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ORDINARY INTEGRATION 
 
Let us start by considering the case of ordinary integration in 𝟐 − 𝑫, ℝ × ℝ 
space.  
 

Consider the function 𝒇: ℝ → ℝ × ℝ  defined by 𝒙 ↦ (𝒙, 𝒚 = 𝒇(𝒙))  or simply 

𝒚 = 𝒇(𝒙). 
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Thus, we partition the interval (𝒂, 𝒃) into 𝒏 disjoint intervals each of length 
𝒅𝒙. In the limit 𝒏 → ∞, these partitions become infinitesimally small and we 
make the assumption that at this infinitesimal level, the curve 𝑦 = 𝑓(𝑥) is 
constructed by an assortment of infinitesimal straight lines. In other words, 
we assume that the variation in the value of 𝒚 = 𝒇(𝒙) over each of these 
infinitesimal partitions is sufficiently small to be ignored. Equivalently, we 
assume that the value of 𝒚 = 𝒇(𝒙) is constant over each of these infinitesimal 
partitions.  



 
In the figure, the points P, Q on the curve 𝒚 = 𝒇(𝒙)  are assumed sufficiently 
close to each other i.e. the thickness of the strip CD (𝒅𝒙) is assumed 
sufficiently small, that PQ approx. a horizontal straight line.  
 
The value of 𝒚 is assumed approx. constant along this region. Further, this 
constant value is assumed equal to the value at the initial point of the partition 
i.e. point C.  Thus, 𝒚(𝑷)𝒅𝒙 = 𝒇(𝒙𝑪)𝒅𝒙 is the area of the strip CPQD. This is 
integrated (summed over) the given range of (𝒙 = 𝒂, 𝒙 = 𝒃) to obtain the 
entire area.  
 
Similarly, for obtaining arc length, we have: 
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FUNCTIONAL (PATH) INTEGRATION 
 
Function of function:   
 

The Lagrangian 𝑳(𝒒(𝒕), 𝒒̇(𝒕)) of a particle system is typically a function of the 

particle’s position 𝒒 and its derivative 𝒒̇ (velocity).  
 
Both the position 𝒒(𝒕) and derivative 𝒒̇(𝒕) are themselves functions of time of 
evolution.  
 

Thus, 𝑳(𝒒(𝒕), 𝒒̇(𝒕)) is, in essence, a function of a function.   

 
Functional: 
 
Mathematical Definition:  
 
Mathematically, a functional is a function of a vector space to a scalar field i.e. 
a functional maps a vector to a scalar.  
 
Physical Interpretation & Illustration: 



  

The integral of 𝑳(𝒒(𝒕), 𝒒̇(𝒕)) (function of a function) with respect to the 

independent variable 𝒕 between fixed limits 𝒕𝒊, 𝒕𝒇is a functional 𝑭.  

 

Thus, 𝑭 = ∫ 𝒅𝒕𝑳(𝒒(𝒕), 𝒒(𝒕)̇ )
𝒕𝒇

𝒕𝒊
. 

 
The functional is a number that depends on: 
 
(i)  the function 𝑳(𝒒, 𝒒̇)  
(ii)  the form of function 𝒒(𝒕) 
(iii)  the integration limits 𝒕𝒊, 𝒕𝒇 

 
It is different for different paths.  
 

 
 
Since the spatial functions of time i.e. 𝒒(𝒕) are paths that form a vector space 
by themselves and the numbers obtained on integration 𝑭 =

∫ 𝒅𝒕𝑳(𝒒(𝒕), 𝒒(𝒕)̇ )
𝒕𝒇

𝒕𝒊
 form a scalar field, the physics oriented definition is a 

restricted case of the broader mathematical definition.  
 
PATH INTEGRALS: GEOMETRY 
 
Path integrals are integrals representing sum over all paths satisfying some 
boundary conditions. 
 



They can be understood as extensions to an infinite number of integration 
variables of usual multi-dimensional integrals.  

 
As stated above, a functional is a definite integral i.e. a number obtained by 
integrating between the end points of a certain path.  
 
Yet, because we get a different such number for each different path in 𝒒 − 𝒕 
space, we can integrate those numbers over all possible paths.  
 
They are called functional (path) integrals. 
 
ILLUSTRATIONS OF PATH INTEGRALS 
 
Thus, the functional which itself is an integral can be further integrated e.g. (2) 
& (5) below:   
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APPLICATIONS: QM 
 
The cardinal application of PI occurs in QM. In QM physical outputs of interest 
are averages of physical quantities over all possible paths weighted by the 
exponential of a term proportional to the ratio of the classical action S 
associated to each path, divided by the Planck's constant ℏ.  
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In the semi-classical limit S/ℏ→∞, the leading contributions in the average 
come from paths close to classical paths, which are stationary points of the 
action.  
 
The paths far away from the classical ones fluctuate widely and thereby the 
corresponding amplitudes tend to cancel out amongst themselves.  
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FUNCTIONAL DERIVATIVES 
 
Functional differentiation refers to the differentiation of a functional with 
respect to its argument.  
 
Let 𝑭[𝝓] be a functional, i.e., a mapping from a normed linear space of 
functions (a Banach space) 𝑴 = {𝝓(𝒙): 𝒙 ∈ ℝ}  to the field of real or complex 
numbers, i.e. 𝑭: 𝑴 → ℝ 𝒐𝒓 𝑪.  
 

The object 
𝜹𝑭[𝝓]

𝜹𝝓(𝒙)
  tells  us how the value of  the functional 𝑭[𝝓] changes if the 

function 𝝓(𝒙) is changed at the point 𝒙.  
 
Thus, the functional derivative (also known as the Frechet derivative) itself is 
an ordinary function depending on 𝒙. 
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which implies that the total change in 𝑭[𝝓] upon variation of the function 
𝝓(𝒙) is a linear superposition of the local changes summed over the whole 
range of 𝒙 values.  
As in ordinary differentiation, the functional derivative can also be 
represented as the limit of divided differences.  
 
To see this we construct a variation  of the "independent variable", i.e., the 
function 𝝓(𝒙) which is localized at the point 𝒚 having strength 𝜺: 
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To arrive at unique results we must specify the order of the mathematical 
operations.  
 
We introduce the rule that the limit 𝜺 → 𝟎  has to be taken first, before other 
possible limiting  operations.  
 
Note that the 𝒙 dependence on the right-hand side of: 
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is only a formal one; we could as well have used any arbitrary argument (. )    
and written 𝜹(. −𝒚)  for the variational function, in keeping with the notation 
𝝓(. ) instead of 𝝓(𝒙), which is used sometimes in the mathematical literature 
if 𝒙 is a "silent" argument. 
 
Most of the rules of ordinary differential calculus also apply to functional 
derivatives. 
 
(i) The operation is linear. 
 
(ii) For the product of  two functionals 𝑮[𝝓] and 𝑯[𝝓] the product rule 

applies i.e. 
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(iv) If 𝑮[𝝓]is replaced by an ordinary function 𝒈(𝝓) that is localized at the 

point 𝒙, then the integration disappears and we have: 
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EXAMPLES OF FUNCTIONAL DERIVATIVES 
 
Example 1 
 

Consider     
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F dx x  . We have:  
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Example 2 
 

Consider     F dxg x  . We have: 

 
           

           

       
  
 

0

0

1

1

lim

lim ' ...

' '

dxg x dxg x x y dxg x
y

dx g x g x x y dxg x

dg y
dx g x x y g y

d y





   

      

     

  

 



 

 
Example 3 

Consider   
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Example 4 
 

Consider   
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Example 5 
 

Consider      ' , ' '
y

F dx K y x x   where the subscript 𝒚 indicates 

additional functional dependence on 𝒚. Then,  
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Example 6 
 

Similarly, for    x
F x , wehave: 
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Example 7 
 



For     x
F x , we have: 
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