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Welcome back. So, let us continue from where we stopped before the break. 

(Refer Slide Time: 00:33)

Now, we look at an alternative form of the Schwinger Dyson equation for the generating

functional. For this purpose we write the action derivative as a power series. We write the

action function as a power series of the field variables.



When that is the expression given in the red box at the top of your slide and that gives us; that

gives us immediately that S dash of phi plus d by dJ will be equal to the expression that is,

because phi is nothing but the first derivative of the generating function for the connected

Green functions W. So, it follows that my state phi d by dJ is nothing, but S dash dW by dJ

plus d by dJ.

(Refer Slide Time: 01:18)

So, from the previous slide we have what the expression that is there in the first in the red box

above. Now, we also have for the from the Schwinger Dyson equation that we worked out

earlier for the field function, the expression that is given in the blue box d the P-th derivative

of the Z J is equal to Z J into phi J plus d by dJ to the power P e J, where e is the unit

operator.



When we you make use of this and you see the point is this holds for every P, this expression

holds for every P and remember we have expanded the action derivative that is S dash as a

power function as a power series in phi plus d by dJ. In other words, what I am trying to say is

that for every term of the expansion of the derivative of the action this expression in the blue

box would hold. 

For every term of the of the power series expansion of the actions derivative which is in fact,

which is the third term on your red box, in this expression or the blue box term would hold the

blue box equation would hold. In other words, if you make a summation of series with respect

to P, then you should get the expression that you have at the bottom of your slide by

comparing the two side, by compiling the two sides. 

Because if you are if you multiply both sides by alpha, alpha P and then sum over p, if you

multiply both sides by alpha P and then sum over P. Then summation then summation can go

inside this Z J, summation can go inside the Z J and you sum over alpha sum over P multiply

this by alpha and sum over this P and this is nothing, but this is nothing, but the expression on

the left hand side. So, that is precisely what we have done here. That is precisely what we have

done. 

Putting it very simply we have multiplied both sides by alpha P and then summed over P and

we have got the expression that is at the bottom of your slide. And when we have that

summation, when we have the summation alpha P this and this expression becomes S dash d d

by dJ, because this expression when multiplied by alpha P and summed over P will give me

this expression I write at the bottom of your slide. I am encircling it as a box. 

And this expression if you see, if you compare with the definition of S dash as the power series

this is nothing, but S dash d by dJ of Z J, Z J is this Z J.



(Refer Slide Time: 04:29)

So, combining all the things together what do I get? I get Z J S dash phi d by dJ into e J is

equal to S dash d by dJ into Z J. 

Now, again I use the Schwinger Dyson equation. Now, I use the Schwinger Dyson equation

for the generating function for the Green functions this was the Schwinger Dyson equation for

the field function. Now, I am using the Schwinger Dyson equation for the green function.

What does it give me? It gives me the right hand side is equal to J Z J; the right hand side of

the expression in the red box, the right hand side of the expression in the red box gives me J Z

J that means, what I get is Z J S dash phi d by dJ e J is equal to this expression. And this

expression is given by this is equal to this expression from the Schwinger Dyson equation.

This Z J because the J and the Z J commute with each other, I can write this expression as Z J

into J and then the Z J can be eliminated or multiplying both sides by Z J inverse what I get is



S dash phi and d by dJ e J is equal to J. This is another expression for the Schwinger Dyson

equation for the field function, Schwinger Dyson equation for the field function.

(Refer Slide Time: 05:53)

Now, let us see what we get phi 4 field which is given by this expression, 1 by 2 mu sigma mu

phi square plus 1 by 4 factorial lambda 4 phi to the power 4. This is the action that we are

considering as the interaction action. The interaction term is this one and the free field term is

the first one. The first term is the free field term and the second field is the interaction term. 

Now, we get S dash of phi is equal to this expression, mu phi plus 1 by 3 factorial lambda 4

phi cubed. And therefore, S dash of phi J, phi J the phi symbol that is the phi field function

plus d by dJ comes out to be in this whole expression on the right hand side.



(Refer Slide Time: 06:55)



(Refer Slide Time: 06:59)

The rest of it work is simplifying this expression and simplifying this expression is a slightly

tedious job. I have done it in the presentation step by step, and the viewers can go through it

and maybe work it out themselves as well. 



(Refer Slide Time: 07:09)

The net result that we arrive at is the expression that is on the slide, this bottom expression on

the slide. Now, when this expression operates on the on the unit function unit function, when

this expression operates on the unit function the only terms that remain that survive are the

expressions that are given on the right hand side. 

That is the terms that have d by dJ operating on the unit functions will not contribute anything.

For example, the this term will not contribute anything, this term will not contribute anything,

similarly this term will not contribute anything and this term will not contribute anything.

So, the terms that contribute are this and this term contributes, this term contributes and this

term contributes. So, these are the terms that will contribute and the rest of the terms will not

contribute because they are acting on the unit function. 



The derivative acts on the unit function and the terms that involve the derivative acting on the

unit functions will not contribute because the unit function is a constant. And therefore, what

we are left with is the expression that is given in the red box; this represents the Schwinger

Dyson equation for the field equation for the phi 4 field.

The expression in the green box the S dash was given by this. Now, the Schwinger Dyson

equation is S dash is equal to J, so we put the left hand side equal to J and phi J is equal to J is

equal to this whole expression on the right hand side of the red box. And by transposition and

simplification we get an expression for the field function as this J upon mu minus lambda 4

upon 6 mu, phi J cube plus 3 phi J phi dash J plus phi double dash of J. So, this is this is now,

the Schwinger Dyson equation for the for the field function for the phi 4 theory.

(Refer Slide Time: 09:29)



Now, this can obviously be solved by iteration. And as you will see later there is an intimate

connection between what we have done what we have arrived at this particular equation is

very significant, very important it completely describes the phi 4 theory. And it also carries the

direct one to one correspondence with the Feynman diagrams. So, we shall discuss that soon.

But for the moment this equation is very very important, very significant.

(Refer Slide Time: 10:00)

For the phi 3 by 4 theory that is when we have two interaction terms we have the cubic

interaction and the by quadratic interaction the Schwinger Dyson equation for the field

function takes this form.

You can see there are two additional terms the rest of the equation is same as before except

for these two additional terms, one involving phi J square and the second phi dash J. Even this



has a direct nexus to the Feynman diagrams in terms of 3 vertices and we shall be in discussing

that as well.

But, this is basically the 3 4 theory where the action is given by let me write it down the action

is S phi is equal to 1 by 2 mu sigma square mu phi square I am sorry, plus 1 by 3 factorial

lambda 3 phi cube plus 1 by 4 factorial lambda 4 phi to the power 4. So, there are two

interaction terms, one involving lambda 3 and the other lambda 4 these are the coupling

constants lambda 3 and lambda 4, and of course mu is the parameter for the free field.

(Refer Slide Time: 11:33)

Now, let us go back, let us revert to the issue that I have raised in my earlier lecture also, and

even in this current lecture at the beginning when we flipped the summation and the integral

sign. Let us go back to that expression.



(Refer Slide Time: 11:50)

If you look at this what we had done was that we had expanded you see we had two terms in

the interaction, these were two terms, so the first was the free field term and the second was

the interaction term. We said that lambda 4 is very small and therefore, we did an we did a

series expansion in the second term, the exponential series of the second term that is

exponential minus 1 by minus 1 by 4 factorial I am sorry; 1 by 4 factorial. Lambda 4 phi 4 was

expanded as an exponential series and we got we got this expression in the red box as an

exponential expansion is exponential expansion as an exponential series of this term minus 1

upon 4 factorial and lambda 4 phi to the power 4. This thing was expanded to get the

expression in the red box.

And then we did a new then we did a gimmick. What we did was we flipped the integral sign

with the summation sign. In other words, we took the summation outside and retain brought

the integral inside of the summation. Now, this was this is a very technical issue, a delicate



issue and it has certain nuances. Let us explore that and before we proceed further to the case

of Feynman diagrams.

(Refer Slide Time: 13:21)

Now, if you take mu equal to 1 for simplicity because that is not really relevant at the moment,

and then we can write G n is equal to H 2 n upon H 0 and H 2 n is the expression that is given

in the red box and H 0 is the expression that is given below in the second line. H 2 n is the

given expression given the red box, and H 0 is putting n equal to 0 you get the expression for

H 0.



(Refer Slide Time: 13:49)

For large k, but for fixed n let us see what is the k-th expression for in H 2 n. The k-th

expression in H 2 n is the expression that is here in the red box. The interesting feature is if

you analyze this expression this expression diverges. 

Diverges in the sense it increases or it is it exceeds faster than, it increases faster than a to the

power k, the increase of this expression is the order of k factorial you can say. It roughly

grows as k factorial. It is in a sense what we call super exponential. It increases and the rate of

increase of this term is of the order of k factorial.



(Refer Slide Time: 14:41)

So, that clearly the series is diverging and the radius of convergence of the series is zero. Let

us see what is the cause of this problem.



(Refer Slide Time: 14:49)

You see we started with the action 1 upon 2 mu phi square plus 1 by 2 lambda phi to the

power 4 and we assumed fundamentally that lambda was small, we assumed lambda to be

small. And only then we did the perturbative expansion. 

We expanded the second term exponential 1 by 4 factorial lambda phi 4 as a exponential series

summation series, while retaining the exponential in the first term that was on the premise that

lambda was small and therefore, we could expand around lambda as in as a perturbative or a

expansion in powers of lambda.



(Refer Slide Time: 15:37)

You know we believe that the dominant contribution would come from this expression, the

expression in the red box because mu was in orders of magnitude larger than lambda. And

therefore, it was believed that the integral, this integral because this integral converges the

character of the overall expression would be dominated by this. And as a result of it the series

would also converge with the flipping of the integral with the summation.

In other words, the resultant series that would be formed when we flip the integral with the

summation would continue to converge because of the strong convergence of the first

expression there by its convergent dominated by this expression; and because of the series

being dominated by this expression and this expression converging. This expression

converging, series dominated by this expression, therefore notwithstanding the fact that we



flipped us the integral and the summations and the series continues to converge that was the

argument propounded.

(Refer Slide Time: 16:46)

However, it does not it is clear that it does not happen that way and we have a radius of

convergence of 0. Now, why is that? We see we are integrating from minus infinity to infinity.



(Refer Slide Time: 16:52)

Therefore, if you look at this expression there would be some terms irrespective of the relative

orders of magnitude of mu and lambda. Irrespective of the relative orders of magnitude of mu

and lambda, there would be some terms where the lambda term would dominate the mu terms.

Some permutations would definitely arise where the lambda terms dominate the mu terms.

And that is bound to happen. Howsoever, small lambda would (Refer Time: 17:32).



(Refer Slide Time: 17:32)

And as a result of which, as a result of which this flipping of the integral in the summation sign

does not necessarily imply, does not necessarily imply that the flipped series would also

converge, right.



(Refer Slide Time: 17:55)

So, even if we work out the ratio H 2 n upon H 0, H 2 n upon H 0, we find we find that radius

of convergence is of the sigma case of the order of k factorial. And therefore, sigma G 2 for,

G 2 for n equal to 1 that is the radius of the if you work out G 2 you find that sigma would

sigma k, it is of the order of k factorial and it clearly in blows up it will not withstand, not

withstanding this number. Although this number is converging, but this k the presence of k

factorial makes the sigma k blow up. So, that is the problem.



(Refer Slide Time: 18:38)

Thus, the net result is that there is a singularity at the origin, at this point 0 and the series has a

vanishing radius of convergence.



(Refer Slide Time: 18:53)

Now, another point; please note that we have assumed that lambda is positive, lambda 4 is

positive. We assume that lambda 4 is positive indeed we had lambda 4 been negative the path

integral itself would not have been defined as well at all.



(Refer Slide Time: 19:12)

If lambda 4 were negative the path integral would not have been defined because then this part

you see let us say lambda is equal to minus theta with theta positive, then the action takes this

form minus 1 by 2 mu sigma square e to the power minus S phi takes the form exponential

minus 1 by 2 mu sigma square plus this. And there are definitely values where the this value

dominates and therefore, the sales becomes unbounded.

And therefore, when the case when lambda 4 is negative of course, the path integral become

becomes undefined; but even in the case even in the case where lambda 4 is positive and small,

the series is not regular at lambda 4 equal to 0 and the point lambda 4 equal to 0 represents a

point of essential singularity. So, that is what disturbs the character of the series, that is what

you call relates in the divergence of the series that is created by flipping the summation and the

integral.



(Refer Slide Time: 20:18)

Now, but there is some rescue, there is some hope. That hope arises from the minus lambda 4

to the power k term, this minus factor the presence of this minus 1 factor comes to the rescue

and because of the presence of the minus 1 factor although the magnitude of the series is

increasing, the sign is; the sign is changing though. 

So, actually the series notwithstanding the fact that the magnitude is changing the series is

oscillatory and this enables us to do some something about the divergence. And, that would

otherwise also not have been possible at all had this minus sign not been there, at the series not

been oscillatory.



The presence of the oscillatory character of the series enables us to develop a framework, to

manage a framework and by which we can we can ascribe a mathematical value to this

particular series. Let us see how we do it.

(Refer Slide Time: 21:20)

Consider the series c is summation c n, x n, F x is equal to this and this series. And let us say

we truncate the series, we this is the series, this is a infinite series. We truncate the series at a

certain value k, then it can be shown that the truncation error and that is the error

representative represented due to this truncation that is this is the truncated term and this is the

total series. 



So, the error is the modulus value of the of the of the difference between what is the actual

series and what is the series up to the truncation point that is less than x K, c K that is less than

the term the next term which follows the truncation.

So, to repeat the error that is introduced by cutting the series at an earlier point, the series is

infrared, but you are truncating it at a particular point so naturally you are creating an error

you are not representing the entire series. The error that is introduced by truncating the series

at a particular point is less than is less than the value of the next following term after the

truncation, that is the theorem or that is the lemma.

(Refer Slide Time: 22:47)

So, that being the case let us consider as an example. Let us consider the series F x is equal to

summation minus 1 to the power n, n factorial x to the power n with x being small. The



truncation error will be small; will be minimum at the point at which the first term after the

truncation. 

Let us say the truncation is after K terms the K minus 1-th term, so the K-th term is the term

that is neglected. What is the K-th term here in magnitude? That is K x to the power K, K

factorial x to the power K this is the K-th term. So, this is the immediately following term after

the truncation and the truncation error will be less than this term.

So, we have to minimize this particular term K x to the power K, and if you minimize this

particular term, the minimization condition occurs to be x is equal to 1 upon K. In other

words, x equal to 1 upon K gives the optimal truncation point.

(Refer Slide Time: 23:55)



And the truncation and the truncation error is given by K factorial K to the power minus K

that is obtained by substituting x equal to 1 by K in this expression. And recall this is the K-th

term the term in which immediately follows the truncation.

Now, if we use stirling approximation apart from a factor of 2 pi, 2 pi K under root the

expression K factorial, K to the power minus K is of the order of e to the power minus K that

is of the order of e to the power minus 1 upon x. Now, it is suppose for the QED theory

where we use the x as alpha which is the fine structure constant as a 1 upon 137, we find that

the truncation error would be of the order of e to the power minus 137 and would be the

optimal truncation point will be 137th term. 

So, these are things which you know are so small, so small to be of insignificant. And in any

case it would not be practical to work out the corrections up to 137 term in a QED series,

QED theory. So, the point is that the point is, that notwithstanding the fact that we have a

problem there when we flip the integral and the summation things are not that bad, and by

making use of a satisfactorily or a reasonable truncation point of the series we are still able to

obtain very good approximations.



(Refer Slide Time: 25:38)

Let us take another example of a technique that that remedy is the issue in another way then

that is called Borel summation. Let us assume that we have the series f x is equal to

summation, k greater than equal c k x k, this is the series, infinite series again we want to work

out the summation. These coefficient ck are growing super exponentially. 

We consider the sum as an alternative or as a tool we consider another series which is defined

by; remember our original series was what?



(Refer Slide Time: 26:26)

Original series was c k, x k of course, summation and we may be had a problem with the

coefficient c k, they were going super exponentially that is they were growing of the order of k

factorial and now what we do is we divide c k by k factorial. So, naturally the coefficients of g

k the that is c k upon k factorial grow relatively slowly compared to f k. 

Now, we work out the make use of the formula integral dy exponential minus y xy to the

power n is equal to n x to the power n. And this formula is quite straightforward, x to the

power n can be taken outside the integral and we get the in gamma function which is easily

worked out.



(Refer Slide Time: 27:16)

If you evaluate this integral dy e to the power minus y g xy, let us see what. We get dy e to the

power minus y g xy, let us see what we get. On simplification, in simplification what we get is

we end up with after all the manipulations straightforward manipulations we end up with F x.

So, we have in other words, been able to write f x as an alternative integral dy e by g xy. And

this is this process is called Borel summation.



(Refer Slide Time: 27:57)

And as an example of Borel summation let us look at let us look at the series f x is equal to

summation x scale in other words let us take c k equal to 1 for all k. So, we look at this

summation this is clearly a geometric series and with the summation is equal to 1 upon 1 minus

x g x works out to x k upon k factorial that is equal to e to the power x. The integral dy e to

the power minus y g xy if you work it out it works out to 1 upon x.

So, our Borel summation gives us the same answer as we would expect in the normal course

of events. However, the Borel summation has given us a certain leeway a certain advantage.

Let us look at that. 



(Refer Slide Time: 28:47)

The f x converges conditionally for mod x less than 1, it is quite clear that this formula, the

first formula the formula in the red box holds only if mod x is less than 1. And g x of course is

convergent for all values of x. So, and that is not a problem. And this integral, this integral that

we have now obtained integral dy e to the power g xy is equal to 1 upon x, this converges, this

holds or this exists for real x less than 1.

So, by making use of this Borel summation, we have enlarged the region of x values over with

the Borel summation can make sense. From mod x less than 1 we have increased the domain

where this integral can hold to real x less than 1.



(Refer Slide Time: 29:51)

So, this is an important and the important part is that, of course, there is a second example in

the presentation due to sparsity of time I could not cover. But the important thing is that this

issue of flipping of the summation and integral is not a trivial issue. It can be saved in certain

situations. It may not be possible to save in or it justify in other situations. I have just

presented an example where it can be done. 



(Refer Slide Time: 30:30)
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There is another example here in which it cannot be done and that example I will leave it as for

the viewers. I will put it in the presentation in any case and we will continue with Feynman

diagrams.

Thank you. 


