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Let us continue from where we left off, but before that one point determinant U of course, can

also be minus 1, but if we do not consider that aspect and because we want to retain the

positivity of the integration volume. So, determinant U equal to minus 1 we ignore and we

retain determinant U equal to 1.
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The net result is that when we look at the integration the bilinear form in the exponential is

unchanged, by the rotation and at the same time the integration volume is also remaining

unchanged integration; element is also remaining unchanged. So, now, the important thing is

that A tilde is the matrix which is diagonal. And the diagonal elements represent its

eigenvalues.

Therefore, because it is a diagonal matrix, we can split this integral into d into a product of D

independent integrals. Each of them containing 1 eigenvalue and that is what it is displayed in

this expression. Making use of the previous formula for 1 dimensional case, we apply that

formula here and we end up with the expression here where for each eigenvalue alpha i we get

a factor of alpha i to the power 1 by 2 in the denominator.



So, we have the product of 2 pi 1 or 2 to the power 1 by 2 corresponding to each integral. So,

there will be d factors of 2 pi to the power 1 by 2. So, that is 2 pi to the power D by 2. And in

the denominator we will have a product of alpha 1, alpha 2, alpha 3 up to alpha d to the power

1 by 2.

Now, the product of these eigen values in the denominator is nothing, but the determinant of

the matrix A. So, we can write this whole expression as 2 pi to the power D by 2 determinant

A to the power minus 1 by 2 because, it is in the denominator. Now, the important point, the

integral will only exist, if all the eigenvalues of the matrix are positive. And which will only

happen if the matrix is positive definite.
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I mentioned earlier that the matrix A has to be real symmetric and positive definite. Now,

because it is symmetric we can diagonalize it, had it not been symmetric we could not have



been diagonalize it. And had it not been positive definite, we would not have had this

eigenvalues of the matrix, in this form we could not have put the integral in this form. So, that

is where the relevance of these terms comes into play.
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Now, let us look at this the log of determinant A. Now, the determinant of A is the product of

the eigenvalues of A. Therefore, log of determinant A can be written as log of the product of

eigenvalues of A and that is equal to this sum because, when you take the log of the product it

translates to a sum. So, it becomes the sum of the eigenvalues of various eigenvalues that

alpha 1, alpha 2, alpha 3, log alpha 1 plus log alpha 2 plus log alpha 3 and so on. 

Now, recall A tilde is the diagonal matrix, all of whose elements all the diagonal elements are

the various eigenvalues. So, instead of alpha I can instead of summing over alpha I can use the



trace the expression of trace also. But the important thing is to note that because, it is a

diagonal matrix the product of the eigenvalues equal to the matrix. 

And if we have a function of the matrix A tilde for example, we want to work up say log of A

tilde that will be equal to log of the various eigenvalues. And therefore, when I use sum the

log of eigenvalues, in other words log alpha will also be diagonal matrix, with the all the

elements of the diagonal matrix being log alpha 1, log alpha 2, log alpha 3 and so on.

And therefore, when I want to sum over all the log alpha i's I can as well use the trace for the

log of the matrix A tilde. In other words what I get is log of determinant A is equal to trace

log of A tilde. Substitute A tilde equal to its expression in terms of the rotation matrices and

apply the what cyclic relationship we end up with this expression being equal to trace log of A.

In other words whatever we established, we are established that log of determinant A is equal

to trace log of A. And therefore, determinant A to the power minus 1 by 2 is nothing, but

exponential minus 1 by 2 trace log of A we simply substitute this value in the expression that

we had and we arrive at the result. And this integral i is equal to the 2 pi to the power D by 2

exponential minus 1 by 2 trace log of A.

So, there is a lot of manipulation here, but it is a very very important result and it displays

many important relationships in matrix algebra, which we have to use again and again. Please

note this particular point that, if we have a diagonal matrix for example, A is the diagonal

matrix, then log of A will also be a diagonal matrix and its elements will precisely be the log of

those diagonal elements which constitute the matrix A.

And if we are for example, if, are look looking at the matrix A squared, then again will have a

diagonal matrix whose elements are squared alpha 1 square alpha square and so on so that is

the property that we have made use here, right.
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We now look at property 2. Now, property 2 is again let us first look at the 1 dimensional case

and then we will generalize. Generalization is in this case it is very elementary we need to

evaluate this integral let us call this integral I. 

It is simply in fact, we have done this earlier in the context of determining or calculating the

moment generating function of the normal distribution dy is equal to exponential minus this.

We, convert this to a square a perfect square involving the terms y and 2 r yand an extra piece

which is independent of y this taken out.

So, we write this ay square into 2 r a y square minus 2 ry as a into y minus r by a whole square

minus 1 by a r square. Now, look at this carefully this factor 1 by a r square is independent of

y. And therefore, it can be taken outside the integral and what are we left with? We are left

with the expression integral dy exponential minus 1 by 2 ay minus r by a whole square. Recall



this is of the same pattern, same form as the pdf of a normal distribution. And what is the

coefficient of y in this case? The coefficient of y in this case is a sorry y square is a.

The coefficient of y square is a and when you simplify this expression, just as we did in the 1

dimensional case. This particular portion when integrated gives you 2 pi upon a to the power 1

by 2 and this part exponential minus 1 by a minus minus becomes plus and we have 1 upon 2 a

into r square. This goes outside the integration because, it is independent of i and we have this

expression.
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Now, we generalize it to the matrix case. In the matrix case in the D dimensional matrix case,

you see what did we have here we had here ay square minus 2 ry, you just keep track of this

ay square minus 2 ry on the left hand side. Now, let us look at this ay square is written as y



transpose a y, y transpose ay minus 2 we will introduce a new factor rho transpose

corresponding to r over there in to y. 

And this can be written as; this can be written as y minus A inverse rho transpose A y minus A

inverse rho minus this expression. This is absolutely same as we did in the case of the 1

dimensional case, when we completed 1 perfect square. And we took outer term which was

independent of integration and we took it outside the integral that is precisely what is done

here.
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And, now what we do is simple substitution we substitute y dash equal to y minus A inverse

rho; obviously, dy is equal to dy dash right. So, that does not make any difference and in terms

of y dash we get this expression minus 1 by 2 y dash transpose A y dash plus rho transpose y



dash. This is what we get and when we substitute, when we make use of the earlier

expression, we get this result this is quite straightforward that is not much ado about it.

If you look at this correlates to what we had done earlier, what was there? In the 1

dimensional case, it was 1 by 2 r square I am sorry, it was 1 by 2 r square upon a and that is

precisely what it is matching here, we can have a look at that to confirm. Let us have a look at

this 1 by 2 ar square precisely. What I have written here? 1 by 2 ar. So, this matches to this

expression this expression was taken outside the integral, then this we had done earlier in the

context of the previous problem previous example for a D dimensional case.

So, this part is done this part is the extra piece, that we have which we took outside the

integral and we get this result. This integration gives you this part and this part goes out as

this part.
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We, have another property another very interesting property is this particular property is

slightly more involved, but it is very important and we need to look at it.
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You see, what we do here is see, if you look at this these are factors which are related to this y

over here various expressions which are extracted out of this column vectors y and y

transpose, which are extracted and put as part of the integral.

So, here what we do is let us start with this matrix. Now, if you look at this if I take it instead

of this matrix, I take a new matrix I take this matrix expression. For the moment just to forget

about this forget this quantities right. What I do is? Instead of this matrix in this particular

exponential, I write this exponential. And then I, what I do is I take the derivative of this

whole thing, this whole thing including the integral with respect to del of del rho k 1.



Now, what will I do? When this del rho d of D rho k 1 operates on this it gives you this

integral again. And then it integrates this exponent and when sorry, when this differentiates

this exponent. And when it differentiates this exponent it pulls out that particular quantity,

which is related to this which is and what is the coefficient of rho k 1. If you look at this in this

particular expression the coefficient of rho k 1 will be nothing, but y k 1 from this from this

particular quantity.

So, instead of writing by k 1 here what I have done is I have introduced a additional factor its

little later, it will be called the source term, but for the moment you can in use it an additional

quantity and additional factor that I have introduced here in the integral. And then when I

differentiate this because, there is no rho here there is no rho in this quantity, there is only a

rho over here. 

And when I use this rho in this quantity I pull out the corresponding y the rest of the rho’s,

because they are not in this rho will become 0. And the net result would be that I would

precisely get this expression, when I differentiate with respect to rho k 1, rho k 2, rho k 3, rho

k n.

When I do all this differentiation every case, I will get one factor. When I differentiate with

respect to rho k 1, I will pull in y 1 y k 1 when I differentiate with respect to rho k 2, I will

pull on y in k 2 and so on. So, if I differentiate with respect to all these quantities then, I will

get this factor in other words these two quantities are equivalent. 

And therefore, now we have done this differentiation already, we have done this differentiation

already, but at the end of the day we need to throw out this rho. So, after doing this

differentiation remember after doing this differentiation the result that I get in that result, I will

put rho equal to 0. And then when I put rho equal to 0. This expression will go away and

when this expression goes away, I recover this, I recover this I have pulled back factors of this

due to the differentiation and I get precisely this quantity.



In other words what is it first of all add the source term step 2 differentiate with respect to rho

k 1, rho k 2, rho and so on. Step 3 after differentiating put rho equal to 0 and you get that

same quantity is this one. Now, we know the integral of this expression the integral of this

expression, we just now done and that is precisely this.

This is the integral of this expression. Therefore, this the integral is nothing, but this integral or

this expression differentiated with respect to rho k 1, rho k 2, rho k n and then rho put equal

to 0, and then rho put equal to 0. Now, again this factor, this factor is independent of rho and

let us take it to the other side. 

Let us take it outside the differentiation operators you put 2 pi D and D by 2 a constant. You

take this which is independent rho outside and this differentials a differentiation operators,

which are differentiation with respect to rhos various rhos are operating on in this quantity.

Now, let us look at what happens?
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Let us take the first case let us differentiate with respect to 1 rho rho k. Now, when you are

differentiate with respect to 1 rho you use, this representation of the matrix this is precisely

what you get. Summation j equal to 1 to D 1 by 2 and then you get these 2 expressions, which

is which can be written compactly as this particular expression.
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But, remember then I have to put therefore, what do I get? I get this expression is equal to this

expression. And this expression turns out to be differentiation of this and when I do this

differentiation I get this expression.

Now, when I put rho equal to 0 this term vanishes, even this term vanishes the whole thing

vanishes and i end up with 0. So, therefore, if I have 1 factor here by a k 1, the whole integral

gives me 0 to reiterate. If I have 1 factor here the whole expression will turn out to be 0. And

indeed if you have an odd number of y k is here, the net result will always be 0.
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Let us look at an even number, let us look at two differences rho k 1, rho k 2. Rho k 1 result

we have already have with us. So, we differentiate this again with respect to rho k 2. Now,

when you differentiate this with respect to rho k 2 what do I get? I get an expression similar to

the previous case with respect to k 1 and I get the expression with respect to k 2. 

When this is differentiated with respect to k 1 I get this, when this is differentiated with

respect to k 2 I get this. But, when this is differentiated with respect to k 2, I get these

coefficients. Now, these coefficients are independent of rho please note this point. These

coefficients are independent of rho. 



Therefore, when you put rho equal to 0 what happens? These coefficients survive this rho

equal to 0 gives me 1, because it is in the exponential exponent. So, the exponent being 0 this

gives me 1 these rho becomes 0. And this particular term A inverse k 1 k 2 survives.
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So, the net result is let us see, when you have two differentiations, 2 terms in the integral y k 1

and y 2. Then, what we have in the end of all this manipulation.
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We have at the end of all this manipulation is A inverse k 1, k 2 plus this thing plus this. And

when you put rho equal to 0 this becomes one the exponential, becomes a 1 this becomes a 0

this becomes 0 and this is retained, because this is independent of rho.

So, what we get is 2 pi to the power D exponential minus 1 by 2 trace law of this thing and A

inverse k 1 k 2. So, this is for 2 quantity 2 wise y k 1 y k 2 appearing in the integral yk 1 y k 2

appearing in the integral. 
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Now, as the number of values yk 1, yk 2, k 1, k 2, k 3 the number of differentiation increases

the exponential factor is multiplied by polynomials in rho of the order n. Now, what does it

consist of? It consists of either even or odd powers. Now, one zero-th power term remains

one zero-th power term remains, which will survive in the case when the limit rho equal to 0

rho tends to 0 is taken.
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And; however, that zero-th that term which survives it consists of n by 2 factors of this to this

type a k 1, k 2, k 1, k 3, k 1, k 4 k k 1, k n, k 2, k 3, k 2, k 4 and so, on k 2 k n and so on. But

remember this is symmetric k 1 k 2 is same as k 2 k 1. So, the net result is you get n by 2

terms which survive, when there are n terms yk 1, yk 2, yk n in the integral sign. 

So, that this integral is very important for odd numbers it gives you a 0 result. For even

numbers it gives you a number of terms n by 2 terms in fact, where n is the number of k 1, k 2,

k n you can have a look at this it is given here it is. Yes A inverse k 1 k 2 A inverse k n minus

1 k n plus the permutations of these quantities, there will be n by 2 terms in total.
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Now, we come so that is about Gaussian integrals these three formula were very important,

they find a lot of applications. Now, we come to another beautiful theorem in statistics, which

again has a lot of applications, which is called the central limit theorem. What it says is?

Suppose x 1, x 2, x 3 x n they are identical independent identically distributed random

variables independent x 1, x 2, x 3 all are independent. 

And they are identically distributed random variables they have a finite mean and a finance

variance. The mean of each of them is mu and the variance of each of them is sigma square.

Then, the following expression Z n limit n tending to infinity sigma X i that is the sum of all

the random variables minus n mu upon under root n sigma square tends to the standard normal

distribution, standard normal distribution. This is a very important theorem let us look at it in

more detail.
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What is the important part a part in it? The important part in it is the variables x 1 x 2 x 3

etcetera are independent identically distributed, but how are they distributed that is irrelevant.

In other words the nature of the underlying distribution of x 1 x 2 x 3 is not relevant.

Howsoever, they may be distributed they may be uniformly distributed, they may be normal

distributed, they may be binomially distributed, Poisson distributed. 

Whatever in any distribution they are provided all these variables are distributed similarly and

they have the same mean and variance. And they are independent then this condition

automatically holds. That is the beauty of this theorem the beauty of this theorem is that it

does not bother it, does not worry about the underlying distribution of the variable. It does not

say that it was via Gaussian distribution, it does not say that it must be a uniform distribution it

holds for all distributions right.
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Let us look at the proof quickly. Let us say assume that there are n statistically independent

and identically distributed random variables x 1, x 2, x N. Let us assume that p x is the

probability density function of x and that is the it is a function of x 1, x 2, x N naturally. And

because they are independent because, they are independent p x, x 1, x 2, x 3 can be expressed

as px 1, px 2, px 3, px N because they are independent.

Now, for simplicity let us assume that E of X i that is the mean of all these random variables is

0 is simply as a shifting of the origin. And we also assume that sigma square is equal to E X i

square minus E. Because, this quantity is 0 this quantity is 0 therefore, we can write E of X i

square is equal to sigma square because the mean is 0. So, the second movement about the

mean and the second movement of the about the origin do coincide. And we have rewrite it as

sigma square.
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Now, we need to calculate the distribution of Z N, where Z N is equal to 1 upon root N sigma

X i. Remember the mean is 0 the variance is sigma square. Let us work out the parameters of

Z N mean of Z N is equal to mean of this expression. When you simplify this expression

expectation of this you can take this expectation, in inside this root N. Because, this is

deterministic again, because the expectation of a sum is the sum of the expectations you can

take it here. And each of them as a expectation of 0.

So, the whole thing as the expect expectation of 0 therefore, E of Z N has an expectation of 0.

Similarly E of Z N square, when you work it out and this part is straight forward this part is

straight forward. Now, because they are independent what do we have? We have E XY is

equal to E of X E of Y. And making use of this, we can write this as E summation XY is equal



to summation E X square plus Y X 1 square plus X 2 square plus X 3 square plus X 1 E of X

1 X 2 which can be written as E X 1, E X 2. 

And using this we find that this summation of this whole expression is equal to sigma square.

But, E of X is equal to note please note E of X is 0, E of Y is also 0. So, in this case E X,

where the cross terms all the cross terms vanish right. And we have E of X i square is equal to

sigma square. 
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Now, let us look at the probability density function of the of z. We define p N z as just as we

did in the example to start this lecture. We, want to work out p N z is what it is a probability

of the variable z it taking a particular value small z. Now, because the variable z has a number

of variables is the sum of a number of variables which is represented by the sum z N which is

represented by the sum z N. 



Therefore, you must show we can take all these numbers all these variables, the probability of

all these variables which combined to which are present to give you, the values z provided that

condition of summability holds. In other words provided that z N is equal to z. Where z N is

given by summation z N is given by what? z N is given by the summation. Which summation?

z N is given by this summation z n is given by this summation. 

So, provided that the summation holds this constraint holds, you can have any values of x 1,

you can have any values of x 2, x 3, x 4, x 5 whatever, but this condition must be met. That Z

must be equal to Z N where Z N is defined by this. And how do we impose this constraint?

Again we go back to under x delta function we impose this by setting this delta function over

here. 

So, p N x p N z is equal to integral d N p x. This is p x is the collective distribution of all the

variables x p x 1, p x 2, p x 3 as you shall see just now. Now, the characteristic function is

given by the Fourier transform of p N z therefore, it is given by dze to the power minus ikz p

N z. Let us substitute this value of p N Z in the correct expression for the characteristic

function.

We get dze to the power minus ikz and this whole expression comes as it is. When its do this

integral simply over the delta function z gets replaced by z N. So, this is what I have? Now, I

substitute z N in terms of that particular expression that I mentioned earlier this expression.

So, when I do the substitution I get this expression.

Now, what I do is this x i e to the power minus i k 1 upon root N x 1, x 1 I take with this

integral minus i k 1 upon root N x 2, I take with the second integral and so on. So, each

integral has a factor of e to the power minus ik 1 upon root N with a its appropriate x, x i with

dxi with x i. So, they are all integrals which are identical.

And therefore, I can write this expression this expression as integral d x i, p x i. This is dx i

this is px i and then this x i expression e to the power minus i k x i upon root N to the power

N and if you look at this carefully, if you look at this carefully and this is nothing, but the



characteristics function of k upon root N. In other words whatever we established, we have

established that G N k that is the characteristic function that we wanted or we started with is

equal to G k upon root N to the power N. This is simply algebraic manipulation.
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And therefore, this is what we have? G N k is equal to G k upon root N to the power N. Now,

you can expand the right hand side as a Taylor series. If you expand the right hand side as a

Taylor series and use the moment generating property of the characteristic function, the first

moment remember we have taken the mean as 0. 

So, the first moment this expression becomes 0. And we have taken the second moment as

sigma square; sigma square at the second movement. And therefore, therefore, when you put

these values here, you get 1 G dash k upon root N gives you 0 and this expression gives you



minus sigma square minus because, we are dealing with characteristic function we are not

dealing with moment generating function. So, this to the power N gives me equal to G N k.
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So, a bit of simplification what do we have G N k is equal to 1 minus 1 by 2 k square upon N

into sigma square to the power N. Take the limit as N tends to infinity you get this expression,

remember this is the Fourier transform, this is not the PDF itself the Fourier transform of the

PDF. 

But, because the Fourier transform of a Gaussian is a Gaussian therefore, it follows that

because this is a Gaussian and this is you can look it carefully it is a simply a Gaussian

unnormalized Gaussian expression PDF are normalized, but because it is Gaussian it follows

that the p x, that it will correspond to is also Gaussian that can be seen as I will show you in

the next slide right.
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So, p N of z we now we inverse invert the Fourier transform, then we have p N of z is equal

to exponential minus ikz G N k dk. Simply substitute the value of G N k which we had here

this is my expression of G N k, this is the characteristic function. This is the Fourier transform

of p x. 

So, I substitute that Fourier transform of p x a to x to invert the Fourier transform. This is the

inversion of the Fourier transform in this the inversion of the characteristic function, which is

this and when you simplify this as we have been doing throughout this lecture you get this

particular expression. 



So, it follows it follows now that the PDF of z that we have obtained is nothing, but the

normal distribution PDF 1 upon under root 2 pi minus z square upon 2 sigma square which is

nothing, but N 0 comma sigma square, alright.

Thank you. 


