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Langevin & Fokker Planck Equation: CLT Example

Welcome back. So, before the break I explained how to get the solution or the path integral

solution for the Langevin equation. Let us explore the Langevin equation further.

(Refer Slide Time: 00:38)

Let us try to look at the existence of a relationship between the Langevin equation and the

Fokker Planck equation. Langevin equation is a dynamical equation. It relates to the explicit in

a sense the Newtonian dynamics of this of the stochastic system. The Fokker Planck equation

on the other hand is a probabilistic equation.



Now, let us see how we can arrive at or what if there is and if there is, then what is the

relationship between the Langevin equation and the Fokker Planck equation.
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We start with the Langevin equation in the form that is given in the red box here dx t is equal

to fx dt plus gx dW t.

dW t is as usual the infinitesimal Brownian motion increment which can also be written in

terms of the white noise in the form given in the right hand corner. Here dW t is equal to eta t

dt where eta t is white noise and Wt has the following properties fundamental properties

defining properties in some sense. E W t is equal to 0 and the expected value of the expected

values of the W t at different points in time is equal to minimum t, t dash.



The first step is to discretize the above equation. In fact, this is the familiar process that we

follow when we start working with the Langevin equation. We discretize the equation

Discretizing the equation leads us to the expression that is given in the green box right at the

bottom of the slide x t plus dt minus x t that is dx t here on the left hand side and gives us fx dt

plus G x and dW t can now be written as z, where z is the standard normal variate standard

Gaussian variate if you like under root dt.
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And for arbitrary for any arbitrary function G x of t we can write d of t of G x of t as limit dt

tending to 0 G x t plus dt minus G x t.

This can be simplified and be can be written in the form by using the expression x t plus dt is

equal to x t plus dx t expanding as t plus dt around xt. We can write to first order x t plus dt is



equal to x t plus d x t that is precisely what we write here G x t plus dt minus G x t upon dt

and the limit dt tending to 0.

But dx t recall dx t that appears here is nothing from the previous equation; dxt is equal to fx

dt plus G x z under root dt this is from the previous equation. You can see it here. It is here in

the red box here and also together with the expression in the green box here. The left hand

side is nothing, but d xt, so dx t is equal to fx dt plus g x z dt under root, right.

So, we use that expression and we substitute it in our expression for d by dt G x of t and what

we get is G x t plus dx t is substituted by the expression in the blue box. So, we get fx t fx dt

plus G x z under root dt minus G xt upon dt and with the limit dt tending to 0.
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So, this is what we have from the previous equation. The first equation that we have on the

top and we do the Taylor expansion, we do the Taylor expansion of G x t plus f x dt plus g x z

under root dt. We do a Taylor expansion of this term around x t. So, what we and then we

please note we also adjust this expression G x of t.

So, when you do the Taylor expansion of the expression in the square bracket and you deduct

G x of t the what remains is g dash x of t g dash x is equal to fx dt plus gx z dt plus g double

dash x upon 2 fx dt plus g x z under root dt squared of course 1 upon dt and dt tending to 0 is

also brought forward.
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Now, let us look at the expression fx dt plus gx z under root dt. Now, we need to retain here

the important thing here the manoeuvre that we are going to do here is that we need to retain

only those terms up to first order in dt. 

So, because we are going to retain only those terms up to first order in dt, what this

expression gives us you see when you square this, the fx square term with dt square will be

thrown away. The g x square z square dt will be retained because it is a first order in dt and

the cross term will also go out because it is higher than first order in dt.

So, the only term that contributes to the square that we need to retain for our purpose that is

linear in dt is gx square z square dt. The first term remains unchanged; we have not disturbed

it.
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Now, we make the Ito assumption. What is the Ito assumption? You see when we do in; when

we do an integral we take the value of the integral, for example y at a particular at the

beginning of the interval and then we multiply it by dx or a delta x that is the slice the in the

along the x axis in the and that in a sense gives us the area.

In other words, the important thing that I want to mention here is that we are taking the value

of the integral at the beginning of that any interval which we first of all we partition our

interval here x equal to a to x equal to b into a partition. So, let us say of n distinct distinct

points intervals of each of length delta x and then for each strip that we get of delta x.

We take the value of the value of y at the beginning of that particular strip and then, multiply it

by delta x and then sum over all the values of n and then limit take limit n tending to infinity

that is we reduce the size of the strips and that is what gives us the integral in when we talk

about integration of a or a obtaining area by the process of integration. 

Now, the important thing that I want to emphasise here is that we take the value of the

integrand at the beginning of each partition and then multiply it by dx. Now, there is nothing

really sacrosanct about it. We could as well as taken the value at the middle of the strip and

then integrated around the two points constituting the strip or multiply it by dx or we could

have taken the terminal value also. It is only a convention that when we do the integration,

you take the value at the beginning of each time slice or partition and then multiply it by dx.

This is in a sense what we call in the case of deterministic curves. It is the impact is not

significant.

However when we talk about integration or calculus of stochastic variables, this becomes a

significant issue because if we use one convention the Ito convention which is precisely what

we have been doing so far that is we use the use the value of the integrand at the beginning of

the partition.

And we or we use the stand in which convention which uses the midpoint value, we arrive at

two different results and they differ by a drift term. So, we do not get exactly the same results.



So, that is the important part here. We make the Ito assumption. In other words we make the

assumption that we are taking the value of the integrand at the beginning point of the various

strips that constitute the and that they constitute the area to be worked out in through

integration.

So, that being the case. Now, what is the implication of that? The implication of this is that we

can decouple. We can decouple for example we can de couple g and z when we take the

averages we can write E g with the expression that we have in the red box will hold. If we use

the E2 assumption Eg x into z can be written as E gx Ez because at that point the z and gx

become independent and therefore, E x y is equal to E x E y and, but E of z is equal to 0. The

expected value of z is 0 and therefore, we are the net result of this expression is 0.

But the I reiterate this holds only when the Ito assumption is used. Similarly, Egx square z

square is equal to Eg x square Ez square Ez square is equal to 1 and therefore, we get here E

of g x square. So, the two results that we are going to use; we are going to use the result in

the red box and the result in the green box hold only under the Ito assumption.
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So, making use of this; making use of this what we get is if you simplify this expression, the z

the second term here in the first equation the second term goes, the first term remains and the

third term remains. So, the first and the third term remains and we get the expression in the

blue box at the bottom of the slide.
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In terms of probability distributions how do we define expected value? Probability

distributions expected value of any arbitrary function is defined by the expression that is given

in the red box here. Expected value of F xt is equal to integral d omega F omega P omega t.

This is the definition of the expected value of F x which has a probability distribution.

A continuous probability distribution P omega t and that gives us the that gives us the results

that are given in the green box at the bottom of your slide. The results are quite

straightforward yow get them right away E del G by del t is equal to del by del t E of G xt that

is equal to this expression.



And similarly we get the expressions for the other two right hand side terms that we have in

the equation that we brought forward from the earlier slide that is this expression in the blue

box.
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Now, we come to the most important step perhaps. Now, please note when we introduce gx t

we said that it is an arbitrary function. So, we can choose that function as per our

requirements as per our prescription and that is precisely what we do? We choose the function

g x t as the function delta small x t minus capital X which as shown in the upper box blue box

at the right at the top of your slide.

Now, if you make this choice; if this make this specific choice, let us see what results we get.

The first result that we get is in the as shown in the red box here. This is quite straightforward

the expected value of d by dt of delta of the gx t which is now taken as delta x minus capital



X, now it becomes when you simplify this you integrate over the delta function you get d P X

t upon d t. This is simply integration over the delta function.

Now, we come to the second case. The second case is expected value of f x delta dash x t

minus x writing it down in terms of the in terms introducing the terms of the expected value.

We get the expression the second expression on the in the yellow box on the middle of your

slide. This expression is introduced when we substitute the value of the or substitute the

expression for the expected value.

Now, having done that we do an integration by parts. When we do an integration by parts, the

derivative shifts itself and then we get a negative sign and the derivative shifts itself to the first

term from the second term. Now, we do a delta integration integration over the delta function

and what we get is the last term on the in the yellow box at the middle of your slide.

And similarly we through in through a two time path integration we get the expression for the

second derivative of the delta function and we get the expression that we get is the right at the

bottom of the slide in the green box.

Now, substituting all these terms in the expression in the equation that we have here in this

expression in this equation, the equation in the red box and the and the blue box here what we

get is the result that we are looking for.
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And that result is of the form in this expression which is in the red box here which can be;

which can be written more explicitly in the form of the Fokker Planck equation which is given

in the green box at the bottom of your slide.

We simply substitute the values of G xt. G xt was initially substituted as the delta function and

then the expressions that we obtained on working out these expected values for the delta

functions we make these substitutions and we get the expression for the Fokker Planck

equation.
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The Fokker Planck equation as a continuity equation this is a brief article very interesting. We

can write the Fokker Planck equation in the form that is given in the first equation here. First

equation in the red box where the expression this whole expression for the Fokker Planck

equation can be summarised in the form of a two term equation.

A continuity equation in the form which is given in this second equation in the red box. This is

one this has one derivative with respect to t and the other derivatives with respect to x. So, in

some sense it resembles the continuity equation, right hand side is 0. So, it is a continuity

equation.

So, this is where we have substituted j x t is subject to x 0 as the expression that we had within

these curly brackets in the top equation on the in the red box on the in the middle of the slide.
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Now, when t tends to infinity if the system as t grows indefinitely approaches a steady state

and it loses memory of its initial state, then we can write p x t subject to x 0 as p x and this is

clearly independent of t.

So, the first thing that we get is that as t tends to infinity and p x t subject to x 0 approaches p

x which is independent of t. So, dp x by dt is equal to 0 that is one conclusion that we get from

here what happens to gx t subject to x 0.

Let us assume that g x t tends to or approaches j stationary x. Now, clearly j stationary x to

investigate the behaviour of j stationary x we make use of the continuity equation which is

here if p if dp by dt is equal to 0. That automatically implies that d j which is now j stationary

dj stationary by dx is equal to 0 and obviously, j stationary is independent of t.



So, in other words what we have is j stationary is independent of x j stationary is independent

to t. So, j stationary turns out to be constant provided the system reaches a steady state where

it loses memory of the initial condition.
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Now, I will quickly run through an example of the Central Limit Theorem. I promised at some

time that we will take up the Central Limit Theorem as an example or provide an example for

the illustrating the use of the Central Limit Theorem which highlights the beauty and the

nuances of the theorem. So, let us just do that.

We have xi, there are n such variables and independent identically distributed variables and

these variables are uniformly distributed over the interval 0 to 1 that clearly gives us the

probability density over the interval as equal to 1.



And therefore, we can write this the px ip the probability density function as p of x i is equal to

1 for all i 1 2 3 4 up to n.

(Refer Slide Time: 19:56)

And that leads us to the expected value being 1 by 2. The square of the expected value of the

squares being 1 by 3 and the variance equal to 1 by 12.



(Refer Slide Time: 20:07)

We now define the variable Z n the random variables Z n equal to summation xi minus n mu

upon under root n sigma squared we write it in the form X i minus m remember mu is 1 by 2.

So, we have summation X i minus n by 2 and remember sigma square is equal to 1 by 12. So,

it becomes denominator becomes under root n by 12, the pdf was for Z n Zn.

Now, please note this z n is given by the expression in the green box please note the

appearance of this delta function, this delta function ensures that we only include those values

of xs within the integration or only those values of X is contributed to the integration which

satisfy the requirements Z is equal to Z n where Z n the small zn is a realisation of capital Z n

is the particular realisation of capital Z n.

So, by introducing this delta function we are ensuring that the constraint imposed by defining z

n is equal to sigma x i minus n mu under root n sigma square is satisfied automatically and



only those values of x 1 x 2 x 3 x n contribute to the integral where these the some of these

values satisfied the requirement given in the red box, ok.
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So, this is what we have from the previous slide. What we do now is because px 1 px 2 are all

unity. So, we throw away the p xs and we have the expression which is given in the blue box

here. We are remember z n is equal to the expression which is given in the green box right at

the right hand side of the slide.
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Now, let us introduce the Fourier representation for z minus zn. Introducing the Fourier

representation for z minus zn in the form given in the blue box what we get is the expression

at right at the bottom of the slide where this green box represents the Fourier, the Fourier

transform or the Fourier representation of the delta function z minus zn.
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The rest is now algebra. We need to integrate this expression. The first step is to introduce z

n. We write zn in its explicit form which is given here in the green box. z minus zn is written in

the explicit form given in the green box here.
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Now, our next step with this is what we obtained from the previous slide. If you look at it the

second term that is minus n by 2 divided by under root n by 12 simplifies and give us under

root 3 n.

Now, this expression is collected with z and written together here and the summation xis are

written as a separate term. The purpose of this will be become very clear very soon. Now, that

the k integral because it is independent that k integral of the terms which are independent of zs

which are independent of xs. Sorry I am sorry which are independent of all the xs are taken

together and are shown in the green box here and the rest of the terms which are xs integration

are shown in the red box here ok.
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Now, each of these terms if you look carefully represents an integral of exponential minus ik x

upon under root n by 12 dx each of these n integral. So, in a sense they are same integrals n

times over they are same integrals n time over and that is reflected in the green box at the

bottom of your slide.
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Now, we do this integration let us call that integral I. So, in a sense this expression in the

green box here is i to the power n let us do the integral I. The integral I when simplified gives

you the expression in the red box here which can be further simplified to the expression given

in the green box here.
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Continuing with I we continue the simplification. Further simplification enables us to write it in

the form at the bottom expression on the of the slide sin exponential minus ik into 1 upon

under root n by 3 sin k upon under root n by 3 divided by k upon under root n by 3 this is the

expression. Please remember it is for i, but we need i to the power n.
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And that is precisely what we do here. We do take the nth power of this expression and when

we take the nth power of this expression, we simplify this. The first thing we notice that this

exponential factor within this square bracket with the power n the exponential factor here

gives us precisely minus under root 3 n. So, this minus this exponential factor if you simplify

this, it gives us minus ik under root 3 n.

So, this i k under root 3 n and this minus i k under root 3 n when you take this n times over,

these two cancel each other and what we are left with is dk e to the power ik z and this term

goes out of this nn n nth power integral. So, we have sin k upon under root n by 3 divided by

k upon under root n by 3.
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So, as I mentioned this term ik under root 3 n and this term minus ik under root 3 n with this

power if you include this power n here, this nth power when it is brought with this factor it

gives us minus under ik under root 3 n. So, this and this cancel out. We are left with ik z here

which is retained and the rest is as it is and when we simplify it what we get is the expression

that is given in the green box right at the bottom of the slide.
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Here limit of if you look at this limit n tending to infinity of this expression, in this expression

1 minus this expression is nothing, but e to the power minus 3 k square upon 6 n minus 3 k

square upon 6 n is k square upon 2. So, it is e to the power minus k square upon 2.

When this n tends to infinity 1 minus 3 k square upon 6 n to the power n when you take the

limit n tending to infinity, it gives you e to the power minus k square upon 2 and therefore, we

get rho z is equal to 1 upon 2 pi integral dk e to the power i k z minus k square upon 2.

Now, this is clearly a simple Gaussian integral and when we do the Gaussian integral, we end

up with 1 upon root 2 pi e to the power minus 1 by 2 z square which is nothing, but a

Gaussian with a mean of 0 and a variance of 1 which is what we wanted to establish.
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Now, we move over to the next segment of our course. We now start talking about Quantum

Mechanics and before we move on to Quantum Field Theory, we shall be discussing the Path

Integral approach to Quantum Mechanics and once we complete the issue of Quantum

Mechanics, we shall then move over to Path Integration in the context of Quantum Field

Theory.
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This is a recall of Davisson and Germer experiment where electrons were shot through an

electron gun into screen having two slits and the interference pattern was observed on another

detector screen placed behind the screen having the two slits.
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And the results that we found were just to recapitulate. When we open just the one slit, there

is no interference. When we open the other slit, there is again no interference. When we open

both the slits, then interference bands appears in the manner that is shown in this detector slide

and when we even if we bombard one particle at a time from the electron gun, the interference

pattern does appear.

So, these were certain conclusions, certain radical conclusions which completely or

significantly revolutionise the theory behind Quantum Mechanics and which form the

cornerstone or the background or the backdrop of the path integral mechanism.
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And now what was argued was you see what is clearly apparent from this is that if you look at

the interface bands on this slide on this detector screen, they are the they represent

interference patterns and the amplitudes are sums of the amplitudes of the waves that originate

from the two slits in the middle in the screen in the screen let us call it the screen O1.

So, the in other words the interference patterns on the screen O2 that is the detector screen

are due to the waves that propagate through the two different slits of the screen O1 and

interfere and give rise to these waxes and wanes or the constructive and destructive

interferences.

Now, what will happen if I increase the number of slits to 3 4 5 and so on? Well what will

happen is the number of paths will increase firstly and secondly, the interference patterns that

we will observe on the screen will be at any point at any point on the detector screen O2 will



be the sum of the amplitudes of the paths emerging from each of these screens, each of these

slits.

So as you increase the number of slits, the number of paths increases and the, but the net result

is that as far as the intensity on any point on the detector screen is concerned, it would be

determined by the sum of the amplitudes of the of all the paths that emerge from the screen

O1.

Now, suppose we place another screen O3 between O1 and O2 that will again and that has a

number of slits in it that will again increase the number of paths, but the principle would

remain the same that the amplitude or the transition amplitude at any point on the detector

screen will be the sum of all the amplitudes of all the paths that reach that particular point

through various various possible various possible approach points.

So, that was the that was this is what was the rationale of the quantum mechanics with the

path integral formulation. The argument was that if I place an infinite number of screens

between the source and the receptor S and the receptor O2 and in each of those screens if I

pierce an infinite number of slits have an infinite number of slits, then the result is.

Now, the two things happened. Number 1 the as per the proposition that is established the

amplitude or the intensity at any point on the on the detector screen O2 would be the sum of

all possible paths starting from the source O1 ending at that particular point on the detector

screen which is being investigated and why we use the word all possible paths, now we define

what we mean by all possible path.

If we have an infinite number of screens and each screen has an infinite number of holes, it

randomize to the situation that we are simply having no screens at all. So, in a sense what we

conclude here from this argument from this argument what we conclude here.
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The conclude the conclusion that we draw is that the path integral formalism is that where a

particle or a wave travelling a path between two events could actually be considered to be

travelling along all possible paths infinite in number between those two events.
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Of course the important thing is also there that the amplitude to find. In other words, in other

words stating the same thing again the amplitude to find the particle at a final detector point at

a time t given that it was at a well defined point x 0 at time t 0 is the sum of amplitudes

corresponding to all paths is that originate from the source and reach the destination.

That is the input that is the fundamental principle of the path integral formalism. Of course,

each paths has you will see later has to be weighted by a particular weight factor or a phase

factor rather, but we will be talking more about it. For the moment this is the principle of the

Path Integral Formalism. We shall get into the nitty gritty of it from the next lecture.

Thank you. 




