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Right, welcome back.
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Now, by making use of the property of the translation generator the first derivative in the

exponential, we were able to simplify the expression of the propagator and bring all the

derivative terms to the right and all the non-derivative terms to the left. This was a very

important simplification that we could achieve because of this particular property. 



And then we had this important relations that in the limit that n tends to infinity which we

ultimately have to do I have to take in the limit n tends to infinity each of these y j’s is

normally distributed with a mean of 0; and a variance of D, variance of D each of the each of

these y j’s. And by using the central limit theorem we find that the summation of these y j’s up

to n are normally distributed with a mean of 0, and a variance of n D, so that is where we

concluded the last lecture last class. Let us continue from there. 
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Now, we define a Brownian motion? How do we define it? As you recall Brownian motion is

the sum of random variables, and each of those random variables are normally as I am sorry

the random variables are such that the Brownian motion becomes a sum of those random

variables. And at any particular point in time, the random the aggregate of all those random,



the sequence of those random variables is normally distributed due to the central limit theorem

as a mean of 0, and a variance equal to the length of evolution.

So, we define a Brownian motion by W k is equal to minus root t by n remember that we

talked about the step size of under root t t by n that is precisely what is happening here. So, W

k is equal to minus under root t by n summation of y j with j equal to 1 to k. Please note these

subscripts the indices we have W k is a summation of random variables y 1, y 2, y 3 from 1 to

k.

Let us look at the properties of this Brownian motion to ensure that it is a Brownian motion.

We have the expectation value of W k is clearly 0, because the expectation value of each y j is

0. The expectation value of W k square now that is interesting, recall that the expectation

value of each y j is equal to D. 

Therefore, when you are multiplying by under root the you are scaling the variable by under

root t by n, the variance gets scaled by t by n, so the variance will be equal to t by n, and since

there are n y j’s here. So, we have t by n k into D to reiterate to repeat each y j has a variance

of D. There are k of them, so the total variance becomes and each of them are independent of

the other. So, the total variance becomes k D. And we are scaling each y by under root t by n,

so the variance gets scaled by t by n. So, we have t by n into k into D. 

And d W the increment W k minus W k minus 1 is nothing but under root t by n y k. And

clearly the expectation of d W is 0, because the expectation of y k is 0; and the expectation of

d W square is equal to t by n into this expression this particular expression expectation of y k

square. Remember the expectation of y k square was D, therefore, it becomes t by n into D,

and that is nothing but the D into the step size that is D dt.
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So, let us now what do we have? We started with this first expression for delta, we simplified

it by translation generator property, and we got all the derivatives to the right, we got all the

other terms to the left, and then we introduced the concept of Brownian motion. 

By introducing the concept of Brownian motion to represent the sum of divisors, we simplify

the summation the terms; within the summation and we write them as a Brownian motions it is

quite straightforward. We write summation of y k as W k, and we write summation of y j plus

1 from j equal to k to n as a difference of two Brownian motions from j equal to 1 to n and

then from j equal to 1 to k.

So, j equal to 1 to n minus j equal to 1 to k. In other words, it is equal to y n minus y k, but

there is a minus sign here in defining the Brownian motion and therefore it becomes y k minus



y n. So, this is the operator form of the propagator. The y operator form because it contains

the derivative operator to the extreme right. 
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Now, we move on to find the expression for the kernel. The kernel has to satisfy this equation

which is given at the top in the green box phi of psi of x t is equal to integral d theta kernel x, t

subject to theta psi theta comma 0. 

In other words, it transform the state theta 0 to the state psi theta 0 to the state psi x t. It

transform the state psi theta 0 to the state psi x t. Recall that the propagator transform the

state psi theta 0 to this state psi theta t. Here we have the kernel doing a slightly different job.

It is transforming the state psi theta 0 to the state psi theta sorry x t. 



Now, as I mentioned the propagator and did the job of transforming the state x 0 to the state x

t, or the state at x 0 to the state at x t, this is transforming the state at theta 0 to the state at x

t. How to work it out? Let us start with the continue with the expression for the propagator.

And let us operate that on psi x 0, we get this expression with the d by d x operating on psi x

0. We make a simplification. 

We now again we use this translation property of exponential del by del x exponential the

second term exponential minus W n del by del x operating on psi x 0 does a translation in

spatial coordinates and it gives you psi x minus W n comma 0.

The this because it is a derivative with respect to the spatial coordinate, it does a translation

with respect to the spatial coordinates, and it shifts psi from x 0 to psi at x minus W n comma

0; 0 is the time coordinate. So, it does not affect the time coordinate, it does not because there

is no time coordinate involved in the derivative. So, it only the spatial coordinate is there. 

And the spatial derivative operates on the spatial coordinates, and it gives you psi of x minus

W n comma 0. So, this expression gives me the expression in this blue box due to the

translation generation property of the exponential of the derivative.

Now, what I do is, I said theta equal to x minus W n. To simplify further recall I have to bring

this in the form theta comma 0 psi theta comma 0. So, what I do is, I substitute theta equal to

x minus W n. 

When I substitute psi, when I substitute x minus W n minus theta to introduce this constraint

into this expression, I use a direct delta function, I introduce this direct delta function within

the integration and I write the integration together with delta x minus W n minus theta that is

precisely x minus W n minus theta is precisely representing this particular change in

coordinates. We are shifting x minus W n or we are changing x minus W n as theta

substituting x minus W n as theta.



And in order to implement that substitution, I introduce a delta function x minus W n minus

theta. So, that this integral operates now only over the expressions where this theta equal to x

minus W n holds. The rest is simplified x minus W n is written as theta. So, it becomes U theta

plus W n. And now psi which was written as psi x minus W n comma 0 now becomes psi theta

comma 0. And we have the expression for the kernel.
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And the kernel is now in can be written or is in the form of this expression the last red box that

we have K of x, t theta is equal to limit n tending to infinity this whole expression together

with this and delta function, together with this delta function including this delta function. And

that is clearly seen by comparing these two equations and comparing the expression for the K

in this expression and this integrand.
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Now, one more step of simplification can be achieved. This is the relative expressions for the

propagator and the kernel. The upper expression within the red box is that for the propagator

that we had earlier; and the lower expression is for the kernel. And important thing is that in

the propagator we have this first derivative the translation generator and in the second the

kernel that translation generator is replaced by the delta function.
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Now, we do a little bit more of simplification. What we do is, we define a Brownian motion

again, we define a Brownian motion by the expression that if the Brownian path starts at y at t

equal to 0, therefore, W of 0 is equal to y. We define a Brownian motion that way W is 0 is

equal to y it starts at the path Brownian path starts at y. So, we have W 0 equal to y at s equal

to 0; s is now the new time coordinate representing the time coordinates.

So, at s equal to 0, we have W 0 equal to y and at s equal to t that is the conclusion of the

path, the terminal point of the path. We have W of t small t that is W of small t is equal to y

plus W n, y plus W n that is at s equal to t that represents. And at any intermediate path we

can represent for any intermediate value of s, what do we have we have W s is equal to y plus

W k. Where.



How do we define k or what is the relation between k and s? s is equal to k under root t upon

n. k is, recall k is the number of steps right time steps and each step is of length t by n. So, the

it in terms of continuous time it works out to k into t upon n which is the arbitrary or the

general value of s lying between 0 and small t. 

Making these substitutions, I can write this summation as an integral. Now, assuming that this

W that we have defined now is continuous Brownian motion, I can make this substitution

replace this summation by the integral u t u of W s, integrated within the limit 0 to t, so this

gives, and the rest is this quite simple. 

The delta function now operates because it is W n minus y x minus W n minus y, it becomes x

minus W t. Recall what is W t? W t is equal to y plus W n. So, substituting y plus W n is equal

to W t, we get this expression the delta function, and the rest is mere substitution. So, we are

now able to write we are now able to write the expression for the kernel in terms of a

continuous Brownian motion an integral of a function of a Brownian motion rather than

summation of a discrete sum of random variables.
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So, now the important thing, what have we got, we have got the kernel as the expectation

value of a certain quantity. We expectation value of the exponential of an integral, now when

we have the expectation value, obviously, it will be integrated, it will involve a probability

density function because, or a probability mass function either way. And then it has to be

summed over or integrated over as the case may be with respect to this expression of random

variables.

So, the basic point that I want to emphasize is that here we are having to talking about the

continuous case, we have having a probability density function, and then we are having this

random variable here. We are integrating the expression in order to arrive at the expected

value. 



And we have to do this integration over the various possible realizations, various possible

realizations of this random variable. And because this random variable is continuous, there is a

integration here. What do we find it is an integration over all possible paths, and therefore it is

called a path integral right. So, we have arrived at this expression. Recall this is the origin of

this path integral can be traced back to the diffusion equation. Therefore, this represents an

explicit solution of the diffusion equation.
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Now, some definitions before we proceed further, the concept of autocorrelation functions. As

I mentioned several times, a stochastic process involves a sequence of random variables.

Random variable at t equal 1, random variable representing the process at t equal to 2, random

variable representing the process at t equal to 3 and so on a sequence of random variable

which is usually indexed with respect to time.



Now, the correlation between these random variables at different points in time is conveys

very important information about the dynamics of the process about the memory of the

process. And therefore, it is a very important parameter as far as various stochastic processes

are concerned. It is defined as the correlation function. 
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Precisely, we have the expectation the correlation function is defined as the expectation of X

at t 1, and X at t 2. The expectation of this value, you see you will have various realizations of

t 1 x at t 1. And you will have various realizations of x at t 2. Work out the correlation

between them, and that is precisely what gives you an indication of how the process is moving

forward in time. 

And this is as you can see on the right hand side, this represents the summation in the case of

discrete processes, it represents the summation over j and k of all possible realizations of the



of the stochastic process at t equal to 1, at t equal to 2 together with the joint probability

together with the two time joint probability of the process being in state j at time t 1, and the

process being in state k at time t 2 that is what is called the correlation function. 

Now, this probability point issue can be simplified further. And we by using Baye’s theorem,

we can express it at a two time conditional probability. And a onetime probability for a

stationary process; it gets simplified further because time translation does not change the

properties of the system. 

Therefore, we can write t x E of X t, X t 1, X t 2 as equal to E of X 0 X t, and the rest of the

properties also get simplified the conditional probability also gets simplified. It becomes and

then this probability the one time probability also gets simplified, you can use the probability at

t equal to 0 for that matter. And from t equal to 0, you can have the conditional probability

that this system moves to the state k at time t, and work out the conditional work out the

correlation function auto correlation function.

And that in that way with respect to t equal to 0 you can work out the auto correlation

function. At any other point in time, it would be representative of other auto correlation

functions also provided the system is a stationary random process, a stationary stochastic

process that is time translation does not influence the system.
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Now, this is the case where the definition that I have given above is the situation when the

mean value of the random process is non is zero. If the mean value of the process is 0, then the

above formula operate. If the mean value of the processes is not 0, then we measure

correlations in respect of deviation from the mean. 

We define deviation from the mean as delta of X is equal to X minus the mean of X, then delta

X is equal to X minus mean of X that is the standard formula for deviations. And we work out

the correlation as the expected value of delta X 0 delta X t. The correlation between these two

and the formula change slightly this additional term in the green box comes into play.
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For Markov processes, the autocorrelation becomes all the more important. Recall what are

Markov processes? Markov processes are those processes where the process has limited

memory the memory is confined to the immediately preceding state. So, in the case of Markov

processes, the autocorrelation function has special significance because the auto correlation

function depends on the conditional probability, and the conditional probabilities determine all

the joint probabilities in the case of Markov processes. 

And the joint probabilities are what we want ultimately, because our path probability is a

sequence of joint probabilities. So, knowing the joint probabilities, we can calculate path

probabilities, and joint probabilities are determined by conditional probabilities in the case of

Markov processes.
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For continuous stochastic processes, these are the formula a slightly different from what we

have for the discrete expression, only basic difference is that we replace the summation by

integration, and the probability functions by probability density functions, the rest is more or

less absolutely parallel right. 
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Now, I have talked about the diffusion equation in a lot of detail. You would recall I when I

started with deriving the diffusion equation. What do you do what we did was we talked about

the random motion of a particle in a fluid, we had certain predefined probabilities of these

particle moving to the left moving to the right in an infinite decimal time; and on that basis we

arrived at the diffusion equation. 

We did not, we did not explicitly encounter the Newtonian force equation we did not present

the dynamics of the particle in the form of a Newtonian force equation and then try to solve it.

We had a slightly obscure approach to the study of the dynamics. We studied the dynamics

purely in the context of probabilities. We did not talk about the dynamics per say as a

Newtonian framework as a dynamical framework where the laws of motion manifest

themselves explicitly.



Recall now the Langevin equation does just that. It gives you or it presents the dynamics of

the system which is subjected to some kind of a stochastic force field, and as explicitly

presenting it in the Newtonian framework, and that is what I want to take up now. 

We are talking about the dynamics of the Brownian particle. Recall that a Brownian particle is

a microscopic particle which is immersed in a fluid, and which executes random motion due to

the collisions that it encounters with the various molecules of the fluid. 

Let us assume for simplicity the mass is assumed to be unity in any case we can rescale other

quantities if we so desire and make the mass unity. So, that is not an issue really and that does

not affect the generalization of the exposition. Now, we can write the assuming that the mass

to be unity, the force equation, recall that we are working in non relativistic dynamics in

Newtonian dynamics. 

In Newtonian dynamics, we can write the equation of motion as the acceleration that is the

rate of change of velocity is equal to minus gamma V is the velocity plus L t. The in the terms

I will explain in a minute, but this is what is the Newton’s equation of motion for the

Brownian particle which is encountering collisions from various sides randomly by other

particles of the fluid. 
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Now, what is the property of the force that we are talking about in the current context?

Number 1, there be one in this particular equation in fact we have introduced a damping term

as well, the first term this first term minus gamma V is a damping term and it operates linearly

in velocity. 

And in the absence of any force it will cause the dissipation of energy, and result in the

absence of any L t that is any external force the particle will gradually come to rest due to the

damping term. So, we have one damping term which is a gamma is a constant quantity, and it

is linear in the velocity. And then we have a stochastic term which is L t.
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Let us look at the properties of L t. The L t is a, L t is a random force; random in the sense

that it is an impulse which takes place at random intervals of time. The force is the

manifestation or of collisions between the various fluid molecules and the Brownian particle.

So, let us explore the physical characteristics of this particular force before I talk about the

statistical properties. 
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Now, the first thing is that each the collision the time of collision is a very small. As a result of

which the collisions may be assumed to be instantaneous. And then the collisions from one

particle due to one particle the impact of the collision due to one particle and the impact of the

collision due to another particle are mutually independent. They do not influence each other.

And thirdly the force with which they collide with each other that force is not constant that is

also varying rapid varies rapidly.

Now, the keeping in view these three properties, keeping in view the first property, collisions

are spontaneous, collisions are uncorrelated with a between each other. And the collision force

varies rapidly. We are able to model it in as a or together with a delta function, and that gives

us the following two properties of the random force or the external force.



Number 1 is on the average L t will be equal to 0, and number 2 the correlation or the

autocorrelation of L t at different points in time is delta is a delta function or is a modified

delta function with gamma capital gamma here representing the strength of the force. And L t,

L t dash is the auto correlation expected value of L t L t dash is the autocorrelation. 

So, the autocorrelation of the random force that is exerted on the Brownian particle due to

collision between various molecules is in a sense delta correlated with an additional term that

represents the magnitude of the that a scaling term. This is nothing but a scaling term which

represents the magnitude of the force by which they are impacted right.
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Now, the by talking about this we have taken a certain approximation and a very strong

approximation. The approximation is that the time span in which the effect of the force acts on

the impulse of the force acts on the Brownian particle due to the collision is very very small. It



is in it is much smaller than other time scales that are relevant to this particular problem. And

as a result of which not much approximation is introduced by the in use of delta function to

model this collision in colliding force. 

Now, we have talked about average force being average of L t being 0 or the average of the

external force being 0, we have talked about autocorrelation, so there must be the issue of

ensemble error. Now, when we talk about ensemble the assembled ensemble in this particular

situation can consist of many many particles, at the same time they which are observed and the

properties assessed many particles being observed and their properties determined in the same

field. 

Or the as same of single particle may be tracked over a sustained period of time in such a way

that or to such an extent or to such a length to such a length that the time span is large enough

for the impact of one collision, and not to impact the or not to influence the impact of the

other collision. This is the fundamental condition that has to be met when we talk about the

ensemble on the basis of which the averages or the statistical properties that I have mentioned

earlier that is these two properties.

Property 1 and property 2, these two properties that I have mentioned these two properties

must be calculated very carefully with respect to ensembles which satisfy either of these two

conditions.

Either we have many particles in the same force field and they are assessed at the same point in

time, or we have a single particle being tracked at different points in time with the points in

time being so far apart that the influence of one collision does not carry over to the other

collision. And even in the first case the particles that are studied together at the same time

must be distant enough such that they do not get influenced by each other.

So, the Langevin equation is a special case of the general stochastic differential equation. My

next program is to take up a detailed solution of the Langevin equation where again we will

encounter the path integral. 



And then will also establish a similarity between the Langevin equation which represents the

pure dynamics of the system which represents which is explicitly showing you the Newtonian

dynamics, the laws of motion governing the system, and the Fokker-Planck equation which

represents the probabilities of this is of the conditional probabilities of various issues involved

in the dynamics of the system. So, that is what I have in the agenda.

Thank you. 


