important for determining the value of y in the very distant future. To see
this, write equation (6) for h periods ahead as,

Yern = u!;_n_*‘ Ul +_1ft+1 TV

‘ T ROCHEIE
At time t, (refer slide time: 22:30- 24:11).

Further, although for fixed t the correlation tends to O as h tends to infinity it does not do so
very quickly. In fact, the larger t is, the more slowly the correlation tends to 0 as h gets

larger. So, that is why we call this series you know highly persistent series.

(Refer Slide Time: 24:30)
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Highly Persistent Series

* et us consider, stock prices as an example. The dynamics of the price process is

given by //S, -—;/S,-l @ or, AS,’z U

+ This implies that tomorrow’s price, St41, is thought of as today’s price plus some
random shock that is independent of the price. As a consequence, in this model,
the increments S, - S;_; from t—1 to t are thought of as completely
undeterministic. .

* Since the u,'s have a mean of zero, the increments are considered fair. An increase
in price is as likely as a downside movement. At time t, the price is considered to
contain all information available. So at any point in time, next period’s price is
exposed to a random shock. Consequently, the best estimate for the following
period’s price is this period’s price.

NPIEL OMUNE
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Now, let us consider stock prices as an example, the dynamics of the price process are given
by (refer slide time: 24:36). So, S; refers to stock price, so today's stock price is yesterday’s
stock price plus some random component, or the change in today's stock price is actually

equal to today's random component.

So, it is not at all explained by anything other than that, this implies that tomorrow's price that

is (refer slide time: 25:00- 25:22).

Since the u;'s have a mean of 0, the increments are considered fair. An increase in a price is
likely a downside movement. At time t, the price is considered to contain all information
available. So, at any point in time, the next period’s price is exposed to a random shock.
Consequently, the best estimate for the following period’s price is this period’s price or

today's price.

(Refer Slide Time: 25:48)
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Highly Persistent Series

+ Generally, it is not easy to look at a time series plot and determine whether it is a
random walk or not.

+ |tis extremely important not to confuse trending and highly persistent behaviors. A
series can be trending but not highly persistent. It is also often the case that a
highly persistent series also contains a clear trend. One model that leads to this
behavior is the random walk with drift,

_ RO =14
yr—a0+yl_1+u[ [-1,2,“, =t '\

¢ oayis called the drift term. For such a series the expected value of y, follows linear
time trend by using repeated substitution,

Yo =gt +up +upq
¢ Therefore,ify,=0,  E(y,) = gt
+ The expected value of y, grows over time if &, > 0 and shrinks over time f @, < 0.

% WPIL ORLINL
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Generally, it is not easy to look at a time series plot and determine whether it is a random
walk, or not. So, there is no shortcut or straightforward way of looking determining it just by
looking at the series. It is extremely important not to confuse trending and highly persistent
behaviors. A series can be trending, but not highly persistent. It is also often the case that a

highly persistent series also contains a clear trend.

So, the trend the way we have understood it so far or discussed previously that it is a
deterministic trend. And it is sometimes possible that a highly persistent series, that a random
walk series also contains a clear cut trend. One model that leads to this behavior is the
random walk with drift. So, this is a series with a random walk with drift, you can see that
this is very similar to the AR(1) model, that was considered in the beginning, except for the

fact that here p has taken the value 1.

So, (refer slide time: 26:50- 27:50). But, overall the fact is that the expected value is actually

a function of time and it is not constant the way we want covariance stationary series to be.

(Refer Slide Time: 27:58)
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Highly Persistent Series

* The variance of the seriesis  Var(y,) = E[ZiZpu;-|*= to?

+ Therefore, neither the mean nor the variance of the process is constant; rather
they are functions of time which violates the first two conditions for stationarity.
Similarly, it can be shown that the covariance between any two terms will be a
function of time. Suppose, y, = 0. Then it follows that &6‘&-(0({ t)

COV(}’Q’(-.Q 3 E[ytytll e filr)’z/lj[_yi-ll = E[{’t}’t-ll = ‘_"_ozt(‘ =1)
* Since, E[yye-1] = Elaoy-1 + Yoy + UpYean) =[“0_i_(¢;1) +a(t-1),
T Cov(yeyey) = 03t - 1) - ap?(t - 1)?

Generalising this expression we get,

¢ Cov(yy—g) = 0*(t=1) - ap*(t-1)* foranyr _

NPTEL O
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Highly Persistent Series

+ Generally, it is not easy to look at a time series plot and determine whether it is a
random walk or not.

+ |tis extremely important not to confuse trending and highly persistent behaviors. A
series can be trending but not highly persistent. It is also often the case that a
highly persistent series also contains a clear trend. One model that leads to this
behavior is the random walk with drift,

Vi=ag+ Y+ ul--"""_-r: 1.2 - M(l ) 1[.31 @

*oayis tallEH'fﬁ'efa“ﬁth—eFrﬁ.hFor such a series the expected value of y, follows linear
time trend by using repeated substitution,
YeT ol U t Uty
¢ Therefore,ify,=0,  E(y,) = apt
+ The expected value of };éf&ﬁs—oﬁr—t‘ime if ¢y > 0 and shrinks over time if @y < 0.
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The variance of the series is (refer slide time: 28:00- 28:39)

Therefore, neither the mean nor the variance of the process is constant rather they are

functions of time that violates the first two conditions for stationarity.

Similarly, it can be shown that the covariance between any two terms will be a function of

time. Suppose, (refer slide time: 28:53- 30:28).

(Refer Slide Time: 30:30)



Stationarity of AR(p) processes

+ Therefore, the third condition under weak stationarity is also violated as the
covariance between any two values of the series is a function of time.

+ In order to make the initial presentation simple the problem of unit root is
considered in an AR (1) series. However, the argument is valid also for higher
order autoregressive processes. For instance, consider an AR (p) process as
follows:

Ye=atpYe-y tpaYe-at ot PpYi-p t il 4~1D(0, 09 (7)

+  Equation (7) can be rewrittamn eratorsas o 2
o\/(l_plL_pzbz_.‘._ppr y[=a+uf ll"?).-’:o

* The stationarity condifion 1s that all the roofs of the polynomial lag operator 1 -
plL—szZ:-:.gLU’ =0 should lie outside the unit circle. This condition
implies that the sum of all the coefficients must be less than unity: i.e.

prtpyttpy <l

— WFTIL LN
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Therefore, the third condition under weak stationarity is also violated as the covariance

between any two values of the series is a function of time. In order to make the initial
presentation simple, the problem of unit root is considered in an AR(1) series, however, the

argument is valid also for higher-order autoregressive processes.
For instance, consider an (refer slide time: 30:50- 31:47 ).

(Refer Slide Time: 31:48)
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Unit root problem

+ |f the variables employed in a regression model are not stationary, then it
can be proved that the standard assumptions for asymptotic analysis will
not be valid. In other words, the usual ‘t-ratios” will not follow a t-
distribution, and the F-statistic will not follow an F-distribution, and so on.

* Therefore, before proceeding to econometric estimation, time series
analysis requires testing for the presence of unit root(s) or non-stationarity
in all the data series consideredin a model.

* However, before discussing the testing procedure, let us first focus upon
how to convert a non-stationary series into a stationary series.

* A series with one unit root can be transformed to a stationary process by
differencing the series once.

If the variable employed in a regression model are not stationary, then it can be proved that
the standard assumptions for asymptotic analysis will not be valid. In other words, the usual
‘t-ratios’ will not follow a t-distribution and the F-statistic will not follow an F-distribution,

and so on. Therefore, before proceeding to econometric estimation time series analysis



requires testing for the presence of unit roots or non-stationarity in all the data series

considered in a model.

However, before discussing the testing procedure let us first focus on how to convert a non-
stationary series into a stationary series. A series with one unit can be transformed into a

stationary process by differencing the series once.

(Refer Slide Time: 32:37)

I 00
Differencing and Stationarity

ye=a+y+u  u~ID(0,0%) (8)
* Ify,-, Is subtracted from both sides of (8) then the new series becomes
VoY= aty o Ay =atu” £/ 129
* Hence, E[Ay|=a Because E(u,) = 0and Var[dy,| = ¢°
* Therefore, the ;eries in (8) fulfils the first two conditions required for statibnarity.
Since there is no lagged value of the dependent variable on the right hand side,
the covariance is zero. Similarly, if there are two unit roots then the series must be
differenced twice to make it a stationary series. Thus, it can be generalized that a
non-stationary series with d unit roots, d > 0, should be differenced d times to
make it stationary. With d unit roots a series is said to be ‘integrated of order o'
and is denoted as | (d), d is the order of integration.
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So, for instance, we consider a random walk series with drift. (Refer slide time: 32:42-

33:12).Therefore, the series in 8 fulfills the first two conditions required for stationarity.
Since there is no lag value of the dependent variable on the right-hand side, the covariance is
0. Similarly, if there are two unit-roots then the series must be differenced twice to make it a
stationary series. Thus, it can be generalized that a non-stationary series with d unit-roots,
d > 0 should be differenced d times to make it stationary. With d unit-roots a series is said

to be integrated of order d and is denoted by I(d), d is the order of integration.

(Refer Slide Time: 33:55)



A
Stationary vs. Non-Stationary Series

+ The figure plots a random walk
series y, =y, + U, based on a
starting value of y, = 0. As can be
seen, the variance of yt is
increasing with time and there is
no tendency for the series to
revert to any mean value,

+ This contrast with the stationary
first difference series. Stationary
variables can be seen to fluctuate
around their mean (equal to 0
here) and to have a finite variance.
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Now, I conclude this module with this graph which basically plots stationary series against a

non-stationary series. So, first of all, this (refer slide time: 34:00- 34:55). So, you do not
observe the series to deviate much over a period of time from its mean value the deviation
remains constant. So, that is primarily about the stationary series, what kind of problem it

poses and how we can take care of stationarity.

(Refer Slide Time: 35:18)
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These are the references that I have consulted. So, in the next module, I will continue with the

testing of stationarity and once we test for the presence of stationarity, then we have already
discussed how we can correct for the presence of stationarity. An alternative is basically
going for co-integration or co-integrated models that will be taken up in the last module.

Thank you.



