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Hello everyone and this is module 31 of econometric modelling. So, far we have been discussing

models with categorical or binary dependent and independent variables. So, under this part that is

models with binary dependent and independent variables; so, far we have discussed spline

function and categorical variables. Now, I am going to today discuss linear probability models.

So, when we in the previous module that is in module 30, we actually dealt with categorical

variables or binary variables in the independent variables.

So, one of the or one or more explanatory variables were either binary or having multiple

categories. But, now I am going to deal with linear probability models which are basically one

type of model, where we have the dependent variable as a binary variable.



(Refer Slide Time: 01:25)

So far, in all our discussions, the dependent variable has had quantitative meaning; that is they

were quantitative variables. The numbers themselves carried some implications. The simplest

possible case is when the dependent variable takes only two values zero and one. So, that is one

situation where we will be moving away from quantitative variables to qualitative variables. And

there we have basically regression with dummy dependent variables.

Now, consider an example where consumers are asked about their shopping preferences in malls,

and the impact of income on such preferences is examined. Basically, we are trying to find out

that whether shopping preferences in malls are linked with the income levels of individuals. So,

the dependent variable is whether one shops at a mall or not. The dependent variable takes value

1 if the individual or the person says ‘yes, and 0 if he says ‘no’.

The independent variable is income, which is a quantitative variable. So, we would be

considering income as stated by the individuals. The model can be written as yi equals alpha plus

beta xi plus ui. You can see that here we are so for considering only one independent variable

that is income; and i refers here to the ith individual. Now, if we take the expected value, then the

expected value y given x is the expected value; that the consumer or the customer shops at malls,

given his or her income level (refer to slide time 01:25).



So, this equals to alpha plus beta x; this measures the probability that the ith customer shops at

malls given his or her income. So, the expected value measures the probability; because as you

can see that y takes only two values 1 or 0. So, the expected value of y taking the value 1 is the

probability that the ith customer shops at malls, given his or her income.

(Refer Slide Time: 03:45)

So, generalizing a multiple regression model of the form, we would be having y equals beta

naught plus beta1 x1 and so on plus beta k xk plus u. So, you can see that we are now

considering k plus 1 independent variable. Now, the expected value of y is given x, here I would

like to mention that probably in this module and in the next module also. This small x in bold

refers to the collection of all the independent variables. Now, if I write it x, capital X then it

actually refers to the matrix consisting of all the observations and all the independent variables.

But, here possibly this small x in bold refers to one individual’s observations on all the

independent variables (refer to slide time 03:45)..

So, writing the expected value of y given x which is equal to the probability that y takes the

value 1, for given values of x, is equals to beta naught plus beta1 x1 plus beta2 x2 and so on, plus

beta k xk. Of course, we will not have the error term here. Now, this says that the probability of x

which is equal to the probability of y, given y takes the value 1 for given values of x. And this is

defined or denoted by p x small p x in bold is a linear function of the x; and it is also called the



response probability. So, ideally, this is called response probability. What is the probability that

the ith individual is going to come up with a positive response, given the values of the x s.

The multiple linear regression model with a binary dependent variable is called the linear

probability model; because the response probability is linear in the parameters beta j. Since we

are considering linear functions that is why this is called linear probability models. Later on, we

will also examine non-linear functional forms. In LPM beta j measures the change in the

probability of success when Xj changes, holding other factors fixed. That is what we are trying to

find out that if income changes of the jth individual by one unit, then how much does the

probability or the response probability changes. How much the probability changes of the person

shopping from the mall is given by delta P, y taking the value 1 for given values of x.

So, how much the probability is changing, is given by beta j multiplied by the change in the

independent variable. So, when we have a large number of independent variables, we might

consider all of them fixed except for one change that individual independent variable; say

variable jth variable is changed. And when it is multiplied by its corresponding coefficient, then

it shows that how much the probability of y taking value one changes, when the value of jth

independent variable is changed by one unit.
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So, continuing with our initial example, the intercept in LPM measures the probability that the

individual shops at malls when his income is zero. So, that is the usual interpretation of the

intercept term that if we hold the values of independent variables zero; then what is the value of

the dependent variable? Now, here the dependent variable takes only two values one and zero.

And that is why here the intercept measures the probability that the individual shops at the mall;

that is probability y takes the value one when his income is zero or the independent variable

takes a value zero. The slope coefficient estimates the change in probability of the event that an

individual will shop at malls, with a change in income.

If we write the estimated equation as y hat equals alpha hat plus beta hat x; then y hat measures

the probability of y taking unit value for a given value of x. So, y hat essentially here is the

estimated response probability. Now, we will consider another example of LPM. In a multiple

regression framework having several independent variables, where the dependent variable (inlf)

which is in the labor force takes value 1. If a woman reports working for a wage outside the

home at some point during the year, and zero otherwise. So, this is a multiple regression equation

where we will be having several independent variables; some of them are categorical, some of

them are not.

But, the dependent variable most importantly is a binary variable having a value 1. If a woman

so all the participants are women here if a woman has been in the labor force during last one year

period time; then inlf will take a value one, otherwise, it will take a value zero.
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So, suppose the estimated equation is like this (refer to slide time 09:11). You can see that the

other variables that are considered here are first of all we have the constant term; this other

income othinc refers to other sources of income. So, other income sources the family has other

than the income obtained by or income created by the woman herself. So, it is expected that

other income is going to have a negative impact on women’s labor force participation. That is if

family income is very high, then given other things a woman may choose not to participate in the

labor force. Then we have education as the second independent variable, experience as the third

independent variable.

We also consider experience square; age is the sixth independent variable or fifth independent

variable. This is kids lt6 implies the number of kids less than six years old, and kids6 implies the

number of kids between 6 and 18 years of age. Now, this is an equation that we are also going to

consider in a later module, or while comparing the linear probability model with other types of

binary dependent variable models. So, this is an important equation (refer to slide time 09:11).

Now, the thing is that given all this we have already defined the equation and presented its

estimates. The coefficients are interpreted in terms of their contribution to a change in the

probability of the dependent variable taking a unit value.

For example, the coefficient of education means that if everything else is held fixed; then another

year of probability increases the probability of labor force participation by 0.04. So, if education



increases by one unit that is by one year; because here education is measured in terms of the

number of years, one has spent on getting an education. And if it increases by one more year,

then 0.04 actually measures the probability of being in the labor force. Now, it has a positive sign

which implies that an increase in education contributes positively to the probability of a woman

being in the labor force.

Now, I have not mentioned the t values or the standard errors of the statistics. Originally, the

equation tends to have all significant variables.
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Now, note that given this expression (refer to slide time 11:57). So, we have already understood

that how LPM are constructed, how do they operate, and how the parameter estimates are

interpreted. Now, we talk about the problems with the LPMs or linear probability models. Note

that given y equals beta naught plus beta1 x1 plus beta k xk plus u that is we are considering a

multiple regression equation. Or, which alternatively can be written as yi equals beta i beta prime

xi plus ui, where beta is a vector of all parameters; and xi is the vector of all independent

variables for the ith observation.

Then, we can write ui as 1 minus beta prime xi; right simply for yi equals 1. So, when yi takes

the value 1, then taking this expression to the other side will be having ui equals 1 minus beta

prime xi. And similarly, when yi takes the value 0, then ui is simple minus beta prime xi. Hence

the error term cannot be normally distributed; rather it changes systematically with the

explanatory variable. So, this is the first problem that we encounter with the LPM that the error

terms are might not be normally distributed; because it is linked to the independent variables.

Further, the probability that ui takes the value 1 minus beta prime xi, is equal to F beta prime xi,

which is equal to beta prime xi.

Why this is so? Because you know the expected value of u yi, how do we calculate it? We

calculate it as probability yi equals to 0. The probability that yi takes the value 0 multiplied by



the value it takes which is actually 0, plus the probability of yi taking the value 1, and

multiplying the value it takes which is 1. So, this is how we calculate the expected values; and

this simply turns out to be the probability of yi taking the value 1, which is the cumulative

distribution function. We denote it by F beta prime xi. And you can see that probability of yi

when it is the probability of yi takes the value 1.

If beta prime xi refers to the cumulative distribution function, and since the expected value of yi

given x equals to beta prime xi. So, ideally, we first show that the expected value yi is equaled to

the cumulative distribution function of the probability of y, when y takes the value 1(refer to

slide time 11:57). And then since expected value yi is equaled to beta prime xi. Therefore, we

have the cumulative distribution function also taking the value beta prime xi. Now, how we are

going to use it.
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So, similarly, the probability of ui taking the value minus beta prime xi will be equal to 1 minus

beta prime xi. That is similarly 1 minus the cumulative distribution function; so that is why we

have the probability of ui taking the value minus beta prime xi is 1 minus F beta prime xi. Now,

when it comes to the calculation of the variance of ui how do we do it? We do it as probability

multiplied by the square of the values. So, the probability that ui will take a value beta prime xi

is 1 minus beta prime xi; so, 1 minus beta prime xi square multiplied by the probability.

And similarly, the probability that ui will take the value beta prime xi is actually 1 minus beta

prime xi. So, 1 minus beta prime xi multiplied by the beta prime xi square. By rearranging terms

we would find that this is equal to beta prime xi multiplied by 1 minus beta prime xi. And since

the and this would be exactly equal to expected value yi multiplied by 1 minus expected value of

yi.

Because we have seen that the expected value of yi given x is beta prime xi. So, that is why this

is equal to the expected value of yi given xi; and this is the expected value of yi given xi when

subtracted from 1. So, 1 minus the expected value of yi given xi. So, this shows that the error

terms in LPM are heteroskedastic; therefore, the OLS estimation of beta is not efficient. The

error terms are linked or the error population error variance is linked systematically with the

independent variable. So, we cannot have homoskedastic errors, when the errors are not



homoskedastic or they are heteroskedastic. Then we do not have the best estimation or best

estimators of beta. Beta is not the most efficient one.

We can estimate the original model using OLS and then use weighted least squares or WLS,

where the weights will be denoted by the wi. The weights are yi hat multiplied by 1 minus yi hat

raised to the power half; this is because as you can see that it is the error variance (refer to slide

time 15:14). Now, the estimated counterpart of this error variance will be or this is the error

variance. And the estimated counterpart of this error variance would be beta hat xi, multiplied by

1 minus beta hat prime xi. And root over this is our standard deviation of the estimated value of

the population error variance, or standard deviation estimated standard deviation of the

population error term.

So, that is why this is the weight that would be used. And by using this weight, we regress yi

divided by wi on xi divided by wi. So, both yi and xi both the dependent variable and the

independent variables are now converted or transformed rather; and then we go for this another

set of regression, which is the WLS with these transformed variables in order to have efficient

estimators.
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But, there are some more problems with LPM. So, the other problems are first of all the R square

does not have the usual interpretation in an LPM, the way we have it for the simple OLS

regression or multiple OLS regression. The second expected value of yi given xi can very well

be outside 0, 1. That is the predicted values of y can be greater than or less than zero. This

implies that probability values are more than 1 or less than 0, which is meaningless; because you

know that expected values are response probabilities. So, if expected values are the estimated or

predicted values of yi, if they are greater than 1 or less than 0; then this implies probabilities are

greater than 1 or less than 0, which is meaningless.

Consequently, yi hat multiplied by 1 minus yi hat may be negative; though for a large sample

there is little probability of having so. Therefore, yi hat multiplied by 1 minus yi hat is a

consistent estimator of the expected value of yi multiplied by 1 minus the expected value of yi,

the variance of the error term. So, what we expect LPM to be is to provide us asymptotically

efficient estimators; or we can also say that the estimator of the error variance is consistent. So,

as sample size increases, we expect that yi hat multiplied by 1 minus yi hat to be non-negative.

But, otherwise, there is always the possibility of the value yi hat taking positive greater than 1 or

less than 0 values.
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A related problem is that a probability cannot be linearly related to the independent variables for

all their possible values. For example, equation-1 predicts that the effect of going from zero

children to one young child reduces the probability of working by 0.26. This is also the predicted

drop if the woman goes from having one young child to two. So, when we go back to equation-1;

the equation having multiple independent variables. The value of this 0.26 measures the positive

probability or decline in the probability, when a woman has one more child; who young child

that is the age of the child is below six years.

Now, since it is 0.26, it implies that a woman having no child to when she has the first child; then

the probability of being in the labor force declined by 0.26. Similarly, a woman who has a single

child when she goes for the second child; then also the probability decreases by 0.26 and so on.

So, when a woman has three children and she goes for the four children, then also the probability

of being in the labor force decreases by 0.26. But, this is not probably much realistic.

Because the thing is that generally, we would expect that a woman when she has the first child,

probably the probability of not being in the labor force would be a sharp drop. But, a woman

who already has a few children or maybe one or two children, and she goes for the second or the

third child; then the probability drop or drop in the probability of being in the labor force would

be somewhat lesser. So, this is the this that is why it seems more realistic that the first small child



would reduce the probability by a large amount; but subsequent children would have a smaller

marginal effect.

In fact, when taken to the extreme, equation-1 implies that going from zero to four young

children reduces the probability of working by 0.26 multiplied by 4. So, this actually turns out to

be 1.04, which is impossible. So, if we go straight away from one to four children, the number of

kids less than six years of age, when increases from zero to four; we would be multiplying 0.26

by a number 4. And would be getting a probability or change in probability by 1.04.

(Refer Slide Time: 23:28)

So, let us take another example. Suppose the dependent variable measures whether a firm pays

dividends or not, yi equals to 1 when the firm pays dividends; while the dependent variable is

market capitalization that is measured in terms of millions of rupees (refer to slide time 23:28).

And yi takes value 0, when the firm does not pay dividends. Suppose OLS estimation returns the

following equation. We estimate this model and have yi equals minus 0.3 plus 0.012 xi. Now,

where yi hat measures the estimated probability that firm i will pay a dividend. The model

suggests that for every 1 million rupees increase in firm size, the probability that the firm will

pay dividends will increase by 1.2 percent.



Similarly, a firm with a market capitalization of 60 million will have a probability of 0.42 to pay

dividends. This how we obtain? Because you can see that here the value of xi is 60 million. So,

we are having 60 million here, 60 million multiplied by 0.012 minus 0.3 gives us this value 0.42.

So, the probability of a firm having a having market capitalization value worth 60 million rupees

is 0.42; that the firm will pay dividends. But, the problems are any firm with a market

capitalization of 25 million or less, and 108.33 million or more will have probabilities below 0

and above 1 respectively.

So, if we put 25 million here or any number other than 25 million, any number lower than 25

million; then we will be having yi value that is less than 0, and 108.33 million is the upper

threshold limit. So, for any value of x which is greater than 108.33 million, our yi hat value will

be greater than 1. So, we encountered the problem of having predicted probabilities, which are

either less than 0 or greater than 1 which are meaningless.

(Refer Slide Time: 25:45)

One solution is to truncate the probabilities at 0 and 1. But, the problem will be that there could

be too many firms with the probability of dividend payments at 0 and 1. So, instead of

considering 0, below 0, and greater than 1 probability, we all truncate them at 0 and 1. So, all

firms having estimated probability greater than 1 are assigned a value 1, and all firms having

estimated values less than 0 are assigned value 0. But, then the problem is that there could be too



many firms having probability 0, and all big firms would pay dividends with 100 percent

certainty; which is certainly not the case. In order to handle such problems, our logic or profit

specification can be used.

So, these are the problems with LPM, and in order to handle this kind of problem that

probabilities getting into negative values. We would be using alternative models and some of the

simplest possible and the most common type of dependent variables. Binary dependent variables

are a common types of models with binary dependent variables is probate and logic models.

(Refer Slide Time: 27:03)

But, there is certain usefulness of LPM. Even with these problems, the linear probability model

is useful and often applied in economics. It usually works well for values of the independent

variables that are near the averages in the sample. So, if the sample is not very diverse, the

majority of the sample observations are around the average values. Then probably we would not

encounter the problem of having estimated probabilities below 0 or greater than 1.

So, if only a few observations, for example, the sample from which the estimated equation was

reported for women being in the labor force or not, had 96 percent of the women having most of

the values around the average. So, which implies that only 4 percent of the values were outliers,

and probably their predicted probabilities would be less than 0 and greater than 1. So, those 4



percent can essentially or can be easily removed from the sample. And one can work with 96

percent or for 96 percent of the results; we would be getting desirable results. So, in that case,

LPM could well be applicable. Predicted probabilities outside the unit interval are a little

troubling when we want to make predictions.

Still, there are ways to use the estimated probabilities to predict a zero-one outcome. Suppose, yi

hat denotes the predicted or fitted values, which may or may not be bounded between zero and

one. So, define a predicted value as yi tilde equals to 1, if yi hat takes a value greater than equal

to 0.5. And yi tilde takes a value 0, if yi had values are less than 0.5; so, we are these are our

estimated probabilities. So, estimated probabilities are assigned values 1, when the value is

greater than equal to 0.5; and all the estimated values are assigned a value 0, whenever, the

predicted probabilities are less than 0.5.
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Now, we have a set of predicted values yi tilde that like the yi are either 0 or 1. So, my original

values are original series the dependent variable had only values 1 and 0. And now my predicted

values are also 1 and 0, because I am not using the estimated predicted values; but, I am have

coded them. And now I am using yi tilde. We can use the data on yi and yi tilde to obtain the

frequencies with which we correctly predict yi equals 1, and yi equals 0; as well as the

proportion of overall correct predictions. So, next what we do is matching that is if my yi tilde is



1, then we cross check that whether corresponding to this i, my yi was also equal to 1 or not. And

on that basis we actually arrive at a goodness-of-fit measure; so this is called the percent

correctly predicted.

The closer or the higher the value, it implies the better is the estimate. So, if roughly I observe

that 98 percent of the time, when yi tilde takes a value 1, yi is also 1. Then it implies that the

model is able to somewhat correctly predict the possible outcome in terms of 1 and 0 value. So,

the latter measure, when turned into a percentage is a widely used goodness-of-fit measure for

binary dependent variables; and it is called the percent correctly predicted.

So, that is all about the linear probability models. In the next module, I will be discussing profit

and logic models, which are supposed to take care of some of the problems that we encounter,

while dealing with LPM. Thank you.


