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So, this is the defining property of Brownian motion; that the mean of the process is 0 and the

variance of the process measured at any particular time is equal to the length of time elapsed

since the origin of the process.

(Refer Slide Time: 00:46)

In other words, the spectrum of various possible values that the Brownian motion process can

take is normally distributed with the mean of 0 and a variance equal to the length of time from

the origin of the process to the point under review right.
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So, let me summarize now the various the process the properties of Brownian motion. The

first is that the process starts at the origin. Brownian motion is always deemed to start at the

origin W 0 is equal to 0. Continuity the Brownian paths as you will see from the diagram itself

are continuous. 

Although the process the paths are no were differentiable; because the zigzagging is so much,

zigzagging of the paths is so large that if you take pick up any point in time and try to

differentiate the process at that point and time that will not give a finite result and so

differentiable differentiability is lost, but continuity is retained.

The distribution of W t I have already mentioned, I emphasize once again the value of W t is

normally distributed with a mean of 0 and a variance of t. Another very important feature, very

interesting feature about Brownian motion is even the increments you take two points: take a



point t equal to s and take a point t equal to s plus t. Then the increment is also normally

distributed with a mean of 0 and a variance equal to t.

In other words, if you have this increment W s plus t minus W s, this increment is normally

distributed with a mean of 0 and a variance of t and above all, it is independent of the history

of the process up to the point s; the history or the memory of the process up to the point s is

irrelevant to the future evolution of the process. Therefore, Brownian motion is a Markov

process. 

Brownian motion is a Markov process, it is also a martingale which we shall talk about later,

but basically what it means is that the expected value of the Brownian motion at any point and

time is equal to its value at that point.

(Refer Slide Time: 03:17)



Now, because the increment d W t the which we discussed just now. The infinitesimal

increment d W t is normally distributed with a mean of 0 and a variance of dt, we can write it

as d W t is equal to z under root dt.

If you try to check up the mean and variance of both its both the sides is quite obvious the

mean is 0 because the mean of z is 0, z is the standard normal variate remember. So, the mean

of d W t is 0 because and on the right-hand side, the mean of z under root dt is also 0 because

the mean of z is 0.

The variance of d W t according to our requirement should be dt and the variance of z root dt

is also dt because variance of z square is the expected value of z square is equal to 1. And

indeed, the variance of z square is equal to 1 and root dt or dt for that matter is not stochastic.

So, multiplying z by root dt amounts to multiplying the variance by dt. So, dt into 1 gives you

dt.

So, the mean and variance both coincide, both are normally distributed and we also know that

in the case of a normal distribution. The distribution is completely specified by its mean and

variance and putting all these pieces together, we find that this in infinitesimal increment of a

Brownian motion can be represented in this form.

Differentiability: I have just mentioned it is not differentiable at any point and fractality just

like a straight line, if you zoom in on a straight line as much as you like, you still get a straight

line. Similarly, if you zoom in on a Brownian motion, you may use as much magnification as

you like, but you still end up with the same zigzag structure that is what it is called in

mathematics a fractal right.
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So, Brownian motion is continuous. It is differentiable nowhere. Brownian motion will

eventually hit any and every real value no matter how large or how negative and why it will

yeah hit every point infinitely often.
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And then, as I told you it is a fractal also. This is the typical diagram of a Brownian motion.

Just look at the amount of zigzagging that is there and because of the zigzagging, the motion

the process or the curve loses its differentiability property and notwithstanding the fact, that it

retains its continuity.
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Now, this Brownian motion see why is it so important? Why is it so relevant? Let us devote a

few minutes to this. Just as when we talk about deterministic curves, when we are talk about

Newtonian differentiation, Newtonian calculus; we assume that when we differentiate a

function, we assume that x and x plus delta x are very closely spaced points. 

And then, we assume that the points are so closely spaced that they are and they the curve

between them, the distance between them, the curvature between them can be approximated,

can be ignored in fact. And they can the point x f x and f x plus delta x are so close that the

curve joining them and can be approximated by a straight line and then, we do various calculus

operations on them.

The fundamental assumption is that to point there are two points are so close, so very close

that at the infinitesimal level, they can be approximated by a straight line. In other words, we



can put it in another way that the entire curve can be considered as an assortment of

infinitesimally small straight lines. Similarly, stochastic processes, random processes that

evolve in time can be assumed to be functions of Brownian motion in some sense. 

And this Brownian motion can be considered as building blocks of these stochastic or random

processes that evolve in time in an unpredictable manner. So, that is why this Brownian

motion is so important and the calculus relating to Brownian motion that we will discuss in a

little bit of detail is becomes so very important right.
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So, now, as I mentioned at the beginning of today’s lecture, there are various approaches to

reaching this concept of Brownian motion to arriving at Brownian motion from ab initio

random walk or a discrete random walk. One of the approaches which uses the central limit



theorem I have already elucidated. Now, I want to discuss the diffusion approach or the

approach to Brownian motion via diffusion. 

In fact, this approach is important historically as well because Robert Brown in in whose

memory this Brownian motion term is coined has studied this structure of Brownian motion in

context of the diffusion of pollen grains when immersed in fluid, in immersed in a liquid. The

patterns that evolved as this pollen grains were hit on various randomly by the molecules of

the fluid was what was later termed on to be Brownian motion.

So, we now take up this case of Brownian motion through diffusion. In one-dimension and we

assume that a particle is executing random motion on that. We assume that delta x is the

length of each step then that is the distance between two neighboring lattice sites which we

assume uniform throughout and delta t is the length of each time step x is the time, x axis is

the time step, y axis represents the delta and the motion of the particle.

And the coordinates are number and name numbered as 0, the origin plus minus delta x plus

minus 2 delta x and so on. These are these discrete points on the lattice which come in which

the particle is executing random motion.
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Initially, the we assume that the particle is located at the origin at t equal to 0. So that, the

initial condition can be represented as the delta function P x, 0 is equal to delta x at t equal to

0 and let its position at any other part, in any arbitrary point in time t be given by capital X, x

equal to capital X.

That means x equal to capital X is a arbitrary position at an arbitrary time at capital T equal to

small t and the particle initially is assumed to lie at the origin.
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This is the sketch, we have the time along the horizontal axis and we have the displacements

along the vertical axis and the particle initially is at the origin.
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So, we assume that p is the probability; small p is the probability that the randomly moving

particle moves one step to the right in the instant of time delta t. Let us say, it is at one

particular point and then, it moves one step to the right at time t equal to delta t that is the

coordinate increases by 1 unit this is probability. Probability of this is given by p.

q is the probability that the particle moves to the left, one step at time delta t, t equal to delta t

and in other words, we can say that q is the probability that delta x decreases by 1 unit or the

coordinate decreases by delta x in the time delta t; the coordinate decreases by delta x in the

time delta t.

r equal to 1 minus q minus p the residual probability is that the randomly moving particle stays

where it is at time t.
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Now, p, q and r they are assume constant over the length of the walk for all time and space

steps and P X, X is remember X is an arbitrary position of the particle at time t. And this is the

probability of finding the particle at this point at point x equal to capital X at time t equal to

small t.
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Now comes the very important stuff. The probability that the particle is at the point capital X

at time t plus delta t is equal to what? Is equal to the probability that the particle was at X

minus delta x that is one step to the left at time t and then, it makes a jump to the right which

is of length in delta x in the time delta t. So, which is given by small p.

In other words, the particle is initially at X minus delta x, initially at X minus delta x and then

it makes a jump from there to the right in the time delta t by one step which is of length delta x

and the probability of this jump is equal to small p and the probability that the particle is

initially at this point at the left point is P X minus delta x into t. 

So, the probability that the particle is at this point A and then, it reaches the point B, at this

point A at time t and then, it reaches the point B at time t plus delta t because that is what we



want is given by probability that it is at the point A which is this this quantity and then, it

makes a jump which is given by the small p factor.

Similarly, it could also happen that the particle was at the point C one step to the right;

because it is executing random motion. So, it could have been one step to the right and the

probability of which is P X plus delta x at time t and then, it makes a jump to the left in time

delta t which is given by q. So, the probability of this event is given into q into P X plus delta x

into t or it could so happen that the particle is already there at the point B and it remains there.

The probability of which is 1 minus p minus q into P X, t this is the defining equation. This is

the most important equation that the rest of it is more or less algebra. The this is the

fundamental equation.

The probability I repeat, the probability that you find, the particle at the point X at time t plus

delta t is equal to number 1; the probability that it is one step to the left and it makes a jump

during delta t of delta x or it is one step to the right at time t and it makes a jump to the right

to the left I am sorry to the left of delta x in time delta t or it was at point X and it remains at

point X does not move during that time delta t. So, these three probabilities are added.

Now, we simplify this; we simplify this, we take this one factor with this P X, t to the left-hand

side and we the rest of the things, we rearranged a little bit. Now in the limiting case, this

left-hand side can be written in the differential form as d of P X, t upon dt into delta t this is

the left hand side mind you.
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Now, let us look at the right-hand side. The right-hand side is given by this expression. We

write it in a slightly rearranged form which is given by this expression. If you look at we let us

call this expression A and let us call this expression B.
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Let us look at expression A first. Expression A is quite straightforward P X plus delta x, t

minus P X minus delta x, t this is nothing but d P by d X into 2 delta x. Because the difference

in space coordinates is 2 delta x; so, we simply multiply the gradient by 2 delta x and we arrive

at this difference. So, this is as far as equation A is concerned.

Equation B is slightly more involved. To work out equation B, we will need equations this

equation and in this equation let us call the C and let us call this D. What we do is we subtract

this C from D.



(Refer Slide Time: 17:41)

When we subtract C from D, what do we get? We get this expression this and this was my C,

the first one was my C, the second one was my D. So, when I subtract C from D, I get this

expression. Now, if you look at this; if you look at this carefully, look at these two, look at the

right-hand sides, the left-hand side is what we wanted. 

So, we have got left-hand side. The right-hand side is a different of two difference of two

derivatives d P by d X at X and d P by d X at X minus delta x obviously, we can this

difference of two derivatives gives the field that we can use the second derivative to represent

that, to represent the difference of two derivative.

Just like we use this expression X plus delta x, P X plus delta x minus P X and we introduce

the first derivative. Similarly, when we are having difference of two derivatives, we can use



this second derivative. So, precisely that is what I have done and we have used the second

derivative to represent in this difference of two derivatives.
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Now we put, rearranged put all these expressions back to where they were in terms of theory

while in terms of the derivatives and the limiting quantities and we get this expression.

For an unbiased random walk what happens? p plus q become equal to 1 and p minus q

become equal to 0. So, what are we left with? We are left with d P by dt is equal to delta x

square upon 2 delta t d 2 P upon d x squared now comes a very interesting thing.

Now, we do this limiting limit delta t tending to 0, delta x tending to 0 delta x square upon

delta t is equal to 1. Now this is very interesting. This if you look, if you recall this can be



related to the limiting that we done, we had done when we talked about the random walk and

so on.

If you recall our time length, our time step was T by n. When we talked about the discrete

random walk, the time length of the time step length was T upon n and what was the jump

size? The jump size was under root T upon n. So, if this is my delta x this is the jump size

which is delta x and this is delta t, then clearly, we have delta x square upon delta t is equal to

1. 

So, the rational for this could be could well be looked at or could well have been built into the

random walk process that we analyzed earlier. So, that being the case, this expression gives

you 1 and we end up with this equation which is a diffusion equation d P by dt is equal to 1 by

2 d 2 P upon dx square the second derivative P with respect to x squared.

(Refer Slide Time: 21:02).



To arrive at the explicit result that Brownian motion is present in this particular case, let us

solve the diffusion equation, it is quite simple, we simply use the Fourier transform method

and there are new a number of methods of course. Fourier transform happens to be one of the

simplest ones in this case and we use that.

So, we use f x the Fourier transform of f x is given by f hat k which is given by this and f x is

recovered by taking the inverse Fourier transform where we have the factor of 1 upon 2 pi and

we use this expression for the inverse Fourier transform.
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So, the given diffusion equation is this one. You take the Fourier transform of both the sides,

integrate them by after multiplying by exponential minus ikx dx what do I get on the left-hand

side? On the left-hand side, I get the Fourier d by dt I take, I can take outside the integral and

the rest is nothing but the Fourier transform of P x, t so, I get d P by d P hat upon dt d P by d



d by dt is taken outside the integral and P e minus ikx constitutes the Fourier transform of P x,

t which is nothing but P hat k, t so, we have d P hat k, t upon dt.

Now, let us look at the right-hand side. when I take the Fourier transform of right-hand side,

this d square upon dx square operates on e to the power minus ikx and I get this expression

minus k square upon 2 and the rest what remains is simply the Fourier transform of P x, t.

I repeat, the this differentiation operator operates on e to the power minus as xk twice and we

recover minus ik two times which gives us k square upon 2 in this 1 upon 2 is already there.

And so, a minus k squared upon 2 which I can take outside the integration and inside the

integration, I am left with P x, t e to the power minus ikx dx which is nothing but the Fourier

transform of P x, t which is P hat k, t. 

So, this is my right-hand side. Clearly the solution is very simple, straightforward solution it is

P P hat k, t is equal to P hat k, 0 e to the power minus 1 by 2 k square t.
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Let us look at the initial condition now. What was the initial condition? The initial condition

was P x of 0 is equal to delta x. Let us take the Fourier transform of both sides because the

Fourier transform of delta x is equal to 1, we get P hat of k, 0 is equal to 1 and this equation

simplifies even more we get P hat of k, t is equal to exponential minus 1 by 2 k square t.
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Now, we take the inverse Fourier transform to recover P x, t. When we take the inverse

Fourier transform, we have a factor of 1 upon 2 pi here and also have a factor of exponential

ikx dk and in the integration obviously, with respect to d with respect to k because we are

having the inverse Fourier transform and this is clearly a Gaussian integral, simple Gaussian

integral. We do the Gaussian integration.

And what do we end up with? We end up with in this expression where we make a simple

substitution y is equal to k root t and once you substitute y equal to k root t, you get a factor

of root t here in the denominator and this is a whole integral gives you root 2 y root 2 pi I am

sorry and in the net result is in this expression, 1 upon under root 2 pi t e to the power minus x

square upon 2 t.
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Now, clearly this is the probability density function; this is the probability density function of a

normal distribution with a mean of 0 and a variance of t. You can compare it with the standard

form of the probability density function of a normal distribution; you find that this is the

probability density function of a normal distribution with a mean of 0 n, mean of 0 variance of

t.

So, that establishes the connection between the standard normal distribution or the normal

distribution and Brownian motion and diffusion. Diffusion, Brownian motion and normal

distribution, there is a the clear linkage between them. The solution of the diffusion equation

gives us the Brownian motion which obviously, Brownian motion is defined in terms of the

Gaussian or the normal distribution.
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Now, we have talked about Brownian motion or the standard Brownian motion as being a 0

mean process, a Brownian motion that has a mean of 0 and a variance of dt and that is usually

expressed in the form dx is equal to d W or you can have a t here if you want to explicitly

show that it is a function of time that. There is an extension of this or there is a generalization

of this of the form dx is equal to mu dt plus sigma d W t.

Now, in this case, what is happening is an underlying drift is being is superposed on the

standard Brownian motion. In other words, we are having an underlying drift or underlying

incline either upwards or downwards in a straight line and over that, we are super opposing

the zigzag of the Brownian motion.
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And it is quite easy to see here that the mean of this to this process is mu dt it is not 0 because

the both these terms are not stochastic. So, the mean of this expression is mu dt and the

variance is sigma square dt because of this term. The first term contributes to the mean does

not contribute to the variance and the second term, contributes to the variance does not

contribute to the mean because this is d W is a 0 mean process and mu dt is a 0 variance

process.
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So, the generalized wiener process let us have a look at this. This is what is a Brownian

motion with drift. There is an underlying pattern, on that pattern; a superposition of a

Brownian motion is taking place.
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The mean change per unit time of a stochastic process is the drift rate, the drift rate and the

variance rate. The variance per unit time is the variance rate of the process. The average

change per unit time is the drift rate of the process. This is an example of exponential

Brownian motion which you we shall encounter when we do modeling of stock prices and we

talk about derivatives of stock prices like call options and futures and forwards.

But, this is the what is exponential Brownian motion which is generally used for the modeling

of stock prices and which forms the premise of the Black-Scholes model that that is used in

stock prices for modeling of options.
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Then, we have further generalizations of this Brownian motion concept. We have the concept

where the coefficients so far, in the generalized wiener process, mu and sigma were treated at

constants.

We talked about the process dx is equal to mu dt plus sigma d W t and mu and sigma were

treated as constants. But, there can be processes, there are processes where this mu and sigma

both can be functions of x and time and they can be explicit functions of time and these

processes are known as Itô processes. They are extensions; they are further generalizations of

the concept of Brownian motion right.
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Now, we come to the concept of path integral. This is the first real encounter with the path

integral formalism. In this, what we will do is we start with the diffusion equation and we

show that the path integral forms the complete solution of the diffusion equation. I will take it

up in the next lecture.

Thank you.


