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Welcome to the course business analytics and text mining modeling using python, so in previous 

lecture we talked about a number of steps related to you know transforming unstructured text, 

stemming, lemmatization and many other aspects as well. Now we will continue our discussion 

on some of these transformation steps, rather will like to combine whatever we have discussed 

till now. So, all the transformation steps that we have been able to cover in previous few lectures, 

we like to combine them in you know in one function. 
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So, let us do that, so specifically will be combining this expanding contractions, POS tagging, 

lemmatization, special character removal, stop word removal and tokenization. So, for this these 

are some of the you know modules that we might require re nltk string and you can see next 

thing is load all the English stop words. So, this will be referring to, then contraction mapping, 

contraction map we have already you know define. 

 

So, that will also be used then lemmatizer this world net one at lambda lemmatizer one instance 

of this call WNL 1, you would be using here. 
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Then next is you know a tokenized you know text this function we used in the previous lecture 

also. So, nothing is special in this it is just a wrapper for this our nltk.word_tokenize and for you 

know this is being called for a list of tokens in a sense. So, you can see a list comprehension 

there as well in the definition, so this is our tokenize_text functions. We can pass on it a text, we 

can tokenize. 

 

And then a list comprehension to strip off you know some of the you know wide spaces and 

other things. So, then is defining function would expanding contraction, so this is very much 

similar to what we have discussed in the previous lecture, so this part is same just in a functional 

form here. And define a function for lament lemmatization, so here you can see few changes in 

the sense that we have defined a function you know POS_tag_text, within this you know another 

function is defined that is essentially to convert penn treeback tag to bag to world net tag. 

 

Because you know that is deeply require for you know because worldnet lemmatizer that class 

lemmatization that we have to perform, it actually checks for you know pure stag annotation 

based on wordnet formats. So, we will have to convert the you know penn treebank text to 

wordnet you know text. So, for this we have defined this function, so essentially it is doing a 

mapping sort of thing, so any POS tag that is starting with capital J will WN.ADJ and similarly 

for others also. 

 

Now next line there we are tokenizing the text and then these you know using these tokens we 

are attaching US tax there using another nltk.POS_tag. And then next thing is we are doing you 

know calling this you know this penn_WN_tags function within a you know list comprehension 

here again. So, for word come appears tag in tokens_t we are you know one thing we are 

converting this you know penn treebank base tag to wordnet tag. 

 

And we are also doing a case you know transformation here word.lower, so in this function 

POS_tag text. Finally we will have the kind of POS tagging that could be useful in the limit 

lemmatization, so next function is lemmatize__text. So, in this you can see here we have you 



know first thing we have POS tagging we are calling that function that we just discussed 

POS_tag_text. And then next thing we are lemmatizing the text we again here we are using list 

comprehension. 

 

So, for word and,POS tag and tokens P you know we are performing processing this 

lemmatization, we are calling this you know lemmatize function here. Word, POS_tag because 

as you would remember that you know we have to specify the part of a speech along with the 

you know word there. So, lemmatization will be performed here then we concatenate you know 

then we concatenate all these lemmatized tokens here. 

 

So, this will complete our you know this lemmatize_text function here. Then we have another 

function remove_special characters, so this is again the same code you know has put into a you 

know function form. So, you can see, so this will remove all these special characters you know 

that might be present in the text. Then we have remove stop words, so this part also we discuss in 

the previous lecture. 

 

So, for this we are using the you know this function here and it will perform that stop word 

remover, the code is similar to what we discuss in the previous lectures. Now this is the next 

function is the most important function this is the transform_corpus function. So, all these steps 

that we have discuss till now, now they are going to be call the related function associated 

function with those steps are going to be called within this function. 

 

So, in a sense we are combining or chaining all the transformation steps in this function, so that 

is why we are calling this transform_corpus. So, will be passing on corpus here, so corpus as we 

talked about it is collection of text documents. So, we are expecting a number of text documents 

here, so you can see corpus_t and it is empty list here. So, list of you know text document which 

is essentially we can consider you know sentences or paragraphs of text in a list you know kind 

of form.  
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So, for text in corpus will perform these you know steps, so first expand contraction function is 

being called and then lemmatize_text is being call then remove special characters then remove 

stop words. So, all these you know functions are being called here and all the transformation 

steps in a sense are you know combined here. Then we once all these processing is done, then the 

corpus_t the empty corpus that we just defined will be appending this text there. 

 

And in this fashion will be doing all the processing for a particular text will take it from the 

corpus run a group and you know append thus processed or transform text in our new corpus list 

there. So, this function will have written as the transformed corpus alright, so all the 

transformation steps would actually be you know performed within function. So, this we have 

already find let me run again. 

 

So what will do now will apply this function transform_corpus on emma_sense. So, we will use 

transform_corpus function to transform or normalize the text corpus here. So, emma_sense we 

have you know we have you know created before, so let me call this here and it will take some 

time to complete actually. Because right now emma_ you know this is based on just 1 text file. 



 

And we have you know we had then the sentence tokenization and we had got this. So, right now 

you know even this took this much time. If we apply later on will be applying transform_corpus 

to a you know larger corpus rather a proper corpus and you will see it will take slightly more 

time there. So, let us have a look at this transformed corpus. Now let us have a look at the text 

you can see just by looking at the text. 

 

You can immediately see that this has been processed quite well, emma, Jane, Austen, 1816, 

volume, chapter you can see that stop words are gone, you know contractions are gone, 

punctuation special characters are gone. So, you can see this is quite nicely this has been you 

know transformed. Now you can compare this with the you know regional version. So, you can 

see here and you can compare this one and the previous output. 

 

And you can see how the text has been processed, you can see brackets, slash and all those stop 

words I and another things and commas and all those things are gone. So, you can see how well 

this has been transformed, same code that we have been discussing in previous few lectures has 

been used in a using by creating functions and we have been able to you know transform our 

corpus. Now let us move to the next aspect that is feature extraction, so as we talked about 

essentially we would like to arrive at a tabular format where colons would be representing terms 

and vectors and the you know rows could be representing documents.   
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So, for that we need to understand feature extraction process, so you know essentially we are 

talking about vector space model or turn vector model. So, will be transforming and representing 

text documents as numeric vectors of a specific terms that form the vector dimension. So, these 

specific terms are extracted features, so these terms are nothing but the extracted features they 

would be on the colon side and these text documents would on the rows side. 

 

So, now in this particular section we would be talking about you know how to perform this 

feature extraction process. So, let us take an examples, so we will take a training data set corpus 

here, so you can see this is the corpus that we are taking few sentences there in this list. And then 

test data sets 1 sentence there, so you will be you know looking at using this you know training 

and test data set to perform our feature extraction process. 

 

So, let me define these you know documents is data sets, now first model that is typically use is 

bag of words model, this is the simplest vectorization model. So, in this to perform this we will 

define a function to create a bag of words feature you know extraction or vectorization model. 

So, for this we would be requiring this S key SK learn (()) (11:35) you know this 

module.feature_extraction.text and we will importing count vectorizer. 

 

So, will be using an instance of this count vectorizer class from here, so we are defining our bow 

that is bag of words extractor. So, first argument is corpus the you know correction of documents 

that would be passing on and n gram range the kind of terms that we want. So, in this n gram we 

can specify a range from unigram to you know trigram or even more. 

 

So, one is indicates first one indicates the starting you know n gram range the second one 

indicates the ending n gram range. So, you have both are once essentially we are focusing just on 

the unigrams. So, first thing within this function we need to define this an instance of this you 

know count vectorizer class and within the arguments we are specifying mean_df as 1. 

 

That is that means we want terms having minimum frequency of one, so that means you know 

whatever terms we would like to extract features, we would like to extract, this would have at 



least this much frequency. Then n gram range the same we are using we are just focusing on 

unigrams here, then using this instance you know vectorizer will be calling this fit_transform 

method . 

 

And will pass on the corpus here and it will extract us the features in a term document matrix. 

So, this matrix is actually in pars matrix that would be obtained later will have to convert we 

have want have a look at the matrix in a regular form regular matrix form. Then we will have to 

may you know densify it, so that will see, so let me first define this bow extractor. Then next 

thing we are calling this bow extractor function here to build our vectorizer and get features. 

 

So, we are passing on corpus, so let me run this here. Let us have a look at features we can see 

this is 4*15 pars matrix here. So, 4 rows 15 columns and similarly we can obtain you know 

convert into a matrix form, so that you know so for this we are using 2 dense method here, so let 

us have a look you can see. This is the matrix form the tabular kind of form right now in the 

matrix later will convert into a data frame. 

 

So, that the understandability of this datas would be much easier. So, you can see 4 you know 4 

rows here and 15 about 15 columns , so this is the this is what these are the this how we can 

extract terms or features you know from our corpus. Now we have already defined our vectorizer 

instance here, now using that we can also transform the test datas are there that is unseen doc that 

we are created. 

 

So, using that we can also transform this one again you can create a matrix regular matrix here 

also. So, you can see because we had just a 1 sentence there, so just row here. Now we can also 

have a look at the feature name, so for that we can call this get_feature_names method. So, if I 

run this and let us have a look at feature names you can see these are the features, these have 

been extracted from the corpus text. 

 

So, these are these feature for going to columns and the 4 sentences they would be representing 

the 4 documents, text document on the row side. So, for a better understanding of this data set let 

us use this data frame, so will combine feature vectors into a data frame now. So, in the data 



frame function, we are passing feature_cm and feature_name. So, if I run this we will have this 

data frame you can see. 
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So you can see on the column side we have all the terms and, are, brown, clouds, dark, due, 

specters all these terms that were part of the corpus example that we had and 4 rows 0, 1, 2, 3. 

So, you can see this much how we have been able to convert we have been able to extract 

features. And you can see the tabular layout how we have been able to convert and the values 

these are nothing but frequencies. 

 

So, this is based on bag of words, so frequency now let us have a look at the you know test 

document that we have. So, unseen document, so let me get this you can see just 1 row and same 

features. Now let us move to the more important model, more important vectorization model that 

is tfidf model. So, this particular model solves an important you know problem of you know bag 

of word model. 

 

So, there you know words with higher frequencies you know they might dominate. Because they 

might have higher frequencies across documents, how about some of the more relevant words. 

So, more relevant words in the sense bill if we are doing a text classification problem. So, there 



are going to be certain process that are going to be you know, so documents are going to be 

categorize into those classes. 

 

So, certain words might be more relevant for this process but they might have lower frequency. 

So, in bag of words model that problem is there that relevant words might have lower weightage 

the you know meaningless words with higher frequency might end of having higher weightage. 

So, to get rid of that problem we have this tfidf you know model, so for this we are defining this 

function to create tfidf feature extraction or a vectorization model based on bow features. 

 

So, whatever bag of words features we have extracted, so from that we are trying to transform it 

into a tfidf feature. So, within this we are using tfidf transformer and instance of this there we 

have to specify in the first argument the normalization that we want to perform. So, l2 means 

euclidean kind of normalization, smooth idf you know here you know we would like to you 

know in the document frequency we would like to add 10. 

 

So, that we are able to prevent 0 divisions use idf is true, so this will define our you know this 

transformer tfidf transformer. Then we will call fit _ transform method on bag of words features. 

And that will transform these bag of word features into tfidf features, so this is the function. So, 

this function takes bag of word features and transform them into tfidf features. So, let us define 

this then you know let us you know use this function to you know create to transform bag of 

words features into tfidf features. 
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So, this is what we are doing now, so transform_c features_ct you know we are calling 

tfidf_transform here. We are passing features_c which are actually you know bag of word 

features we which we had you know earlier created. Then next thing is we are you know creating 

the regular matrix too dense method and then we are creating the data frame we are combining 

the you know tfidf feature vectors into data frame. So, in 1 go will be doing all this and you will 

see that the values will change. 

 

Now instead of earlier we had zeros and ones, now we have you know these you know because 

this has been normalized because we are applying tfidf model, so the values have changed. So, 

this is more useful that is you know typically used in text classification, formation, extraction 

and many other you know applications. Now we can use this transform method to extract from 

unseen documents. 

 

So, again here we are using this transformer_c class and calling transform function to the 

features for unseen document. Then densifying it for the matrix form and then we are combining 

it into a data frame. So, if I run this you can see we have the data frame for the test data set that 

we had. Now let us move forward, so the previous you know transformer tfidf transform that we 

talked about. 

 



That was based on the bag of word feature, what if want we can also create you know these tfidf 

features directly from the or perform tfidf vectorization directly from the raw documents. So, for 

that tfidf vectorizer class and instance of that, so now we are going to talk about another function 

def tfidf_extractor. First document is corpus, next document is to specify the n gram range just 

like we did in the bow model. 

 

So, here again will specify will define our class distances tfidf vectorizer class instance, 

minimum frequency, mean def norm, normalization procedures, smooth idf just to as we 

discussed to prevent zeros, divisions and use idf and range. And then will be calling 

fit_transform method to escalate stacked feature based on the vectorizer that we just defined. 

 

So, let me define this and then now let us apply this tfidf extractor on the corpus and will have 

our vectorizer and features tfidf features. Now again let us convert you know these features you 

know this is pars matrix into a dense matrix and then into a data frame. So, you can see this is the 

output, so this is directly by using the extractor function where we are directly extracting the 

features from the raw documents.  
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So, you can see the output if we compare this output with the previous one, you will see the same 

numbers are there. The only difference is the earlier one was from the you can see here the 

earlier one was from the bag of word feature this one is computed from the raw documents. Now 

we can apply this on the unsing documents also, so let me run this and we can see in the output, 

same output and this is directly from the raw documents. 

 

Now let us move forward, now with this we have been able to reach, so all till now what we have 

been able to cover. We have been able to transform the unstructured text into a structured form. 

So, all these steps that we talked about whether tokenization, lemmatization and you know stop 

word removals and many other things and then extracting features. So, essentially all those steps 

you know word to actually transform text into a structured form. 

 

And you could see the data frame, you could see the column, terms the relevant words you know 

that you know we can extract and in a you know you know in a matrix kind of layout in a tabular 

layout. So, we have been able to reach that place till now, now what will do will take an example 

a text classification problem to see how we can build you know text classification models now. 

 

So, for this will be using this 20 news group data set, so this data set it has around 18,000 news 

group post spread across 20 different categories or topics. So, essentially this is 20 class 

classification problem, so will be classifying these 18,000 news group post into 1 of these 20 

categories. So, for this we first we need to import this data set, so for this we need again 

sklearn.data sets and we will import fetch_20 news groups, this is the data set. 

 

So, for this we are defining this function get_data, so will be using this fetch_20 news groups 

and certain arguments you would like to remove the headers, footers and codes from the text. So, 

that only the relevant text is there which will be processing later, so let me define this get_data 

function. Now we will use this one to obtain the data you can see the download process as 

starter. 

 

So, once it completes then will be using this data set to build our classifier, so these post are to be 

classified into one of the 20 categories that are there. And we will see how all the you know 



transformation steps that we have discussed how they are going to be used here. So, it is still 

running, you can see here in the in and within brackets asterisk is there, so still asterisk is there 

till a number is assign there. 
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That means that particular you know code is still running, so let it download. Next thing is you 

can have a look at the type of data set also once in the download is completes and then will have 

a look at the classes class names that are there, target name. So, our target variables what are the 

20 classes that are there, what are the names there, so we will have a look at that also, this data is 

still being downloaded. 

 

So, you will see you know many of you know the task that will be performing now they are 

going to be performed on full corpuses. So, they will take certain times, the idea is to 

demonstrate you whatever code we have till now discuss how that is you know going to work 

you know a real problem where we are using a full corpus and building a you know full grown 

model. 

 

So, so downloading has complete, you can see 135 is assign, now let us have a look at the data 

set you can see sklearn utils.bunch. Now we will print the target names, so essentially these are 

the classes, so you can see here alt at this con.graphics. So, sci.med, sci.space, sci.crypt, so these 



are different target names, these are different categories, different classes where these you know 

documents, these news group post are to be classified. 

 

So, let us move forward, now obtain the corpus and labels, so from this data set that we have just 

you know obtain will you know create our corpus of documents and labels as well, labels for the 

target variable, so let me run this. Now the next thing that will be doing is that at a particular 

corpus might have a number of empty text documents . So, you know mean times you would like 

to remove them. 

 

So, for this we are defining this function remove_empty_docs, so first argument is corpus, 

second argument is labels. So, again within this we are defining our corpus_f as a empty list, 

labels_f as an empty list. Now we are running this for loop doc you know label lbl in zip corpus 

comma labels and we are using this strip method to find out whether document is you know 

empty or not. 

 

If it is not empty will append it labels same case so in this fashion will be creating our filtered 

corpus in filtered labels. And will be removing empty text documents, let me define this function 

we can apply this here on our corpus. So, let me run this and let us have a look at the corpus here 

you can see this is the corpus that we have after the removal process. 
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Let us have a look at the labels you can see the labels, so labels you know each number is 

indicating the you know of the class name that we just you know saw in the previous output. So, 

10 class you know that is you know 10th class, 3rd class and you know in that sense. So, it is 0 

index again and here you can have a look at the you know documents. 

 

So, you can see this is a list of you know in a sense this is a list of a string values you can take in 

that form, you can see comma here and next you know document is starting. So, in this fashion 

they have been labeled also, so we got the corpus of text documents and you know labels also. 

Now let us have a look at the let us take an example, let us take example document and will also 

have a look at label index and class. 

 

So, document with index value 10, so let us have a look at here corpus 3, so this is the you know 

fourth text document that is there you can check it back there and let us have a look at it is label 

3 and you can see the name. So, if I go back you can see it is ibm.pc.hardware, so if I go back to 

the list that we had earlier generator, so you can see it will be at fourth place you can see here, 

you can see com.sys.ibm.pc.hardware. 

 

So, you can see the corpus document and their labeling we have been able to obtain and 1 sample 

document we have been able to crosscheck in this fashion. Now let us move forward, now next 

thing as we discuss in our previous courses business analytics and data mining modeling using r 

typically partition of a data set into training and test. So, here will be using sklearn.model and 

course selection module and import this train_test_split function to perform this partitioning 

process. 

 

So, again we are writing our own wrapper function here, prepare_data sets, corpus first argument 

labels, second argument and the proportion is the 3rd argument that proportion. Then within this 

we are calling this strain as_test_split function and specifying you know certain arguments here 

and this will give us the partitions. So, let me define this, so let us call this you know function 

prep_data sets and we will have our training_c that is corpus training data part, test part, test_t 

test partition. 



 

Then same for labels also, so this is done, so you can have a look at the train_c this is our 

training partition. Now test_c this is our test partition, so you can see they have been randomly 

this you know text documents have been allocated to these partitions. Now we are going to call 

our transform_corpus function that we had already define. So, in this will be transforming this 

unstructured text as you can see in those 2 partition training and test partition. 
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In to a form that can be later on used in our when we apply our machine learning algorithms. So, 

transform_corpus for both training_c and test_c both these you know partitions and will be 

performing expanding contraction POS tagging, lemmatization, special character removals, stop 

word removal, tokenization. So, all these things are going to be perform this. 

 

So, if I run this it will take lot more time, so will have to pleasantly wait here, so this process 

because lot of lot more processing will go on. Because this is full corpus that we have taken, so it 

will take lot more time to actually you know take each document one by one you know and 



process it, so it will take lot more time here. So, you will have to be wait, so you can see that 

asterisk is there and that particular you know code that we are executing and it will take time. 

 

So, we will have to wait, it will take minutes and once this transformation process complete then 

we will move to the next part that is extracting features. And once we are ready with our you 

know vectorization process over once we are ready with our you know tabular format then we 

can apply our machine learning algorithms for the classification problem. So, to demonstrate a 

particular text classification model will be using support vector machines as an example. 

 

So, we would not be going into details of support vector machine that you can refer any you 

know books related to text mining, data mining and understand that particular method. Here we 

are just trying to demonstrate how in using python platform and specifically nltk module how we 

are able to model this. So our focus is on the modeling part and how that can be perform in this 

you know python platform. 

 

So, once this transformation is over will be executing some more you know steps here. So, you 

can see this the I have been able to process this, so you can this took I think about 2 to 3 minutes 

or even more to actually transform these you know these partitions. So, this gives you about the 

this gives you the idea about how much time it might take in you know processing you know 

unstructured you know text there. 

 

So, that is how you will also get the idea about big data analytics and how this unstructured data 

that is there and why it requires big IT investments, big setups to actually process those large 

amounts of data. So, this is small example itself is demonstrating this aspect, so let us have a 

look at the train_ct this transform text here, they can see now the nicely transform text is provide 

visible here, same for the test partition here. 

 

So, now the next thing will be extracting features form training partition. So, first thing bag of 

words feature, the another model that will use this tfidf feature. So, again just like you know 

previously done will you know generate bill our vectorizer and obtain features. So, first 

bow_extractor then will get features for the test data set. 



 

Similarly for tfidf we will use tfidf extractor that we have defined earlier and we will obtain 

features for the training partition, then will obtain features for the test partition. So, let me run 

this and will get the features from here, once this is done we will move to will tokenize the 

documents. So, in this we are running this list comprehension where you can see for each text in 

the training partition and each text in the text you know test partition also in the next line of code 

we are tokenizing. 

 

So, let me run this one also and we will have the you know tokenized documents. Now next 

aspect is evaluation matrix, so whenever we are you know building a classified classification 

model will also like to you know compute certain matrix to check the performance how well our 

model has done in terms of you know classification or prediction for that matter as well. 

 

So, we will talk about you know these matrix also, so the matrix are quite similar to what we 

have discussed in our previous courses business analytics and data mining modeling using r. So, 

here we are just defining a function get_matrix where we are passing on actual labels and 

predicted labels and computing accuracy precision recall and fn is code. So, for this we are using 

this matrix you know module and there we have accuracy_score precision_score, recall_score 

and fn_ you know function. 

 

And we are using that will be using that to actually you know compute these matrix. So, let me 

define this function first because later on as we will the classifier will be calling this function. 

Now next we are defining a function to actually you know build the model using training data set 

and then evaluate the model performance on test data set. So, in this refer function this is generic 

kind of function where passing on the classifier. 

 

So this could be based on any technique sbm or neo base or any other thing, any other machine 

algorithm and we are passing on train_training features you know training labels, test features, 

test labels. And first you know code is first line of code is about building the model the 

classifier.fit, passing training features and training labels. Then predicting predict using models, 

so we are predicting the test partition using the classifier.predict you know function here. 



 

And then will use our user define get_matrix_matrix function and will be evaluating model you 

know prediction performance. So, let me define this function as well, now as an example we are 

going to build a classifier using support vector machine here. So, for this we need this 

SGDclassifier you know class and will create an instance of this class sgj classifier and will 

define this instance. So, first perimeter loss specified as hinge because we are just building a 

linear svm, maximum iteration 1000 tol.2. 

 

That is just to define the you know allowed loss there, so let me define this svm . Now we will 

call our train f_predict_evaluate model to actually build the model as well as actually you know 

evaluate the performance. So, for you know training you know for that you know this one for 

using bag of words, so let me run this. So, first one is using bag of word feature you can see 

accuracy 0.65 and other matrix also. 

 

Now next one is using you know support vector machine with tfidf you know features. So, let me 

run this and you can see the accuracies 0.77, so accuracy we compare with the bag of words this 

has gone up, so that is why tfidf is more common more popular vectorization model when we 

require to build you know when we whenever we require to extract features. Now we can also 

create generate our classification matrix, remember this was 20 class you know classifier model. 

 

So, we will use our pandas you know function here matrix.confusion_matrix will pass on test_l 

we saw the actual labels for the test partition. And our prediction tfidf predictions here, so if I run 

this then we call data frame here to get a nicer output here. And you can see we have a 20/20 

matrix and in our previous course business analytics data mining modeling is using are typically 

use to take 2 classes and this was 2 class 2 matrix. Typically here it is 20/20 matrix here and you 

can see. 

 

So in terms of understanding this matrix you can see you know class 0 correctly classified as 

0136 times and twice classifier as 1, twice classified as you know class you know class with 

index 2. And similarly for that class 1 correctly classified as class 1 to under 9 times, so diagonal 

values you see they are on the higher side. So, that is indicating that the class has been correctly 



classified into it is actual class other numbers are actually misclassification. So, this 20/20 matrix 

is actually depicting full performance of the model. 

 

So, this with this we have been able to cover our you know text mining modeling part also. This 

was mainly using nltk module in you know in combination with other modules other functions as 

well. 

(Video ends: 41:45) 

 

So, with this we have been able to you know complete last lecture in this course as well and you 

know in this course we have been able to cover the introductory part of text mining what can 

problems are there and what kind of you know concepts are there. So, briefly we were able those 

aspects in the initial few lectures then we started our discussion on python. Because the 

knowledge of python extensive knowledge of python is actually required for the analytics 

especially for the text mining modeling. 

 

So, lot more number of lectures were actually dedicated for you know the python there. Then 

once a major junk of python was covered which is really went for the analytics. Then we came to 

you know our text mining modeling and there again in text mining modeling a lot more time is 

devoted and processing unstructured text. So, you know lot more steps for processing text we 

were discussed as we have been you know in last few lectures they were dedicated for this. 

 

And in this last lecture using a particular you know we have been able to build a svm model, a 

classifier model as well. So, that completes our journey in the sense we have been able to you 

know talk about text mining modeling and python for analytics and also you know the text 

mining text processing part the transformation part. 

 

And also in this particular lecture we were able to demonstrate a particular one example, 1 text 

mining modeling example where we build this classifier for the 20 class scenario. So, with this 

we complete you know our course and if depending on the response for this course. If there is 

demand will continue you know discussion on few more aspects of text mining modeling maybe 

you know a number of other techniques. 



 

And maybe we might also focus on how do you know scrap data from you know using various 

keys and other aspects like this. However you know for right now thank you for the thank you 

for being with this course and good luck for the future, thank you. 
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data scrapping. 


