
Business Analytics and Text Mining Modeling Using python

Prof. Gaurav Dixit

Department of Management Studies

Indian Institute of Technology Roorkee

Lecture-34

String and Text Processing-Part II

Welcome to the course business analytics and text mining modeling using python. So, in

previous lecture we were discussing regular expression and we talked about certain important

methods and certain examples of regular expression. And how they can be really useful in terms

of you know processing text where you know slightly complex text manipulation is involved.

(Refer Slide Time: 00:48)

So, we will continue our discussion from the point where we stopped in the previous lecture, so

in the previous lecture we were using a sub method for another kind of functionality where we

are able to you know segregate different components of email addresses. And also create a

mapping with you know various symbols /1, /2, /3 and mapping with the different components of

the email addresses, so we produce that output.

So, let us move forward now we will take another approach, so in this we are using this another

example where again we are doing similar kind of things segregate pattern components but the

text is different smaller text.

(Videos Starts: 01:31)

This is we are using to demonstrate the match method and how match method can actually be

used to achieve the same thing segregation here of pattern components. So, this is for match

method also it has this additional functionality of segmenting pattern component into groups.

And again this will return a match object and that match object is to be you know processed to

actually achieve this segregation.

So, let us call this regex2.match on text 2 and we will have this match object you can see here.

Now we can call groups method for this match object and that will actually give us the

component. So, we can call m2.groups here and you can see in the output we have got different

components in a tuple. So, this in this fashion even match method, so we looked at some method

sub and find all method to achieve this.

Now in this particular lecture we saw that how match can also be used to segregate different

pattern components. Now we will move forward now we will talk about vectorized string

operations, so will focus on sting operation on series and data frame objects. So, let us take

example, so what we are going to do here we will create a dict object here, that is comprising of

email addresses.

(Refer Slide Time: 02:45)

So, we are using key value pair combination here ramesh for example name is key and then

email ID is actually the you know value here. So, we can create a dict object like this and let us

you know see the output you can see, so this is the dict object now you can use this one to create

a series and this is the series that we wanted. Now we will talk about you know vectorized of

certain vectorized operation that we can perform.

So, on this series if we want to find out whether there are any missing values or not, so in one go

in essence a vectorized operation we can call is null you know method here. And in one go for

each of the rows that are there in the series object will get the Boolean output whether missing

values are present or not. So, if I call this is 3. is null and you can see for each of the row and we

will get this output.

So, for one of the rows we have got true, so for one of the rows email addresses missing, in this

fashion in a vectorized fashion in a vectorized approach we can actually produce in one go we

can find out where the missing values are. Now let us focus on some other aspect which are also

related to vectorized operations. So, now we will use the str attribute of series objects to you

know call certain methods related to a string operations.

So, advantage of these method is that they skip na, so you know string and regular expression the

method if there are nas they might fail. So, which is in the analytics context it might be the case

that we might be dealing with a number of nas we might have a number of nas in our data. So, in

those situation the methods you know with the str attribute they could be really useful because

they do not you know they skip an nas.

So, let us take example we can check whether strings have a particular you know term. So, for

this we can use this contains method, it will return a Boolean array, so for all the you know rows

that we have in the series object. In one go we can find out using the str.contains method whether

a particular term let us say gmail is present in all of the email addresses or not.

(Refer Slide Time: 07:48)

So, I can call like this series 3.str.contains and within the parenthesis the argument the the term

that I want to you know I want to find out whether it is present or not gmail here. So, if I run this

you can see first in a row we did not have gmail second, third we had, fourth is was nan, so you

can see even with the na values it just worked fine. Now let us again use a regex expression here

to segregate components.

Here we are using string literal in this regular expression, so let me define this and here we are

calling str.findall methods. So, just like the string method the you know just like their regular

expression method we had these methods findall method we had there also for here also the str

attribute method we have findall as well. So, we can use this to drip all pattern occurrences in

each string, so we can call this method like this series3.str.fineall.

So, we can pass on the pattern here in which we justify, so in similar fashion here, so you can see

in one go for all the rows in a string we are able to you know segregate we are able to detect all

pattern occurrences segregated pattern occurrences here as you can see in the output. Now let us

take another example vectorized element access, so whether we would be able to access you

know each you know element there, so let us take this example match method.

So, whether we can call this method to find whether easy string matches the pattern, so a boolean

output is going to be return here. So, for each of the each of the row that we have any in the

series object will you know use this pattern and this method to match whether you know email

address whether that is matching the pattern or not, so we can call like this series3.str.match first

argument pattern.

(Refer Slide Time: 13:09)

If I run this you can see the Boolean output you know here and you can see that for first 3

address for first 3 rows we have the email address pattern is matching the email addresses. Now

another important method get method is there that we can use to actually you know access

elements of this string. So, all the string values that we have in the different rows of the series

they can actually be accessed using this get method.

So, we can call like this series3.str.get and we can specify 0 to indicate which element in this

string we can access, so 0 that means first element. So, if I run this in the output you can see you

know the values the email addresses that we had the first character of that in those email

addresses has been produced in the output. Similarly we can pass on another index here

series3.str.get1, so that means second element in those strings for email addresses should be the

output.

(Refer Slide Time: 19:20)

So, if I run this you can see in the output we have got the second element, similarly we can also

use the index you know directly here instead of the get method. So, we can call like series3.str

and we can specify the index let us say 2. So, third element in those string values will be the

output, so this is how in vectorized accessing elements in a vectorized fashion can be achieved

here for each of the rows we are able to produce the output.

Slicing a string, so again here also we can use the you know earlier syntax that we have been

using with other data structures here. Here also a series3.str and within brackets we can specify

column3 and only those only up to those characters are going to be kept here. So, if I run this you

can see in the output 261 that we are left with just you know 3 characters in each of the row, now

that was about a string and text processing.

Now we move to the next aspect that is categorical type, so just like in our other courses business

analytics data mining modeling using R where we talk about the categorical type. And we talked

about how R platform can actually you know facilitates conversion of you know variables which

are typically you know which would typically have values either in the string form or the

numeric value type or the string value type to actually convert them into a categorical variable.

So, just like R platform in python also we have this categorical type and it has certain benefits

also. So, it can yield significant performance improvements for analytics context, so typically use

for holding data that uses the integer based categorical representation, so that data can actually be

used. Binning function that we have previously discussed cut and qcut, so those functions also

written categorical objects.

(Refer Slide Time: 23:43)

But at that time we did not focus on those you know a categorical type aspect of those functions.

Now in this particular section we will talk about the categorical type. So, let us take an example,

let us take a basket of you know fruits where we have this variable list variable fruits list of you

know different fruits are mentioned in the values part apple orange, apple apple, we are

multiplying by 2.

So, we will have more number of elements here and we are recording a length of this fruits

variable this list very variable here also. And then we are defining a data frames, if you look at

the data frame in the first you know column is fruit and there we are using this fruit list variable

for values then basket id, np arrange then per count you know we will taking random numbers

and then uniform distribution for weight.

So, we will have and column we are also specifying the column names here using the columns

argument. So, if I run this in the output we will have this data frame you can see basket id and

fruit count and weight. So, we will focus on the fruit variable that fruit column that we have

because we will focus on how we can actually if you look at the fruit column it is filled with

string values.

And we look at the unique or distinct values that are present in the fruit column, so these are only

2 apple and orange. So, this fruit variable can be treated as a categorical variable, so for more

understanding on categorical variable you can refer to my previous course business analytics and

data mining modeling using R. However here our focus is on how we can convert this fruit

variable which is actually having a string values here into a categorical type.

So, converting fruit column into a categorical type, we can use astype method and there we can

specify the type. So, fruit_cat this new variable that will create d15 and the column fruit and we

are calling this method .astype and passing on the first argument the type category. So, this will

actually convert this column into a categorical type of higher if I run this will have fruit_cat and

if you look at the output you will see that name is there fruit dtype data type is category you can

see that has changed and categories are also mentioned.

(Refer Slide Time: 28:18)

So, 2 categories are there apple, orange, so you can see this you know fruit you know column

that we had with the string values. Now it has been converted into a categorical type with 2

categories apple and orange. Now as we know that we have values attribute you know, so in this

case this values attribute of this variable is actually a categorical object. So, fruits_cat.values, so

if you look at this you can see this list of these labels apple orange, apple apple, apple.

And so all these labels are there and you can see the 2 categories there, so this is a is values

attribute is a you know categorical object. You can look at you can use the type function to find

out you can pass on the cat1 and find out the type of object and you can see output 266 it is a

categorical one. Now let us talk about the attributes of a categorical objects, so there are 2

important attributes that will discuss categories and codes.

So, in the categories attribute as the name says will have the list of you know categories that are

there in that categorical variable or object. And in the codes will have the you know the values

that are there in that variable. So, all those would be coded using numeric values, so will have

numeric codes in a sense for all the values that are present and for that for you know variable.

So, let us first execute cat1.categories, if I run this you can see in the output apple and orange we

have these 2 categories. Similarly cat1.codes and you can see 0, 1, 0, 0, 0 and 1, 0, 0, so you can

see that apple. Now if you can compare this output 268 with 265 and apple is you know apple is

for apple we are using numeric code 0 and for orange we are using numeric code 1.

So, it is just based on the ordering because in the categories ordering it was alphabetical happen

an orange and here the ordering in the numerical fashion 01 in that way. So, therefore apple is

associated with 0 and orange is associated with 1 here. Now we can if we want to directly you

know convert the data frame column instead of recording that column into another variable, so

we can do that also.

So, we can type like this d15 within brackets fruit and then on the right hand side d15fruit.astype

category. So, in this fashion will be directly in the data frame itself that particular column will

become a categorical type. So, if I run this you can see the similar output now but the output this

particular you know change this work particular converge into categorical type is going to be

reflected in the data frame itself.

Now let us talk about how do we create a categorical object, so there are certain mechanisms

which can be used to create categorical objects. So, first one is from sequences, so we can use

categorical function to actually create categorical objects form sequences. So, let us take the

sequence where we have a list of string values a young, young adult, mid aged young, young

adult.

So, you can see there are 2, 3 you know distinct values here 3 distinct values to be precise and

you know, so this is a categorical variable this with you know the categorical variable with 5

values 5 rows. We can use categorical function here to actually create this categorical object and

if I access this cat2 you can see that on the values and the categories 3 mid aged young and

young adult.

So, using categorical function we can create a categorical object from a sequence it could be the

categorical variable with all the values that are there. Now let us take another example, so one

thing is passing on the sequence of values and the categorical function would be able to you

know extract the distinct values and create you know categories from there.

Then another approach could be that we can define categories and codes separately and then use

another function which is categorical from codes. So, there we can pass on these 2 separately

codes and categories to create a categorical object. So, in this case we are defining categories as

these 3 C, B, A 3 categories and we have codes like 0, 1, 2, 0, 0, 1. So, we can use this

categorical from codes function and pass on these 2 argument to create this you know categorical

object.

(Refer Slide Time: 31:30)

If you look at cat3 you can see that C is if you compare you know the output then C is associated

with 0 then you know B is associated with the 1 and then A is associated with 2. If you look at

the categories output in output 194 you can see C, B, A and the values you can see the code that

we had 0, 1, 2, 0, 0, 1 those have been replaced as well. So, in this fashion you know we can use

this function and create a categorical object.

Till now these 2 examples that we have taken where we have created categorical objects, these

are categorical variables of one particular type which is referred as nominal variable again

nominal variable for more details you can refer to my previous course. And so here till now we

talked about nominal my level variable, now it is also possible to create a ordinal variable where

the categories that will have, they will have meaningful order among themselves.

So, creating a categorical object with a specific ordering of the categories, so essentially an

ordinal variable. So, for that we can use the ordered argument, so in the function categorical

form course which we just now in the previous line of code we had used. There we can pass on

third you know argument ordered and we can specify true. So, whatever categories are there a

particular specific ordering is going to be you know implemented there.

So, if I run this you can see in the output 275 categories 3 and you can see C <V<A, so you can

see in this fashion a particular ordering among categories is also there. So, we have created

essentially an ordinal variable using this particular argument ordered. Now for other function

also pd categorical for this also we can other example that we had there also if we can specify the

ordered argument then using this also we would be able to create a ordinal object ordinal

variable.

(((Refer Slide Time: 33:35)

So, cat5 you can have a look, here also you can see mid aged then young then young adult. So,

you can see this in this fashion you know a particular specific ordering has been implemented

here. Now let us talk about you know converting so many times we will have the categorical

variable the nominal variable unordered categorical variable which is nominal variable. And you

would like to convert it into an ordered categorical variable which is ordinal variable, so for that

we can use as_ordered method here.

So, we can call cat2.as order, so cat2 we saw previously we had created that was an unordered

categorical variable. So, we can call this method and convert into 1 as ordered in ordinal

variable, so I run this and you can see in the output 278 and you can look at the categories. And

you can see the < sign is there mid aged less than young then yes young adult, so and a specific

order has been implemented there.

Now till now if you have a look at typically we have been using strings for to a specify the to

indicate the categorical data. However this is non necessity we can use any immutable value type

to actually create a categorical object. So, we will take another example and we are calling

categorical function and we are passing a list of values which are actually numeric values.

So, these values also we can use to create a categorical variable here, so let me run this and if

you look at the output you can see the values are like -1, 0, 0, 1, -1 and you can look at the

categories. So, unique distinct values -1, 0, 1, so it is not necessary that data categorical data has

to be in the string format it can be numerical also it should be immutable value type. Now this

was about the categorical type and there are certain associated methods also categorical methods

also.

(Refer Slide Time: 34:00)

So, sometimes they are going to be really useful, so let us take an example you know for

example if we want to reset the categories that are there or we would like to add a category. So,

for that we can use set_categories method, so let us say cat3, so this we had created earlier and

you can see in the output to weight 281, we have category, 3 categories CBA and we can add 1

or more category here using set categories methods.

So, we can call cat 3.set_categories and you can see we have change the ordering also ABC and

then added another category d here. So, if I run this in the next output to a 283 you can see we

have 4 categories ABCD in this fashion you can see we can modify or add categories using this

particular set_categories method. Now if you want to look at the counts, so of course because we

have added a category but the associated values are not there in the variable.

So, if we call this method value_count, so the frequencies for the fourth category that we have

just now added D, it is going to be 0. So, A is present one time, B is twice, C thrice, D is not

present, C is not present any you know in once, so this is how we can add few more categories.

Now let us talk about trimming you know unobserved categories, so when we are typically when

we are dealing a larger data sets and there are you know a variable with a number of categories

and you know some of those categories if they are not present.

Then certain situation we would like to trim those unobserved categories. So, for that we have

another method _ remove_unused_categories method, so we can call this. So, in the previous

example we had added 1 category d, so which was unused because there were no values present

you know associated with that particular category. So, we can remove that one, so cat.7 remove

and respond use categories, so it will find any such categories and trim it off.

So, if you look at the output 285 again we are left with just 3 categories ABC. Now let us move

forward, now the next thing is about creating dummy variables. So, this part we have discussed

before also but in the context of categorical type at categorical objects that we have just

discussed, we will go through this again. So, let us take cat3, so in this particular categorical

object we had these values these 6 values and 3 categories CBA.

Now we can call the pandasget_dummies function here and we can pass on this cat3 this

particular object here, categorical object here. And it will create so it has 3 categories there, so

using get_dummies you know method function here will get 3 dummy variables in a data frame.

And I am using prefix argument as well, so all those categories would be prefixed with the

variable name cat3.

So, if I run this just like we have done before you can see in the output that we have got 3

columns cat3_C, cat3_B and cat3_A and dummy variables has been created presence or absence

of that category in the variable, so you can see that here. So, this concludes our discussion on

working with data, so various aspects related to data management we have been able to cover.

So, now we will move to another important aspect that is related to you know visualization

techniques R plotting in the python environment. So, 1 or 2 examples we have seen before also,

so in this lecture itself we would like to briefly touch upon this more details will come in the next

lecture. So, first thing is whenever we would like to create plots in the path python environment.

So, the most popular you know library package is matplotlib, so we will talk about that even the

pandas has certain you know features certain functions to achieve this. So, we will talk about

those also, so let us start with the matplotlib, so to be able to use this macro not matplotlib in the

you know Jupyter environment. We will have to use this magic (()) (28:01) matplotlib notebook

however in newer versions it might not be required.

So, let me run this and then the require library modules matplotlib.py.plot as plt and because we

would be using a lot of you know numpy functions, so let us load that one also. Now let us take a

simple example we will try to create a simple plot, so first we will generate data for that, we will

take an array Array1d np.arrange function and 10 values for this array, you can see the output.

So, we can use as we have discussed zone before also, the function is plt.plot we can pass on this

variable array 1d. So, this is you know if we do not specify the we do not specify the variable for

the other access. So, we need to specify for both the access if it we do not specify for the other

one the whatever is possibly copied over for both the access. So, if I run this you can see that we

have generated one plot you can see this is a line passing through you know origin 00 and this

plot has been generated in this fashion.

So, this is how the plotting will work in this using this purple library. Now we will talk about

few more aspect here, for example figure object, so this particular plot which we just now

generated it is actually created in the frame which is defined by this object figure object. So,

whenever we are looking to generate more number of plots more number of subplots will have to

work with the figure object you know where these plots will typically reside.

So, how do we create this, so creating a figure object we can call this figure function, so

plt.figure and will get a figure object which we can you know later on use to create more number

of plots. So, let me run this and will have fig object and you can see once we run this we have a

empty figure here without any plots, so let us move forward. Now we will have to add access to

the figure object, so for that we can use add_subplot method.

So, in this we have you know 2 first and second argument they will actually be use to specify the

grid. So, across how many rows we want and how many columns we want, so that will also

define how many subplots you would be adding. So, first and second argument will actually

specify that number of rows and columns in the figure object. So, let us say you know we want 4

plots we can have 2*2 configuration or it could be you know 1*4 configuration as well.

So, let us go with 2*2 here the third argument that is typically use to specify the index position in

the grid. So, we can call like this fig.fig object that we had created.add_subplot, first argument 2

number of rows, second argument 2 number of column and then the index position. So, if I run

this and if I go here in the output figure 2 you can see in the index position 1 a plot subplot has

been added and added with respect to about this configuration to do.

So, in the same figure we can you know add another one, the next you know index and another

one at the next index and we can have a look at the in all 3. So, you can see that we are added

subplots here, so XC essentially XC is have been added for these 3 subplots. Let us move

forward now we can go ahead and you know if we have any data we can use this fig object to

you know create those plots.

So, if we do not specify further the by default the last subplot that we have used that will be use

to generate another plot.

(Video Starts: 32:29)

So, we will stop here and in the next lecture we will use some data and we will see how we can

actually generate these plots using figure object, thank you.

Keywords: Numerical python, multiplication, data mining modeling, attributes, Extraction,

Error handling, String, Categorical value, Qualitative and Quantitative techniques.

