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Hello, and welcome back to the course on Econometric Modelling. This is Module 26.
Module 26 is part of univariate time series modelling, where we are first going to deal with
AR, MA & ARMA processes. So, AR stands for autoregressive processes, MA stands for

moving average processes and ARMA stands for autoregressive moving average processes.

There are two modules, which would be devoted to this topic, but here in this module, I will
be primarily dealing with MA processes that are moving average processes followed by an

introduction to autoregressive processes as well.



(Refer Slide Time: 1:07)
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Introduction

¢ Univariate time series models are a class of specifications where one
attempts to model and to predict variables using information contained
only in their own past values.

* Univariate time series models are useful when a multivariate model is
inappropriate or inapplicable because of a lack of availability of data on
relevant variables or availability of data with similar frequency.

¢ Further, multivariate models could also be inconvenient to use for out-of-
sample forecasting.

* These observations motivate the consideration of univariate or pure time
series models.
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So, univariate time series models are a class of specifications where one attempts to model
and to predict variables using information contained only in their own past values. So, we do
not consider any other variable that is why it is called univariate modelling. And, of course,
univariate modelling is applicable to my understanding only to time series data, because there
we are trying to find out whether this series itself contains information that the information

which could be extracted from its past values or past observations.

Univariate time series models are useful when a multivariate model is inappropriate or
inapplicable because of a lack of availability of data on relevant variables or availability of
data with similar frequency. Because for instance, if we are going for a large-scale
macroeconomic aggregate model, then it is quite possible that sometimes, relevant data on

some of the variables are not available.

The second point is that at times the frequency does not match. For example, if we
specifically plan to work with very high-frequency data, for instance, daily stock prices, then
there are very few economic or financial data available, which are available at such high

frequency. So, as a result of which sometimes it is useful to consider a univariate series only.

So, that the series itself tries to look back at its previous values and we try to find out whether
it contains useful information or not. Further, multivariate models could also be inconvenient

to use for out-of-sample forecasting. Out of sample forecast basically depending on the setup,



you would need information on all the variables for a certain period, which might not be

possible, and in that case, this would also be inapplicable.

And finally, these observations motivate the consideration of univariate or pure time series
models. Since they do not have any cross-section element in them that is why they could be

called pure time series models.

(Refer Slide Time: 03:37)
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White Noise Process

A white noise process is one with no discernible structure. It is defined
as the process that fulfills three conditions:

* E(y) = is constant &

. ng() ) F—t g? o COZSZ ?snconstant and LN
Yt 4l ) >0

« Cov(yys) =0 Vt#s

* If u =0, the process is known as a/zero mean white noise process.

G (1) =0
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A White Noise Process is one, with no discernible structure. So, before I start talking about
the univariate time series model it is important to define the white noise process. We are
already now familiar with white noise processes, but the only difference is that probably we

have not used that terminology.

So, it is a process with no discernible structure. It is defined as the process that fulfills three
conditions. The first one is that it has a constant mean. The mean could be p, the mean could
be 0, if the mean is 0, then we call it a 0 mean white noise process. The variance is a constant

term a finite and constant variance it must have that is (refer slide time: 4:26).

So, this is a white noise process. Given this definition, you could understand that so far, the

way we have defined the population error terms, which is normally distributed with mean 0

. 2 o .
and a constant variance o and we also assume that (refer slide time: 5:00), then this implies



that the error term is a white noise process. That is why I say that we are already familiar with

white noise processes, but probably we have not used the term white noise process.

(Refer Slide Time: 05:29)
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Moving Average (MA) Processes

* The simplest class of time series model that one could entertain is that
of the moving average process.

+ let uy(t=1,2,3,...)beawhite noise process with
Mf(ut) =0 and
\/l/ar(ut) =g?
* Theny, = pu+up + 01—y + 0+ + Ggu-g
is a thﬁmmmﬁﬂq)‘ This can be

expressed using sigma notation as

o=kt Doy bt e )
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Now defining moving average processes: The simplest class of time series model that one

could entertain is that of the moving average process. (Refer slide time: 5:40).



(Refer Slide Time: 06:23)

Moving Average (MA) Processes

* A moving average model is simply a linear combination of white noise processes,
so that y, depends on the current and previous values of a white noise
disturbance term.

* This equation could be rewritten with the help of lag op@where Ly: =v:24
1
L

denotes that y, is lagged once. :”01{, 9

* In order to show that the ith lag of y, is being taken (that i%; eéaluethatyt took

i periods ago), the notation would be L'y, = y,_;.
+ Using the lag operator, the above equation can .bfe rewritten as:

Ve :Ju + E:L](G,Lm+ Up K JL {/i{' ~ MQ’L
v Oras  ye=p+0(lu

* Where 6(L) =14 6,L+0,L" + -+ 6,19
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A moving average model is simply a linear combination of white noise processes so that Y,

depends on the current and previous values of a white noise disturbance term. This equation
could be rewritten with the help of the lab operator where (refer slide time: 6:42). So, this L is

called the lag operator and the power of L basically refers to how many lags are there.
In order to show that the (refer slide time: 7:06). So, this is the usual thing that we have.

Ideally, we should have (refer slide time: 7:51).



(Refer Slide Time: 08:28)
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Moving Average (MA) Processes

* Insome books the lag operator is denoted by B and is called a backshift operator.

* In the subsequent discussions, the constant is dropped from the equation to ease
out the complexity of the algebra involved without any loss of generality.

+ Consider an MA (2) process as  y, = u; + 01— + 85u;—,

* Where u is a zero mean white noise process with constant variance as stated

above.
* Therefore,  E(y;) = E(ur + 01—y +651,-5) =0 @t* 5@;)("}}@)}
* since £ (u)=0 if_f—"_—’ ; N

Var(y,) = E(J’t}’t) E(ug 6y + Bzut-z)(“M]
= E[u + 02l 1+82ur_2+
|
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Moving Average (MA) Processes

+ A moving average model is simply a linear combination of white noise processes,
so that y, depends on the current and previous values of a white noise
disturbance term.

* This equation could be rewritten with the help of lag op@where Ly: =v:q
L

denotes that y, is lagged once. _%{ N

* In order to show that the ith lag of y, is being taken (that i%; eéaluethatyI took
i periods ago), the notation would be L'y, = y,_;.

* Using the lag operator, the above equation can be rewritten as:

2
=¥#+E?=]£9.z‘”ut )t U ol U,

v Oras  y=p+0(Luy
* Where (L) = 14 0,L + 0,17 + -+ 0,19
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In some books, the lag operator is denoted by B and this is also called the backshift operator.
In the subsequent discussions, the constant is dropped from the equation this constant p is
dropped from the equation to ease out the complexity of the algebra involved without any
loss of generality. So, now we consider first of all an MA (2) process. So, MA (2) process is

written as (refer slide time: 8:54- 9:50).

Since this is equal to 0, this is equal to 0, we are left with only the expected value of Y,

multiplied by the expected value of Y, Then we substitute ytwith this expression. What are



we left with? (Refer slide time: 10:04). So, all the cross products are here, which I have not

mentioned separately.

(Refer Slide Time: 10:26)
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Moving Average (MA) Processes
* E[cross products)=0 because _Cﬂ(ut.—us)=/0‘v’u=§
+ Therefore, Var(y,) @ a?[1+ 6% 462
+ For an MA (g) process it will be
Var(y,) =y = o?[1+4 67 + 62 + -+ 6}
* Auto-covarianceat lag 11s,
v = E[(y = EGO) (=1 = EGe - )] = EGrye - )
+ Since E(y,) = E(y;-1) =0
Y1 = E[(ug + 01wy + 02U ) (g + 011, + 6, 36,)]
= E[6, u}_; +6,0,u?_,] [sinceall cross products = 0]
= (6, + 0,,]0”
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A
Moving Average (MA) Processes

* Insome books the lag operator is denoted by B and is called a backshift operator.

* In the subsequent discussions, the constant is dropped from the equation to ease
out the complexity of the algebra involved without any loss of generality.

+ Consider an MA (2) process as  y, = u; + 01— + 85up—,

* Where u, is a zero mean white noise process with constant variance as stated
above.

* Therefore,  E(y;) = E(u + 6111 +6515) = 0 @t* 5@@(}3&6@4)}
* since £ (u)=0 ‘\Lff—"—/ ; N

Var(y,) = E(yeye) = E[(ue 01—y + Opup-2) (e 6, + Ba05)]

= E[u? + 02ul | +03ul_, + tross pr(;ducts
oy By o o
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And the reason is that the expected value of all cross products is equal to 0 because u, is a

white noise process, so that is why the current and the previous observations are not

correlated with each other. So, (refer slide time: 10:40).
As a result of this (refer slide time: 10:49- 11:30).

(Refer Slide Time: 11:29)
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Moving Average (MA) Processes
* E[cross products) =0 because W
* Therefore, Var(y,) a?(1 +_912i_922’]_7
* Foran MA (g) process it will be
Var(y,) = yo = o?[1+ 67 + 62 + -+ 67
* Auto-covariance at Iagl is,
n= E[(Yt ) (e = EQ, - 1))] =E(yy. - 1)
v Since E( t) E(y,_,) “0. T
"= E[(“t + Hlut 1+ 0pu; 2)(ut 1 101U, +0u,_56))]
= E[6, u[ o+ Blezu[ 2] [smce all cross products = 0]
=[0,+0 92]
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Now, we consider, for an MA (q) process, this is the variance. Now, we consider

autocovariance. Auto covariance between autocovariance at lag 1 of the series Y, and not Uu.
So, the autocovariance at lag 1 is denoted by y g So, you can see that y 0 refers to basically,

autocovariance at 0 lag, which is equivalent to the variance.

Now, autocovariance at lag 1 is y » which is again, this expression. This is equal to 0, this is

equal to 0, so what I am left with is (refer slide time: 12:12). And what we have is, first of all,

again, I am going to drop out all the cross products.
So, (refer slide time: 12:31).

(Refer Slide Time: 13:00)
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Moving Average (MA) Processes

o Similarly, y, = E(ypYe-2)

= E[(u; + 6yupy + g}ft—z)(ur-z + 0yup-3 + Oy )]

= E[bpuf ] = 6,0° T
*Andyy =0 - -
* S0,)=0 forall s > 2 for an MA(2) process.
o« Andy, = [0+ 054,0; |02 for s <2

* Generalizing, for an MA (q) process
Vs = (05 + 0101 + Ossnby + 40, 6,5)0>  fors=1,2,...,¢

—

720 otherwise (fors>q) h
- ‘jé 1‘9—:.
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Similarly, Y, we have started with an MA (2) process. So, similarly, Y, (refer slide time:

13:07- 14:58).

(Refer Slide Time: 14:57)

Autocorrelations for an MA (2) Processes

* The autocorrelation at lag O is givenby 7y = 1—" @
S (I

e m———

* The au\tyrelation at lag 1is given by

v
=ﬂ — [91+9192]02 — (6,+6,6,]
1 oy 02[1+912+£§] [1462+62)
* The autocorrelation at lag 2 is given by

v

ﬁ\/= 0,0? _/ 8
Y o2[1462+62] (1467462

.T2=

* Higher order autocorrelations are all 0; i.e. 7, = $ =0 Vs>2

—— 0
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Now, we consider the autocorrelations for the MA (2) process. The autocorrelation at lag 0 is
given by 1 because correlation has covariance divided by the variance. So, covariance and
variance both are the same at lag 0 and that is why this is equal to 1. The autocorrelation at

lag 1 is given by Y, that is autocovariance at lag 1 divided by variance.



So, this is autocovariance at lag 1, this is variance, and this is what is my T L which measures

the autocorrelation. Similarly, the autocorrelation at lag 2 is given by autocovariance at lag 2
divided by again the variance and this is what we observe. So, for all higher-order

autocorrelations, we have this is equal to 0 because Y, is equal to O for S greater than 2 when

we are dealing with an MA (2) process.



(Refer Slide Time: 15:58)

Plot of Autocorrelation Function for A Sample MA(2) Process

* Suppose, B;=-05 and 6, =
025, ——— ]

¢ Substituting these into the
formulae, gives the first two
autocorrelation coefficients as

1, = —-0476and 7, = 0.190. : #
* Weknowthatty=1landz, =0 ‘I \7 /1 =t ¢
for all s >2.

* The autocorrelation function (acf) | @
plot will appear as shown in the e
figure.

NPEL ONUNE
. Lol CERTIFCATION COURSE

Autocorrelations for an MA (2) Processes

* The autocorrelation at lag O isgivenby 7y = fo @

_h

e ——

* The auto/couelation atlag 1is given by

16\
h= }'Q/_ 02[1+912+£§] T (1403463
* The autocorrelation at lag 2 is given by

v
. _n_ (61 +6, ;)0 _ [6:46:6,] .

. 7,= 72\/_ 92‘72 _ b,
2= 0 T o2[1462+62]) ~ ([1467+62)

* Higher order autocorrelations are all 0; i.e. 7, = ? =0 Vs>2
~— Yo
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Now, if we plot the autocorrelation functions for a sample MA (2) process. Suppose (refer

slide time: 16:06).

So, we are substituting the values of 91 and 92 in these expressions. And we are getting these

values, so we know that autocorrelation at lag 0 equals to 1. Then at lag 1, we have -0.476
this observation, at lag 2 we have 0.190. For any other higher-order lags, this is we are having

all 0 autocorrelations.



So, this is a plot of the autocorrelation functions of an MA process with the specific values of

91 and 92. For different values of 91 and 92 you would be having different patterns of

autocorrelations for an MA (2) process. The autocorrelation function or ACF appears as

shown in this figure.

(Refer Slide Time: 17:28)

Moving Average (MA) Processes
The distinguishing properties of a moving average proces§7@d_er_q_aﬂre
(MEQ) =
(2)var(y,) =y = (1+ #67 + 67 + -+ 67)0?
(

I ——

(3) covariance, y; = (I + Jg410; + D00, + -+ I ) 0 fors=1,2...,q_

0 fors>q

So, a moving average process has constant mean, constant variance, and auto-
covariances which may be non-zero up to lag g and will always be zero thereafter.
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The distinguishing properties of a moving average process of order q are. First of all, (refer

slide time: 17:36).

So, a moving average process as constant mean, constant variance, and auto covariances may
be non-zero up to lag g and will always be zero thereafter. But one thing that we need to
mention or observe here is that a moving average process is actually not estimable in reality,
because all your independent variables in a moving average process are the population errors

and their lag terms.

Now, how if population errors are not observable then how am I going to utilize them? But,
of course, there are statistical packages that are designed to estimate moving average
processes. Other than that, moving average processes help us in getting in useful information
and insights about other related processes, for example, an autoregressive process. So, next,

we are going to first introduce the autoregressive process.

(Refer Slide Time: 19:02)
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Autoregressive (AR) Processes

* An autoregressive model is one where the current value of a variable, y,
depends upon only the values that the variable took in previous periods
plus an error term. An autoregressive model of order p, denoted as
AR(p), can be expressed as

Ve= BT 0 T aYi-at ot OpYip

* Where u, is a white noise disturbance term.

* Equation (1) can be rewritten as

Ye=pA DL oYt = D ol Yt ()
* O gLy =ptu
» WhereTisthe lag operator and (L) = 1= ;L — g,L? = = g, LP

(1)
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An autoregressive model is one, where the current value of variable y depends upon only the
values that the variable took in the previous periods plus an error term. An autoregressive
model of order p denoted as AR (p) can be expressed like this. So, this is a structure you are
somewhat familiar with as of now, because I have already discussed autocorrelation, and

there we had introduced AR (1) models up to ARP models.
Now, here u 1s a white noise disturbance term. So, u, t has a constant mean, constant

variance, u, most often has a 0 mean constant variance and no autocorrelations. Now,

equation 1 can be rewritten again like this, and from there with a lag operator, and finally,
something like this, where the lag operator has already been explained and ¢ (L) the lag

operator where this is equal to this expression.



(Refer Slide Time: 20:04)

Autoregressive (AR) Processes

' To explain the implication an Realizations of Two AR(1) Processes
AR process has, let is
simulated realizations with

consider an AR (1) process
et
two alternative values of 3 ;

suchasy, =+ @yp_q +u;

where u;~N(0,0%).

G=08angp=0%and
they are plotted-agaifist time )

* Suppose, we obtain 150
as shown in the figure. A S R ™ S S

focesses

Autoregressive P
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To explain the implication an AR process has, let us consider an AR (1 ) process such as
(refer slide time: 20:12). Suppose we obtain 150 simulated realizations with two alternative

values of (refer slide time: 20:26).

Now, what it shows is that the modulations or the fluctuations in the series with ¢ = 0.95 is
more persistent in the sense when it is going up, it is actually going up for a longer period of
time when it is going down also for a longer period of time. So, as a result of which the peaks

and the troughs are most often more acute compared to a series with ¢ = 0.4 .



(Refer Slide Time: 21:18)

|
Autoregressive (AR) Processes
* The diagram shows that the fluctuations in the AR(1) series with parameter
¢ = 0.95 are much more persistent than those of the AR(1) model with ¢ =
0.4.

* This implies that the AR(1) models are capable on indicating the persistence of
univariate time series.

*An AR(1) process can be converted into an infinite MA process. To show that,

Y

* By subsfituting backward for Iagge values of\y’s 'on the B
we obtain \
)

: yt=ug+<l?}‘t;1,ﬁ\<ﬁf%-z+'_"=_u:(1+<ﬂL gt ) = g

|

|
|
[
|

NPTEL OHUNE
. L) CERTIACATION COURSE

So, the diagram shows that the fluctuations in the AR (1) series with parameter ¢ = 0.95
are much more persistent than those of the AR (1) model with ¢ = 0. 4. This implies that the
AR (1) model is capable of indicating their persistence of univariate time series. An AR (1)

process can be converted into an infinite MA process.

To show that, let us consider an AR (1) process without the mean. So, again, we are
excluding the mean for the sake of simplicity or to avoid the complexity of calculations.
Now, by substituting backward for the lagged values of y's on the right-hand side of equation

3, what do you obtain.
First of all (refer slide time: 22:06- 23:04)

This moving average representation for Y is convergent if and only if the mod value @ is less
than 1. Because if the mod value of ¢ is greater than 1, then you can see that first of all, by

convergent we mean that if I look at this series not instead of this expression, you can see that
. . . 2
if the mod value of i is greater than 1 then as time goes back the value of ¢ actually keeps

. . 2 3 4 . .
on increasing, @ , @ , @ . So, even if ¢ is a negative number, then, as we go back then the
modulations will be like of greater dimensions around the axis. If ¢ is a positive number,

then also we will be having ¢ probably going up or the series is going upward. So, as a result



of which, this is actually in order to have the series convergent, we must have a mod value of

@ less than 1.

(Refer Slide Time: 24:12)

Autoregressive (AR) Processes

* This moving average representation for y is convergent if and only if || < 1.
. e . . N N,
This is called the condition for covariance stationarity of the AR(1)'series.
* Alternatively, this condition states that the inverse of the root of the

autoregressive lag operator polynomial be less than one is absolute value.

* In Module 24, we derived the variance of an AR (1) process |- ?L © A
L3

) _ ) 2
U = pui_ﬂi Var(u,) = P whereg = Var(et)

2

« Similarly, the AR(1) model described in equation (3) will have

2
Var(yt)-g—wwherea =Var(u) and v, is a white noise

process.
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This is called the condition for covariance stationery of the AR (1) series. Alternatively, this
condition states that the inverse of the root of the autoregressive lag operator polynomial be

less than one in absolute value. So, (refer slide time: 24:32).
Similarly, the AR (1) model described in equation 3, will have (refer slide time: 25:15).

(Refer Slide Time: 25:30)

Autoregressive (AR) Processes
*+ To find the autocovariances of lag 7, we multiply both sides of the AR(1)
process of equation (3) by y, .,
YeVe-1 = PYe-1Ye-r t WeYer
v For > EYier) = PE(-1Yeer) + Eye) = @ ore-1)
+ This is called the Yule-Walker equation; since, it is a recursive equation, it

helps us in determining the entire autocovariance sequence if y; is known to
2

us. Since, yo =Var(y,) = ﬂ— v

yl 1¢2’ ¥ = @andsoon

. Generalizmg, Yy = —2 1=012,.

NPTEL OHUNE
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Autoregressive (AR) Processes
* The diagram shows that the fluctuations in the AR(1) series with parameter
@ = 0.95 are much more persistent than those of the AR(1) model with ¢ =
0.4.

* This implies that the AR(1) models are capable on indicating the persistence of
univariate time series.

* An AR(1) process can be converted into an infinite MA process. To show that,
let us consider an AR(1) process without the mean:

Y (3)ﬂ Yoz Oyl el
* By subsfituting backward for lagged|values ofly’s ‘on the RH ion (3),
we obtain 7 — o

=g Aot = w4l gl ) = 20 ()
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To find the autocovariance of lag t, we multiply both sides of the AR (1) process of equation
3. So, this was my equation 3, which is simply an AR (1) process. So, we multiply both sides
of it by (refer slide time: 25:47- 26:37). This is called the Yule-Walker equation; since it is a

recursive equation, it helps us to determine the entire autocovariance sequence if Y, is known

to us.
Now, we know that (refer slide time: 26:50- 27:39).

(Refer Slide Time: 27:38)

Autoregressive (AR) Processes
* Dividing the autocovariances by y, gives the autocorrelations as

p(r)=¢" fort=0,1,2,.. ™~
——
* Note that the autocorrelations gradually decay which is typical of

AR processes. If ¢ is positive, the autocorrelation decay is one-
sided. If ¢ is negative, the decay involves back and forth

oscillations. \ g( (

* The general pth order AR process as shown in equation (2) and in its
lag operator form e(L)y; = p+u, Where L is the
lag operator and (L) = 1 — gy L — @, [* =+ = PpLP s

covariance stationary if and only if the inverse of all roots of the
@(L) lie inside the unit circle.
ey e —————

NPTEL OHUNE
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Autoregressive (AR) Processes

* To find the autocovariances of lag 7, we multiply both sides of the AR(1)
process of equation (3) by y, .,
YtVe-r = PYe-1Yt-1 + UeYe-r
v Forr>l EYier) = EQoYir) + EYey) -@ Wer
+ This is called the Yule-Walker equation; since, it is a re\curswe equation, it
helps us in determining the entire autocovariance sequence if y, is known to

2
us. Since, y, = Var(yt) a— v 3
—_— 1-¢? ; L &
1= 97 (pzf 2’3 and so on. “)0
. Generallzmg, Y = (p — r—_gfl_g__a
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Dividing the auto covariances by Y, gives us the autocorrelation as p (t). We are denoting the
autocorrelation here by p (t) where (t) refers to the lag between the two observations. And

this is equal (pT to for all the (t) equals 0, 1, 2 and so on, you can simply see that this is my

denominator always, variance, that is y o

(Refer slide time: 28:10). Note that the autocorrelations gradually decay, which is typical of

an AR (1) process. If @ is positive, the autocorrelation decay is one-sided.

So, it decays like this. The autocorrelation function looks like this. If ¢ is negative the decay
involves back and forth oscillation. So, if ¢ is negative then the decay would be something
like this. But, of course, what we need is that ¢ to be less than 1 because if ¢ is greater than

1, then we will not have decay, and we will not have convergent series.

h . . o .
The general pt order AR process, as shown in equation 2, and in its lag operator form this is

like this, (refer slide time: 29:24).

So, so far, we are dealing with AR (1) model then we gave some examples with AR (2)

model. Now, talking about the ARP model which has already been introduced. And we are

: . th )
just now trying to talk about what makes a p order AR process convergent or covariance

stationery. So, the requirement is that the inverse of all the roots of these polynomial lag



operators should lie inside the unit circle. Alternatively, all the roots of this polynomial lag

operator should lie outside the unit circle.

So, that was about ARP process, just an introduction. We will continue more with the ARP
process the derivation of its further characteristics and then with the ARMA process that is

autoregressive moving average processes in the next module.

(Refer Slide Time: 30:49)
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These are the references I have consulted. Thank you.



