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Hello everyone this is module 38 of the course on econometric modeling. We are at the last 

leg of the course.  

(Refer Slide Time: 0:30)  

 

So, this is the last part, modelling long-run relationships and in that, the first two modules are 

on stationarity and unit root testing. So, the first module of these two that is module 38 is on 

primarily the concept of stationarity and how we can deal with or remove stationarity. In the 

module 39, I will be discussing how to test for stationarity. 



(Refer Slide Time: 0:58)  

 

So, a stationary time series process is one whose probability distributions are stable over time 

in the following sense, that if we take any collection of random variables in the sequence and 

then shift that sequence ahead ℎ time periods, the joint probability distribution must remain 

unchanged. 

Formally, a stochastic process (refer slide time: 1:24- 2:25). This definition of stationarity 

refers to strict stationarity. 
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Often, we deal with something which is actually a weaker form of stationarity and that is 

denoted by covariance stationarity. This stationarity was introduced also while we were 

discussing the univariate time series modeling, that is AR, MA, and ARMA processes.  



So, covariance stationarity is defined as a stochastic (refer slide time: 2:55) that is we are 

considering the stochastic process in the two time periods, then the covariance between the 

two time periods should actually depend on the distance between the two time periods, that is ℎ , and not on the time periods themselves. 

So, this implies that, if I am considering time period 1 and time period 5. So, there is a 

distance of 4, the covariance between them will be equal to the covariance 

between𝑥6 𝑎𝑛𝑑 𝑥10, where again we have a difference of 4. If a stationary process has a finite 

second moment, then it must be covariance stationary, but the converse is certainly not true.  

Covariance stationary processes are also called weakly stationary or second-order stationary 

processes. This implies that the first two moments of the series are independent of time and 

the covariance between any two values of the series although independent of time is a 

function of the distance between the two time periods considered. 
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A series that is not stationary is called a non-stationary series. Now, we consider a simple 

AR(1) model, this is how we used to write an AR(1) model, where we are considering 1lag 

length of the AR term, that is an autoregressive process, the endogenous variable. We assume 

that 𝑢𝑡, the error term is identically and independently distributed with 0, mean and constant 

variance at sigma square. 

So, in this model the assumption that, |𝜌| < 1, is crucial for the series to be stable. 

Alternatively, we will prove that the conditions for stationarity hold, if |𝜌| < 1. So, we have 

mentioned so far the conditions that are required for stationarity, that a constant mean, a 



constant variance, that is they are not dependent on time and covariance which is basically a 

function of the distance between the two time periods, and again not a function of time. 

So, we can prove that for values of (refer slide time: 5:40- 8:07). 
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Now, we consider (refer slide time: 8:08- 11:55). 
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Let us denote (refer slide time: 11:56- 14:45) 
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So, substituting the value of (refer slide time: 14:46- 17:30). 
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Therefore, the stationarity condition is that the absolute value of the coefficient of the one 

period lagged value of the dependent variable of an AR(1), series must be less than unity. 

Two alternative statements of the stationarity conditions are, (refer slide time: 17:49- 18:25) 

Further, if the roots of the characteristic equation are greater than unity, that is when |𝜌| > 1, 

the series can be called an explosive series, or the series is actually an explosive series. 
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So, now we talk about the properties of having a non-stationary process. So, non-stationary 

processes are generally highly persistent. So, now I discuss why do we call it a highly 

persistent series. So, many economic time series are better characterized by an AR(1) model 

(refer slide time: 19:00- 19:49). 

So, basically, the entire process, the changes, whatever we are observing in 𝑦𝑡, that is 

generated by the random component. So, it is absolutely random, if we remove that 

randomness my current observation would be exactly equal to my previous observation, the 

entire movements in 𝑦𝑡 are caused by the random term that is the disturbance term, and that is 

why it is called a random walk process. 

By repeated substitution in equation 5, we get, (refer slide time: 20:23- 20:57). 
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Therefore, the expected value of a random walk does not depend on 𝑡. A popular assumption 

is that (refer slide time: 21:03- 21:47). 

This shows that the variance of a random work increases as a linear function of time and the 

process cannot be stationary. Even more importantly a random walk displays highly 

persistent behavior in the sense that, the value of 𝑦 today is important for determining the 

value of 𝑦 in the very distant future.  

To see this write equation 6 (refer slide time: 22:11). 
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At time 𝑡, (refer slide time: 22:30- 24:11). 

Further, although for fixed 𝑡 the correlation tends to 0 as ℎ tends to infinity it does not do so 

very quickly. In fact, the larger 𝑡 is, the more slowly the correlation tends to 0 as ℎ gets 

larger. So, that is why we call this series you know highly persistent series.  
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Now, let us consider stock prices as an example, the dynamics of the price process are given 

by (refer slide time: 24:36). So, 𝑆𝑡 refers to stock price, so today's stock price is yesterday’s 

stock price plus some random component, or the change in today's stock price is actually 

equal to today's random component.  

So, it is not at all explained by anything other than that, this implies that tomorrow's price that 

is (refer slide time: 25:00- 25:22). 

Since the 𝑢𝑡 's have a mean of 0, the increments are considered fair. An increase in a price is 

likely a downside movement. At time 𝑡, the price is considered to contain all information 

available. So, at any point in time, the next period’s price is exposed to a random shock. 

Consequently, the best estimate for the following period’s price is this period’s price or 

today's price. 
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Generally, it is not easy to look at a time series plot and determine whether it is a random 

walk, or not. So, there is no shortcut or straightforward way of looking determining it just by 

looking at the series. It is extremely important not to confuse trending and highly persistent 

behaviors. A series can be trending, but not highly persistent. It is also often the case that a 

highly persistent series also contains a clear trend. 

So, the trend the way we have understood it so far or discussed previously that it is a 

deterministic trend. And it is sometimes possible that a highly persistent series, that a random 

walk series also contains a clear cut trend. One model that leads to this behavior is the 

random walk with drift. So, this is a series with a random walk with drift, you can see that 

this is very similar to the AR(1) model, that was considered in the beginning, except for the 

fact that here 𝜌 has taken the value 1. 

So, (refer slide time: 26:50- 27:50). But, overall the fact is that the expected value is actually 

a function of time and it is not constant the way we want covariance stationary series to be. 
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The variance of the series is (refer slide time: 28:00- 28:39) 

Therefore, neither the mean nor the variance of the process is constant rather they are 

functions of time that violates the first two conditions for stationarity. 

Similarly, it can be shown that the covariance between any two terms will be a function of 

time. Suppose, (refer slide time: 28:53- 30:28). 
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Therefore, the third condition under weak stationarity is also violated as the covariance 

between any two values of the series is a function of time. In order to make the initial 

presentation simple, the problem of unit root is considered in an AR(1) series, however, the 

argument is valid also for higher-order autoregressive processes. 

For instance, consider an (refer slide time: 30:50- 31:47 ). 
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If the variable employed in a regression model are not stationary, then it can be proved that 

the standard assumptions for asymptotic analysis will not be valid. In other words, the usual 

‘t-ratios’ will not follow a t-distribution and the F-statistic will not follow an F-distribution, 

and so on. Therefore, before proceeding to econometric estimation time series analysis 



requires testing for the presence of unit roots or non-stationarity in all the data series 

considered in a model. 

However, before discussing the testing procedure let us first focus on how to convert a non-

stationary series into a stationary series. A series with one unit can be transformed into a 

stationary process by differencing the series once. 
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So, for instance, we consider a random walk series with drift. (Refer slide time: 32:42- 

33:12).Therefore, the series in 8 fulfills the first two conditions required for stationarity. 

Since there is no lag value of the dependent variable on the right-hand side, the covariance is 

0. Similarly, if there are two unit-roots then the series must be differenced twice to make it a 

stationary series. Thus, it can be generalized that a non-stationary series with 𝑑 unit-roots, 𝑑 >  0 should be differenced 𝑑 times to make it stationary. With 𝑑 unit-roots a series is said 

to be integrated of order 𝑑 and is denoted by 𝐼(𝑑), 𝑑 is the order of integration.  
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Now, I conclude this module with this graph which basically plots stationary series against a 

non-stationary series. So, first of all, this (refer slide time: 34:00- 34:55). So, you do not 

observe the series to deviate much over a period of time from its mean value the deviation 

remains constant. So, that is primarily about the stationary series, what kind of problem it 

poses and how we can take care of stationarity. 
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These are the references that I have consulted. So, in the next module, I will continue with the 

testing of stationarity and once we test for the presence of stationarity, then we have already 

discussed how we can correct for the presence of stationarity. An alternative is basically 

going for co-integration or co-integrated models that will be taken up in the last module. 

Thank you. 


