
Econometric Modelling
Professor Sujata Kar

Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture 16
Omitted Variables and Parameter Stability - II

(Refer Slide Time: 00:11)

Hello everyone and welcome back to the course on Econometric Modelling. This is Module 16.

(Refer Slide Time: 00:44)



In module 15 we have discussed the problem of Omitted Variable; Module 16 also continues

with that but once we have discussed model misspecification in terms of omitted variables and

measurement error this module basically checks or suggests the corrections that need to be made

in order to control this kind of model misspecification problems. So, first of all, we introduce

proxy variables.



(Refer Slide Time: 01:02)

Proxy variables or PVs are used only when there is an omitted variable problem, but not in case

of measurement error. If we know that the error term is not uncorrelated with x, then we use

proxy variables. Continuing with the previous examples, that is the example that we discussed in

the context of omitted variables that if we have an equation or if log which is dependent on

education and ability and in case, we do not include the ability in the expression.

So, we know that , or if we denote ability by z this is omitted, and the error term𝑧 = 𝑎𝑏𝑖𝑙𝑖𝑡𝑦

becomes . So, my original model was (refer slide time: 1:50). Now, z is not observed andγ𝑧 + 𝑢

that is why the entire thing becomes my error term. If we can proxy ‘ability’ with IQ scores say,

and we denote it by , which is a proxy variable for z, then will work under two conditions.𝑧* 𝑧*

So, first, this is my original model and the original model should fulfill this condition (refer slide

time: 2:36). So, both original ability and education were uncorrelated to the error term.



(Refer Slide Time: 02:48)

Now, to include the proxy variable, we need to have basically three additional assumptions. The

first assumption is that (refer slide time 2:56).

So, the proxy variable additional to the x and z variables is also uncorrelated to the error term.

The second assumption is that (refer slide time: 3:12). This implies that there is a linear

relationship between the proxy variable and the variable which is omitted, that is here in this case

ability and IQ score. So, IQ score explains ability in a linear format where because ifθ
1
≠0

then this implies that IQ score does not explain the ability.θ
1

= 0

So, has to be non-zero in order for to qualify as a proxy variable or PV. And the thirdθ
1

𝑧*

assumption is that (refer slide time: 4:00). This assumption basically says that once that is IQ𝑧*

score is controlled for education or x measuring education does not affect ability anymore.

Alternatively expected value of ability given education and IQ is equal to the expected value of

ability given IQ, which is equal to (refer slide: 4:32). So, this actually may not seem very

realistic or that may vary from situation to situation, but then this actually can be a close

approximation to reality.

(Refer Slide Time: 04:49)



Now, this is our population model again, to begin with (refer slide time: 4:54).

Now, (refer slide time: 5:02). So, I am taking the expected value of y, we are having the expected

value of z equals to (refer slide time: 5:33) and that is why it is replaced here.

And then by collecting terms we have (refer slide time: 5:43). So, this is called the plug-in

solution for omitted variables. The coefficient of a proxy variable can't be interpreted as that of

ability. The intercept also changes, but the advantage is that the coefficients of other regressors

remain unchanged, or we get good estimates of the other parameters.

So, we can see that remains unchanged, though of course the parameter estimate of .β 𝑧* = γ

And as a result of which because in order for to qualify as a proxy variable has to be𝑧* θ
1

non-zero and if is non-zero then . As a result of which we do not have an estimate ofθ
1

γ≠γθ
1

ability given by the alternative proxy variable, which is IQ score.

And our intercept term also changes, but most often we are more concerned about the parameter

estimates of the other regressors. So, the longer the other regressors tend to have unbiased and

consistent estimates there is no problem, so proxy variables can be used. Now, we talk about the

other tool used to take care of both omitted variables and measurement error problems and that is

instrumental variables.



(Refer Slide Time: 07:17)

Instrumental variables are applicable to the problem of omitted variables as well as measurement

error. Let us first consider the omitted variable problem, where this is our original model for

estimation z say ability is omitted for not being observable. If x and z are correlated then the

estimation of (refer slide time: 7:37) gives us biased and inconsistent estimators, because you can

see that this will be our error term and the error term will be correlated with x because x and z

are correlated.

So, we cannot have unbiased and consistent estimators that have already been discussed in the

previous module. But (refer slide time: 8:01) is still estimable if we can find an instrument for x

that is a variable, say mother’s education, so remember x was the education of the individual.

Now, we are trying to find an instrument for the variable x. Suppose it is the mother's education

and we denote it by such that (refer slide time: 8:25).𝑧*

What I want to mean is that this is my error term. So, when I am replacing x, instrumental

variables replace the existing regressor. So, unlike proxy variables it does not have the original

regressor, it completely replaces the original variable. So, now instead of x will be having (refer

slide time: 8:53).



Now, of course, this has to be uncorrelated to u that is our classical linear regression𝑧*

assumption then we must have z and also uncorrelated because you remember that our error𝑧*

term contains the ability also. So, this is , so it has to be uncorrelated to u it has to be𝑢 + γ𝑧

uncorrelated to z in order to give unbiased and consistent estimators of .β

And we also must have x and correlated because we are actually finding an instrument for x so𝑧*

unless and until x and are correlated, thus purpose is not served. So, this is called instrument𝑧*

relevance and this assumption is called instrument exogeneity. So, the instrument must be

exogenous, but the instrument also must be relevant; relevant in the sense of an instrument that

can replace x. So, it is, if it is completely uncorrelated to x then it cannot be used as an

instrument for x.

(Refer Slide Time: 10:09)

So, for the observed model (refer slide time: 10:13), we will have covariance between (refer slide

time: 10:18), which is one of the classical linear regression assumptions that must the

instrumental variable, , fulfill.𝑧*

As a result of which, we have (refer slide time 10:39- 11:10)

(Refer Slide Time: 11:10)



It should be noted that cov ( cannot be proved, it is an untestable assumption, because𝑧*, 𝑢) = 0

u is population error and population error is not observed. So, whether cov ( or not𝑧*, 𝑢) = 0

that cannot be proved. However, the covariance between cov ( can be proved by𝑥, 𝑧*) ≠ 0

running a regression of x on such that x is a linear function of .𝑧* 𝑧*

And we have this you know the format, (refer slide time 11:45). Now, is important becauseθ
1
≠0

otherwise, x will be completely unrelated to . Now, if cov ( is very small then we have a𝑧* 𝑥, 𝑧*)

poor instrument.

If cov ( , the deviation from will be large because then (refer slide time: 12:11).𝑧*, 𝑢) ≠ 0 β

Now, you can see that if this is not equal to 0 then what we are saying is that deviation from β

the parameters will be large.

(Refer Slide Time: 12:55)



We are now going to prove that, therefore if cov ( t then the sample analog of (refer slide𝑧*, 𝑢)≠0

time: 13:06-13:21)

The important difference between proxy variables and instrumental variables is that proxy

variable are included in place of omitted variables alongside the independent variables like x,

while instrumental variables replace x. And second thing is that once a proxy variable say, , is𝑧*

included, we want cov ( , while if the instrumental variable is then we want cov (𝑥, 𝑧*) = 0 , 𝑧*

.𝑥, 𝑧*)≠0



(Refer Slide Time: 13:53)

Now, we consider instrumental variables in multiple regression. Suppose y is wage or log of

wage, is experience, is education and u is the error term which also includes the omitted𝑥
1

𝑥
2

variable ability. Therefore, this is our model where this model also includes the omitted variable.

The error term also includes the omitted variable where is correlated with you and we assume𝑥
2

that that is education is correlated with the omitted variable, which is the ability, and as a result𝑥
2

of which is correlated to the error term.𝑥
2

We need an instrumental variable for say z such that covariance between u and z is equal to 0.𝑥
2

In the population, we must have as a linear function of the existing regressor or the other𝑥
2

regressor that is plus the instrumental variable z. So, it is not important whether we have this𝑥
1

one equal to 0 or not, but this has to be not equal to 0, otherwise z cannot be an instrument for .𝑥
2

This holds true even if the effect of is partialled out. There are 3-moment conditions. Moment𝑥
1

conditions are equivalent to OLS first-order conditions. So, the 3-moment conditions we have

because we have one constant term, one independent variable , and one independent variable z𝑥
1



or instrumental variable z. So, as a result of which we have 3-moment conditions (refer slide

time: 15:32).

(Refer Slide Time: 15:40)

So, the moment conditions are true in the population their sample analogs are given by this. So,

this is equivalent (refer slide time:15:50- 16:07). So, these are basically the three-moment

conditions and their sample analogs.

(Refer Slide Time: 16:15)



Suppose there is a measurement error in the independent variable such that the true model (refer

slide time: 16:19). So, so far, we were talking about omitted variable problems, now we will talk

about the use of instrumental variables in the context of measurement error. So, if measurement

error is there in the dependent variable, but it fulfills the assumptions of the classical linear

regression model then we have noticed that there is actually no problem because the estimates

are unbiased and consistent.

Now, the problem is there if we have a measurement error in the independent variable. So, we

observe (refer slide 16:57), is my original value or variable. (Refer slide time 17:07-17:54).

Therefore, we need an instrument for x.

(Refer Slide Time: 17:56)

Suppose x is household savings given by husbands and x delta is household savings given by

wives, (refer slide time: 18:05). So, now you remember that is actual household savings. So,𝑥*

one such measure we were taking from the husbands, which were denoted by x and (refer slide

time: 18:29). So, some errors are reported by the husbands. Now, if we consider household

savings given by the wives then we can see that with respect to husbands’ estimates there is

some error that is wives’ and husbands’ estimates of household savings actually differ.



Now, (refer slide time: 18:54-19:28), which we observed with respect to our household savings

given by the husbands.

Therefore, (refer slide time 19:34-19:45). So, it should not be equal to 0, and given this

relationship it is not equal to 0. This is applicable when at least one between the husband and the

wife has no specific tendency to overestimate or underestimate the household savings.

(Refer Slide Time: 20:00)

If (refer slide time 20:01- 20:19). So, the moment conditions are fulfilled in the population this

implies that the assumptions of the classical linear regression model are fulfilled. And we can

have their sample analogue as previously shown.

However, if both of them overestimate or underestimate then (refer slide time: 20:38) and this

violates the assumption of a classical linear regression model.

(Refer Slide Time: 20:52)



Now, we talk about multiple instruments, so instead of having one instrument, we can also have

multiple instruments. So, if this is our original model while (refer slide time: 21:02) that could be

because of measurement error or omitted variable problem.

Now, suppose we have two instruments for x and they are denoted by and . To combine𝑧
1

𝑧
2

𝑧
1

and efficiently, we need the properties that both the instruments and are uncorrelated to𝑧
2

𝑧
1

𝑧
2

u so that their covariance with respect to u is 0.

Suppose in the population, we have this linear relationship between x and the instruments and the

other regressor. So, (refer slide time: 21:45- 22:24).



(Refer Slide Time: 22:22)

Now, conduct an F-test. Whatever instrument we get we take the best linear combinations of z’s.

The optimal instrument for x is the expected value of x given z, , and that is the expected𝑧
1

𝑧
2

value of x given z, , and we have (refer slide time: 22:42). The instrument for x in the𝑧
1

𝑧
2

sample is the estimated value from this equation or rather from this equation, the estimated value

of x is denoted by x tilde. So, this is our instrument for x in the sample, the linear combination

we take is the linear projection of x on the z’s.



(Refer Slide Time: 23:08)

Now, we talk about a generalized approach, which is also known as 2SLS or 2-stage least

squares. The procedure explained under the multiple instruments is actually known as the 2-stage

least squares or 2SLS method. So, if the model is (refer slide time: 23:24) then this assumption is

known as exclusion restriction.

The best instrumental variables for x will be obtained from the estimated model of this that is

where x is expressed as a function of the existing regressor z or the other regressor z, and𝑧
1

𝑧
2

are the two instrumental variables. If there are more regressors like z, if we have more regressors

like , then all of them should have been included here. Now, where (refer slide time:𝑧
0
,  𝑧

1
𝑧

2

24:17). So, this implies that we must have the CLRM assumptions fulfilled.



(Refer Slide Time: 24:34)

We can test for joint significance of and using an F-statistic. We have not talked aboutπ
2

π
3

F-statistic at length till now. So, this is just a testing procedure that will be dealt with at length in

the next part. In 2SLS, the first stage is to estimate that is to estimate x as a function of z, ,𝑥
^

𝑧
1

and , and the second stage is to use in place of x in the original regression model.𝑧
2

𝑥
^

The IV estimation of (refer slide time: 25:05- 25:22).So, the estimates are the same as OLS

estimates. Since the composite error (refer slide time: 25:22) the estimates are also consistent.



(Refer Slide Time: 25:34)

Now, we talk about the specification test. So, this talks about finding out whether we need an

instrument or not. So, this is our original model. We test whether x is correlated with u or not.

So, if x is not correlated with u, we do not have any problem we do not need an instrument. In

order to do that, first of all, find an instrument for x and estimate using instrumental variables.β
^

If (refer slide time: 26:04- 26:25). So, if the estimate from 2SLS is the same as the estimate from

an OLS, then there is no correlation between x and u, if that is not the case then there is a

correlation between x and u.

So, this kind of test was suggested by Hausman and that is what is called the Hausman

Specification Test. To determine whether the differences are statistically significant or not it is

easier to use a regression test and what we next discuss is a test of endogeneity.



(Refer Slide Time: 26:52)

So, the steps involved are to find an instrument one can include multiple instruments as well,𝑧
1

so there can be , , and . The reduced form of x is (refer slide time: 27:11- 28:09).𝑧
1

𝑧
2

𝑧
3

So, suppose we assume a linear relationship between the error terms, so (refer slide time: 28:16-

28:50). So, what we are going to test here is that whether (refer slide time 28:52-

29:19).

What we do is that to check the endogeneity of v we run a regression of y on (refer slide

time:29:26). So, instead of v, we are having which is the estimated counterparts of v, is𝑣
^

𝑣
^

obtained as a residual from the regression in step 2. So, we first run a regression of (refer slide

29:44) collect the residuals that is , and then this is included in our original model so that I𝑣
^

𝑣
^

regress y on 1, x, z and .𝑣
^

If the (refer slide time: 29:56- 30:16) So, these are actually alternative ways of finding out

whether there is endogeneity problem or not whether we need an instrument for x or not.



So, one was given by Hausman which basically states that we can check for the significance in

the difference between OLS and IV. Alternatively, I can also test for the significance of theβ
^

β
^

coefficient in this kind of test of endogeneity.ρ
1

(Refer Slide Time: 30:47)

So, these are the references. Thank you.


