
Business Analytics &Text Mining Modeling Using python

Prof. Gaurav Dixit

Department of Management Studies

Indian Institute of Technology Roorkee

Lecture-37

Text Collection And Transformation-Part II

Welcome to the course business analytics and text mining modeling using python. So, in

previous lecture we had started about discussion on NLTK package that is typically used for a

text mining modeling or you know text analytics and also in NLP natural language processing.

So, what we will do we will go through we will do a small recap of few steps that we discussed

in the previous lecture and then we will pick up from the point where we stopped in the

previous one.

(Refer Slide Time: 00:54)

So, let us start, so first thing as we discussed is you know nltk package, so first thing We need

to import this into the patent environment. And nltk is typically install comes with the anaconda

distribution, this aspect we discussed in the previous lecture. Then also you know certain

NLTK sources we will be requiring as part of our discussion of this package and text mining

modeling as well. So, this part we had done in the previous lecture itself you know commented

those commands here.

(Video Starts: 01:26)

So let us move forward. So, next thing that we were able to cover in the previous lecture was

the you know a brown corpus. And we went through some of the you know initial you know

lines of code which we typically perform while trying to understand the corpus the kind of files

that are there, kind of text that is there. So, let us quickly go through this part as well.

So, brown corpus part of NLTK corpus you know model, so we will import this model also.

And then categories to typically if you just you know if you have a look at the kind of corpus

you know this is a categories based you know text corpus. So, if you look at the categories in

the corpus like we discussed in the previous lecture that you can think about a tree kind of

structure and categories and files you know under those categories.

So, these are the categories we looked at the you know first 5 sentences also. So, you can see

this is how, this is going to look like first 5 sentences, this is seems to be a list of a strings. We

can always use join method that we learned before in our previous you know previous lectures.

And we can have a nicer look off sentences there. Then you know if you are interested in you

know text for a word you know particular category, so that also we can perform for that we can

use the categories argument here.

So, we can run this also and have a look at the you know 5 sentences there and then if we

understand in or finding out the files that are part of that corpus. So, for that we have this file

IDs method that can be used. So, you can see this you know this particular method we can call

on the corpus and we will have the list of files that are part of the corpus. So, you know if we

are looking to find all the files or file IDs under a particular you know category in the corpus.

So, that also can be done in the file IDs method we can use this categories argument and we can

find out the files that are part of that particular category, so you can see here again output. Now

if you understand in a particular file let us say CA18 here. So, we can use the file IDs argument

here in our brown sense, a sense method. We can specify the file ID and the text form that

particular file it is going to be you know produced in the output.

And then we can use the joint method to merge you know that those sentences. And let us have

a look at 5 sentences from this file, so you can see this text how we are able to obtain this from

a particular file in the corpus. Now we were able to discuss up to this much now we will pick

up another corpus gutenberg corpus and you know we will repeat some of the previous kind of

you know lines of code and then we will move forward.

So, first thing let us load the Gutenberg corpus here, so from nltk.corpus import gutenberg here.

So, we will have this then as we did for the brown corpus here also using the file IDs you know

method we can have a list of the files that are there. So, if I run this, you can see can have a

look at the file all text file, simple text format files. So, we talked about various file format for

textual data. So, you can see in this particular corpus all these files that we can see they are in

the simple text txt format.

Now let us move forward, now let us talk about raw method that is there, so this method can be

used to return a single string for the file. So, all the textual content that is there in the file can be

returned in a single string object, so let us pick up 1 file. So, we are picking here this

austen.austen-emma.txt file out of the you know the list that we just saw in the previous output

and we are using file IDs you know argument here for the raw method.

And we are passing on this file name and what it will do all the text content it will be you know

defined in this single string object emma, so let me run this and we will have emma. So, let us

have a look at the total number of characters that are part of this particular string object that we

have just stated. Remember this is a string object is representing the whole content in this

particular file austen-emma.txt.

 (Refer Slide Time: 03:20)

So, if I run this, so you can see that you know in the output 80 here, 887071 characters are part

of this textual content that is there in this particular file here. Now we can have a look at

because now this is a string object, so we can have a look at you know let us say first 200

characters in this particular file. So, emma we can use as we have learned we can use this

brackets and in colon notation to actually access these characters here. So, if I run this you can

see in the output 81 those 200 characters we are able to see, so you can see here.

Now if you want to have a nicer output here, so you can always use this print function, so we

can pass on this is string emma and brackets 0 to 200 to print function and we will be able to

print a nicer output here you can see. Now this is more like a text format kind of outputs, so

slightly better to understand the kind of content that is there. Now let us move to the another

important aspect here.

So in previous lecture we talked about the tokenization as one of the important steps, we talked

about certain other steps and we also discussed that order of education of those steps depend on

the problem on the data. So, so will be discussing as some of these steps one by one and you

know orders are typically as we said is you know going to be depending you know the kind of

modeling that we are going to do.

So, we will first pick up the sentence tokenization, so typically as we discussed 2 types of

tokenization are done sentence and word tokenization. So, we will start with the sentence.

tokenization, so this will do using different nltk interfaces, so different ways we can actually

perform this sentence tokenization. So, we will take some of those examples here, so let us pick

up first approach, so in this approach we use this sent-tokenize function to perform tokenization

So typically this is the default and a recommended sentence tokenization, so if you do not have

any other peculiarity in your problem or data set that you are dealing with the text corpus that

you are dealing with. Then you know you can always go with this recommended sentence

tokenizer, so this is a particular tokenizer advantages with this one is this is a pre trained

tokenizer on several language model not just English and it can work really well on many you

know popular languages.

(Refer Slide Time:06:23)

Now one thing is important to understand here these that you know many of these libraries they

are pretrained on European language English and other European language and other you know

language coming from western countries. So, they might not work so well for Indian languages,

so let us move forward. So, nltk.sent_tokenize, so emma is the you know string object that we

have there, so we will pass on this one and using this will get our sentence token in this.

So let me run this. Now let us have a look at the number of sentences here, so we can use the

length function here and emma_sense. And you can see we have 7493 sentences here, let us

have a look at the first 5 sentences, so again we can use emma_sense and we can use this you

know brackets, colon notation, 0:5 and we will have the output here. Now here if you look at

the output you know a few things you can notice here that the tokenizer the just now that we

have use to produce these sentence tokens.

So, essentially as we talked about, we are you know about sentence tokenization is that

breaking the text into sentences and in using word tokenization into words. So, till now what

we are doing is we are breaking the textual content into sentences here, so if you look at the

output that is there in this output 85 typically, the tokenizer it will not just use periods to limit

sentences.

It will also consider other punctuation and the capitalization of words also, because

capitalization of words you know any new sentences supposed to be starting with a you know

capitalized word first character of the first word in a sentence is going to be in the capitalized

form. So, that can also be used by this tokenizer and not just the periods other punctuation

marks can also be used to tokenize sentences.

So, if you look at this first sentence it starts by starts like emma by, jane, austen and you can see

and now you can see the second sentence starts with she was the youngest of the 2 daughters

and the third sentence her mother\nhad died. So, in full sentence 16 years had and then fixed

sentence between you know them. So, if you really look at here then you know different you

know if you look at the full output then you will find the many places the capitalization another

things have been use you can see.

All these sentences the first character of the first word in all these sentences in the you know is

capitalized there. So, that is also there and dot is also there at the end of each of these sentences

mostly. So, you can see that all these things are being used by tokenizer could produce these

you know sentence tokens. So, this is first approach. Now let us talk about the second approach

here.

(Refer Slide Time: 11:51)

So in this approach, we use this punk sentence tokenizer class to actually perform tokenization.

So, the previous function that we just used send_tokenize function that is also an instance of

this class punktsend tokenizer. So, instead of using this you know pre- trained or other well

trained sent tokenize a send_tokenize function. We can have we can create another instance of

this class and maybe use that.

So this could be another approach. So, for this you know will you know initialize another

instance here. So, punkt_st we use this is for we are working with for sentence tokenization

nltk.tokenize and this class comes sentence tokenizer. So, we will have this instance here, so let

me run this and then you know we can call this instance punkt_st and we can use this tokenizer

in the function here pass on emma.

And we will have our tokenization performed here, so we will have emma_sents2. Now here

also we can again have a look at the output for a first 5 sentences, so emma_sents2 0 to 5 within

brackets 0 power 5 and you can see the output here. You can also compare the output here you

would see that main output is similar to the output 1. That is using the default you know

sentence tokenizer function there might be slight differences here.

If you just compare you can see this that sentence starting of sentence for few sentences slightly

different, I can see 16 years is whole sentence there and output 85 and between them this first

sentence few come here then you know slightly different thing 16 years there then wood houses

family. So, the fifth sentence actually starting from you know slightly different there wood

houses family.

So maybe some punctuation mark has been used differently. Because the other one the other

tokenizer was pretrained and so it might work differently. So, there you can see Mr.

Woodhouse family here so you know from that capitalization maybe the default you know

tokenize function tokenize method has picked up and perform the sentence tokenization.

So, you can see output is more or less similar but there are certain slight differences that you

can you know notice here. And the differences is also mainly as I said is because the default

you know tokenizer is actually pretrained, so it is you know it is working differently than the

class and if you take the class and if we take the class data instance and use the method there.

So, let us talk about the next applause that is third applause for sentence tokenization here. So,

in this we can use an instance of regexptokenizer class. So, this is based on regular expression.

So, we have a touched bit upon regular expression in previous lectures. So here we would be

specifying a particular you know regular expression and we will use that to you know find out

patterns and that is going to be used to create you know a sentence tokens here.

 (Refer Slide Time: 15:25)

So, we are going to be using an instance of regex tokenizer class and a specific regular

expression based patterns are going to be used, you can have a look at this pattern here. So, this

pattern is you know mainly to capture you know any sentence and different components there

could be different components of a sentence. So, you can see within parentheses we are trying

to capture you know some of those aspects here also.

Overall this pattern is about you know identifying a you know sentences there, so it this pattern

would be able to you know select, able to match most of the you know sentences using this you

know pattern. So, let me run this, we will have this pattern 1, now we can use this regexp

pattern for building the tokenizer and here you would see in the function that we are going to

call here tokenize.regexp regexptokenizer.

Here we have 2 augments pattern and gaps, so pattern we have already defined so we will use

the pattern 1 and gaps is true. So, if this gaps is true then we will this particular you know

method is going this particular function is going to use this to find gaps between the tokens. So,

let me create this instance of this regexp object here. So, we got a class, we got an instance of

this class regexp object here.

Now we can use this regexp_st that we have just created and call this tokenize method here. We

are we will pass on emma the same you know text here and we will have the tokenization in

emma_sents3. So, let me run this and let us have a look at first 5 sentences. Now you can again

compare the output now you can see that first sentence you know starting you know if you look

at the you know character by character .

Overall the output is similar to the you know output 1 and previous output as well. However, if

you look character by character slight differences are going to be there. So you can see there

emma started you know with brackets to that thing is there still. If you look at you know second

sentence you can see before in the second sentence before cv we have the shalsh also here but

in the previous output we did not have that.

 (Refer Slide Time: 20:27)

And we go back further and in the default tokenizer output also it started with c. So, we can see

that slight differences here because of the approach certain output certain changes certain

differences would always be visible there, you can see in next line also her mother before her

mother there is a space hanging out there and the 16 years again that is prefixed by slashen and

so.

So, because of the we are using a pattern to match the sentences, so these kind of slight changes

are going to be there in this however this is another approach to create sentence tokens. Now let

us move forward, now a next thing that we are going to talk about is word tokenization. So, for

word tokenization as well will be using a number of analytic interfaces, so we will be talking

about a few approaches here.

So, let us start with the first approach, so in this also for word tokenization also we have a

default and recommended word tokenizer, so that is wild underscore tokenize function, so that

is typically used to perform word tokenization. So, for what tokenization as well we can call

this function word_tokenize and we can pass on this string object emma here and we will have

the word tokens emma_words.

So, let me run this default tokenization for words and let us have a look at the number of words

here we can use the length function here length and within parentheses emma_words. And you

can see in the output 94 that 1 we have 1, 91,785 words here, so those many words are there in

this word tokenization output that we just perform. If you understand looking at let us say first

500 words.

So let me run this emma_words on within brackets 0:500 and we will have you can see the

output now, this is word tokenization So, you can see different words we are able to see in the

sentence tokenization we had the you know sentences there, now this time we have the words

here. So, you can see even the you know first you know opening bracket is also being treated as

a word token.

Then the next one is emma, then by, then Jane, then austen 1816, then again closing bracket

here. So, in this fashion you can see after woodhouse, we have comma here. So, comma is also

being you know treated as a token here then again comma and all those instances are insensible

comma is going to be repeating. So, you can see the kind of output that we are able to obtain by

using the default you know in a word tokenizer.

So, even the different special characters and punctuation marks they are also being treated as a

you know tokens here. Now let us talk about the second approach, so here for the second

approach, we can use this treebank word tokenizer class to perform tokenization. So, this

particular class is actually based on the pen tree bank and it internally it is uses various regular

expansions to tokenize the text.

And in this you know 1 primary assumption is that the sentence tokenization has already been

performed, so actually it is going to be typically used to tokenize the sentences into words. So,

let us take for an example let us take the first sentence that he had obtained by applying the you

know default sentence tokenizer. So, we will take emma_sense 0, so let me run this will create

an instance of the treebank tokenizer, tree bank word tokenizer and also this is the sentence that

will be you know that we can take for applying this.

Let us have a look at emma_sense1 also this is the second sentence that we have. Now we can

use the tokenize method here also, we can call Treebank_wt the instance the class instant that

we just created and call the tokenized function here emma_sense0 and if I run this will have it

will written word tokens. So, you can see , now we can have a look at the let us say first 500

words here, so if I run this I can see here now similar to output 2.

So, you can see in this also output 99 also first token is opening bracket then emma, then by,

then Jane, then Austen, 1816 and then closing brackets, you can also see is commas there also.

So, similar kind of output that we obtain the differences that this is an instance of a different

you know treebank word tokenizer class and you know it is typically use to convert sentences

into word tokens.

So, few more things that this tokenizer this splits and separates into independent tokens some of

these things periods of reading at the end of sentences. So, in the default tokenizer that might

not be there in case you will also find you know periods appearing as tokenizer you know if

you just, scroll down. In this output also you might find you can see semi colons we can already

see colon dot is also there.

So, periods as independent you know tokenizer you know we can obtain using this tokenizer

commas and single quotes when followed wide spaces. So, some of these tokens are common

with the previous output as well, but this particular tokenizer will do it also, most punctuation

characters that might not be the case in the default you know tokenize your words with a

standard characters. So, they can also be the tokenizers, standard contractions, for example,

don’t to do and n’t.

So, do not might be you know broken into these 2 words and these 2 tokens might be there. So,

slightly different behavior, so mostly output is going to be same but few differences might be

there. Now let us talk about the third approach, now this is an instance of regexp exp tokenizer

class. And here we use a specific regular expression based patterns and so let us take an

example pattern2 identify tokens.

So, here we are defining this pattern to you know backslash w+, so this is something that we are

going to use to identify words from the text that we have. So, let us first create you know this

pattern 2 object here, so let me run this and then using this pattern2 and you can see gaps is

false and will be creating this regex_wt object. So, let me run this and from this will be getting

this emma_words3.

So we will tokenize will call regex_wt.tokenize and will have passed this emma and this will

written as the tokens using the particular regex object and therefore the pattern. So, if I run this

and let us have a look at first 500 tokens here, so you can see here output, so output is similar

but slight differences, you can notice immediately. For example the earlier 2 outputs we had

opening brackets also as a token, in this case that is gone.

Because of the you know regular excavation that we have used, so we did not consider that as a

token, so that is gone here, you can also see certain other punctuation marks which were you

know treated as tokens in the previous2 approaches, now they are also gone. So, depending on,

so these are different you know approaches that can be really useful depending on the problem

that we are dealing with and the kind of text corpus we might have.

So, you can clearly see that in this particular example you know typically meaningful words are

there as tokens. Now we can have another pattern, pattern 3 where this one we can use to

identify gaps. So, again let me define this pattern object pattern 3. And we will have another

rejects object here regex_wt1 and we will call this you know this class function regexp

tokenizer and pattern3 and gaps2 in this case, I run this we can use now this one to tokenize

emma.

 (Refer Slide Time: 27:41)

And let me run this we will have emma words, let us have a look at the first 500 you know let

us say tokens here. So, this is a if you look at this output and compared with the previous one,

now you can see earlier in the previous one we did not have opening brackets as the token, now

here opening bracket has been combined with emma here. So, that is because of the you know

the pattern you know that the change the pattern.

And therefore the output in terms of what tokens that we are getting that is also you know

changed. So, this is another approach, so let us move forward, now in this we can also using the

previous output that we had regex_wt1, we can also get a start and end in dices here of each

token. And so for this we can use this span_tokenize method and of the we can you know call

on this regex object regex_wt1.span_tokenize and pass on emma and we will have the start and

in and dices of each of those tokens.

So, let us say clever, start and dice and dice index value per c and in index value for r, so in this

fashion for all of those tokens will get those in dices and list of end dices. So, let me run this

and let us have a look at those in dices you can see 0 5 6 8, so in a sense you are you know it

will get the kind of idea the kind of number of characters that are part of those tokens. And you

can use this also to construct the tokens here again or even modify the tokens here again.

So, we can use this list to comprehension here emma start colon end and for a start comma end

in what in dices. So, in this fashion will be able to produce the you know kind of similar output

here that we had. So, using a start and in end dices also you can clearly see that we have been

able to produce the same output. Because it is coming from the same approach only the

different functions, combination of functions and code that we are using here, so you can see.

Previous output that we had here the tokens you can see first token I might had the opening

brackets also. So, in this case that we have using start and end dices here also you can get this

similar.

(Video Ends: 30:52)

So, we will like to stop here and in the next lecture we will continue to discuss about word

tokenization using an another approach fourth approach, so let us stop, thank you.

Keywords: Natural Language Processing, expression, string, sentence tokenization,

object, array.

