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Welcome to the course business analytics and text mining modeling using python. So, in 

previous few lectures we have been discussing the aspects of working with data. Specifically we 

stop at this point we want to discuss the meaning of continuous variables. 

(Refer Slide Time: 00:37) 

 

So, with pickup on this point itself, so as you might understand that you know 2 types of 

variables continuous and categorical variables like we have discussed in our previous courses 

business analytics and data mining modeling using R. So, many times if we are require to 

perform binning of continuous variable that means we are require to transform continuous 

variable as a into a categorical variable. 

 

So, for that we will have to create categories will have to create bins that means those category 

and those groups we also refer those groups as bins. So, we will have to you know perform all 

that. So, how do we you know complete that process and automate that process using in python. 

So, for that we have you know few examples here. 

 



So, let us talk about this variable ages, so let us say we have these ages of you know certain 

points certain individuals, so this is list of you know these values. 
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So, let me create this variable here ages and let us say we want binning bin lengths of these bins 

of this interval let us say 18 to 25 then 26, 35 etc. so on. So, we can specify the bin s is here, so 

for example you know first bin is starting 18 and ending 25. So, we can note down these end 

points here and specify that in a variable let us say bins. 

 

And these edges are going to be use to create you know these you know groups or categories or 

bins. So, let us define bins as well, so if you focus on the bins that we just refine 18, 25 then you 

know 35, so depending on the bin lengths that we actually wanted. So, based on those bin lengths 

we can define these bin edges and then these bin edges are going to be use to cut the variable, the 

continuous variable into appropriate bins. 

 

So, once we do this ages variable can we call age, groups variable . So, for this to perform this 

process we use cut function, so this is a pandas is a function pd.cut. And first argument we are 

passing the variable ages the continuous variable which we want to cut where we want to 

perform binning. And then we also specify our bins that means bin edges which we would like to 

you know follow to actually perform the binning on the first argument you know the variable 

ages here. 
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So, if I run this will end up with will have the binning here, so if you look at this the ages 

variable that we had you know 12 values there and in the output 2, 3, 2. If you look at the first 

value which was actually 20 has now been replaced with it is a bin which is starting from 18 to 

25, so that group. And similarly 22 is also falling in the same groups, so the same you know bin 

there similarly for 25. 

 

For 27 this will change, so you can see the change in the category 25 to 35. Then again 21 in the 

first group 18 to 25, so in this fashion all the 12 values they have been put into their appropriate 

bins as per our specified bin edges as per our you know bin lengths. So, finally we are end up 

with 4 intervals, so when we specified 5 bin edges, so essentially will have you know you know 

4 groups there. 

 

So, you can see those categories are also specified and 18, 25 and 25 to 35, 35 to 60, 60 to 100, 

so if you look at this is underscore groups. So, this has become a categorical variable rather and 

ordinal variable because as you can see in the category the order is important 1 group is lower 

than the you know other 1 category can be considered as lower in comparison to other 

categories. 

 

So, this is the ordinal variable the ages has been we have been convert age into an ordinal 

age_groups variable. So, in the analytics sometimes we are require to perform this kind of data 



transformation. Now if you want to have a look at a nicer presentation of you know age_groups. 

So, for that we have course attribute, so in this course attribute instead of mentioning the bin 

interval we can have the numeric course to represent those you know those bins. 

 

So, instead of 18, 25, 25 35, 35 60, 60 100, we can have 0, 1, 2, 3 to represent those intervals 

there, those categories. So, if I run age_groups.codes will have you know 12 values with these 

numeric codes in this form. Similarly we also have another attribute categories which will again 

just inform us about the intervals that we have. So, if I run this we will have all the categories of 

the data there in age_groups as you can see. 

 

Now we can also compute frequencies for different categories, different bins of age groups. So, 

for that we can call this pandas function value_counts and we can pass on this variable 

age_groups. So, if I run this we will have in the as you can see in output 2, 3, 5 for each of the 

interval for each of the you know bins or categories that we have created we have the frequency 

numbers. 

 

So, 18 to 25 5 instances of this particular category, second one 35 to 60 you know 3 instances 25 

to 35 3 instances 6 to 100 1 instances. So, in this fashion we can compute the frequencies , so 

this is similar you know this data is similar to what we typically observed in a histogram , so this 

is how we can actually perform this. Now if we look at the intervals the way they were created 

the bin intervals the open close sides. 

 

If you want to change that we would like to you know if you look at the default thing the starting 

side is the you know open you have parenthesis that means open side and the closing side is 

brackets that means you know close side. So, that means inclusive side also, so if you want to 

change this you know interval you know sides uh. 
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And how whether they are going to be open or close, so that can also be done, so by default left 

side is open and right side is closed. So, we can use right argument in this cut function to specify 

this, so the next line of code you can see that pd.cut we are going to do cut. Now in this case we 

are using ages and those bin bins also been edges also and right argument is indicated as false. 

 

So, therefore now right will be close site here and the other side would be reversed. So, if I run 

this you can see the bin intervals the way they have been defines that is actually has been 

changed. We can also change bin names, so instead of using these you know values to indicate 

the interval we can have slightly qualitative terms to actually you know define these intervals. 

 

So, for example 18 to 26 we can call this age group as youth 26 to 36 we can call this age group 

as young adult 36 to 61 we can call this age group as middle aged and then 61 to 100 we can call 

this senior group. So, this is the qualitative term for defining these you know these intervals 

which are right now using numeric values. So, for this we can use the labels argument in the cut 

function, so whenever we are creating these bins using pd.cut we can use this labels argument 

and specify this. 

 

So, if I run this one, so you can see the all the 12 values that we havd in the ages variable . Now 

it has been converted into let us say age_groups kind of variable and the values now the 



qualitative terms the linguistics terms are being used here youth youth youth for those values 

young adults and in this fashion. Now if you look at the categories also, so these labels are being 

used, now instead of the intervals with the numeric values. 

 

So, youth less than young adult less than middle age, less than senior, so in this fashion we 

would be able to create the binning and rename them using linguistic or qualitative terms as well. 

Now we can also create if we just if we do not want to specify the bin length or bin edges we can 

just specify the number of bins that we want. So, those if we just specify the number of bin, so 

equal length bins are going to be created. 
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So, this can also be achieved so using same cut function so let us take a example here. So, now 

we will use var2 will take random values following uniform distribution, so var2 and what we 

will do we will create 4 bins. So, in the pd.cut function will pass that value 4 to indicate that we 

want 4 bin, so it will create you know equal length bins for us. And that argument if you look at 

precision that is just to indicate the decimal points that we want in our output. 

 

So, if I run this will have you know different bins and these are equal sized bins, so you can have 

a look at this 0.18 to 0.38. If you look at the categories, so we have 4 you know categories here 

then 0.38 to 0.58, 0.58 to 0.7, 0.78 to 0.98. So, you can look at the length of these bin intervals 



that is equal here and appropriately the age values of the age variable they have been you know 

classified with one of these categories. 

 

Now the bin lengths can also be based on sample quantiles so there also even if we apply sample 

contrast we are going to you know typically will or roughly we get equal length bins. So, for that 

we have another function qcut function which is going to use this quantas. So, let us for take this 

example for this variable that we had just created var2. So, var_groups so this is the you know 

categorical variable we can create using pd.qcut function. 

 

First argument we are specifying the variable and then second one the number of groupings that 

we want, number of bins that we want. So, let me run this and you can see that if you look at the 

categories and these specific values side change from the previous output 39, you can compare 

the categories into 39 and 240 there we are 0.18 to 0.38. Now we have 0.182 to 0.331 and 

similarly for others also. So, you can see here, so slight of course you know slight changes in 

terms of you know bin length. 

 

However if you know look at the frequencies for bins here so that is the advantage here using the 

sample quantiles here. So, if I run pd.value_counts here, so you can look at the frequencies. So, 

you can see same innings of these groups that are based on sample quantiles you can see 5 values 

in each of these groups. Now we can also specify our own quantile, so we can use the same 

function pd.qcut. 
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And in the second argument instead of asking for a number of you know bins. For example in 2, 

4, 0 base specified we wanted 4 bins using sample quantile. We can specify the quantiles itself 

using a list, so you can see 0.25, 0.5, 0.75 and 1, so 5 values we have been specified. So, 

essentially we are looking for 4 bins using these sample quantiles, so if I run this and you can 

have a look at the output you can also compare the output 2, 4, 0 and 2, 4, 1. 

 

If you look at both the outputs are same, so essentially when we called when we ask for 4 bins 

using the pd.qcut function and did not specify the actual quantile it was taking these quantiles 

itself these 0 to 0.25, 0.5, 0.75. So, these quantiles are by default taken if we do not specify the 

quantiles in the qcut function, so if you want different quantiles you can always go ahead and 

specify the same. 

 

So, this was about binning of continuous variables and different variations different approaches 

that we can take to perform these binnings and transformation that we talked about. Now let us 

move to the next aspect and now this about finding outliers, so outlier you know detection and 

replacement is an important task in the analytics domain. So, to demonstrate this let us take this 

example here in this case we have 1000 cross 4 you know array with these dimensions. So, let 

me define this I can so typically when we are looking when we are analyzing outliers. 



 

Typically we will like to have a look at the descriptive statistics, so in this case for this data 

frame df11 will like to call this with this method describe and we will have a number of you 

know multiple statistics here. So, you can have look here count, mean, standard deviation mean 

25 percentile, 50%, 75% in max. So, you can have a look at these multiple statistics and these 

statistics in a way can indicate the presence of any outliers there. 

 

So, higher you know higher max value and a lower mean might indicate that there are outliers. 

So, for example if we have a look at the mean values at different columns, so they are in the 

range of let us say 0.49, 0.003 and if you look at the you know maximum value in these columns, 

so those values are going in the range of you know 2.98, 2.74, 3.05 and 3.45. Similarly mean 

values also they are going in the negative direction -3.57, -3 all of them are you know in the 

absolute sense they are above 3. 
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So, you can see that mean is quite low and mean and maximum value are on the higher side, so 

there are chances that outliers are present in this particular data set. So, how do we find out you 

know these values which are exceeding let us say 3 or -3. So, let us find out values which are 

exceeding 3 or -3 for a particular column, so as you can look at the mean statistics for all the 

columns there are values which are exceeding you know which are actually exceeding 3 in the 

absolute sense. 



 

So, let us pick the column with the index 2 column 2 that is third column, so what we will do 

df11 and will specify the index to pick that column. And within the brackets now we are taking 

an absolute of this particular columns values and then comparing it with 3. So, for any values 

where the values greater than 3, so those rows are going to be defined as true and those would be 

selected. 

 

So, if I run this you can have a look at the output 2, 4, 5, so we have 2 rows, 2 9 8 and 7 51 with 

row index 2 9 8 and 7 5 1 and both of them are form the column 2 and having values you know 

more than their absolute value is more than 3 you can see -3.06 and 3.05. So, in this fashion we 

can filter out these outliers, now we can apply the same thing for all the columns. So, you can see 

here df11 absolute value.any one. 

 

So whereas we are specifying the x is and we can done it here and you can see that. So, you can 

find out here again from the output, so all the rows where we have at least some value with 

greater than 3. So, exceeding 3 or -3, so you can see so all these row indices are there in the 

output as you can see here. So, total we have 13s as rows where this is happening in 1 or more 

columns. Now let us move to you know another aspect here. 

 

So, one thing is to find out these outlier and then sometimes you would like to change the values 

also depending on the our you know modeling requirement. So, for a given range we can modify 

value, so let us say if there are any values which are outside the range of -3 to 3. So, we would 

like to replace them with you know all those values as either -3 or 3 depending on the sign. So, 

we can record the sign using the sign function and then we can replace the value with either 3 or 

as we can replace the value with 3./ 
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And sign will record using np.sign function here. So, the next line here we are actually 

performing that thing. So, we have first in the you know identifying in the left hand side all the 

rows like the previous output where the values are greater than 3 . And then you can look at right 

hand side we are recording the sign for those and then multiplying it with 3 value. So, if I run 

this and let us have a look at the describe method output here again. 

 

So, you can see that minimum value, minimum statistics for all the columns and maximum 

statistics for all the column, now it is within -3 and 3. So, in this fashion what we have actually 

done we have replace all the outlier values , values which were exceeding 3 or -3 with actually 

those numbers -3 and 3 itself. Now let us move to another aspect which is about random 

sampling or random reordering of rows, so this is also very important. 

 

Because we typically will be dealing with larger data sets and therefore we would be drawing a 

sample points from there. So, typically we do random sampling so how do we perform this in the 

python platform. So, let us take the example of this data frame, so this data frame we have 5000 

rows and 4 columns. So, let me first create this one, so you can have a look 5000 rows, 4 

columns here. 

 

Now first thing that we will like to demonstrate is randomly sampling and rows without 



replacement. So, this is the more common exercise more typical exercise in modeling context 

where we randomly draw sample points, randomly draw cases so let us say n rows of without 

replacement. So, for this we can use sample method and let us say we would like to draw 500 

rows out of 5000 rows that we have in our data set. 

 

So, for this we can apply this we can call this method sample df12.sample and we can specify in 

the keyword argument and the number of points that you would like to sample 500 in this case. 

So, if I run and you can have a look at the output 250, so if you focus on the row indices here 

these values have been randomly indices have been randomly drawn from 5000 rows that we 

have. 
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So, you can see the random index values are starting like 1180, 3329, 2319, 3968, so all these 

seem to be quite random. And therefore the sample method is able to provide us you know those 

you know rows. Now sometimes we would like to you know we would like to draw these cases 

with replacement. So, for that we have this replacement argument, so we can specify replace as 

true, so again same method df12.sample n=500 and replace true. 

 

So, in this fashion if I call this method you would see the output is going to be based on that 

process. So, again you can see because this is also a random sampling here different row index 

values we can see in the output as you can see in 2, 5, 1. Now let us move forward to the next 



aspect which is about random reordering of row indicer, so if you want to certain situation you 

would like to perform this also. 

 

So, for that we have this permutation function , so to demonstrate this we will take this define 

this data frame df13 we have 5 rows and 4 columns in this data frame. And what we can do is we 

can if you want to perform a random permutation we can call this np.random.permutation and we 

can specify the number of rows there. So, we have 5 rows, so if I run this will have the randomly 

drawn reorder for these row indicers. 

 

So, if you look at the output 2 5 3, now 3 is coming first then 4 then 0 then 1 and 2 . Now I can 

use the reindex method here to actually use this random permutation here, so I can call 

df13.reindex and I can pass on this random permutation that we have just drawn and I can run 

this and you can see. Now you can focus on the output 2 5 4 and specifically the row indices, so 

you can see 3, 4, 0, 1, 2. 

So, those random permutation of re random reordering of rows have actually been executed. 

Instead of reindex method we can also use the take method here, so df13.take we can pass the 

permute and will get the same output. So, let move forward now next thing is about dummy 

variables. So, as you would understand that in the analytics context we would be dealing with 

categorical variables. 
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And typically in most of the software, most of the implementations of algorithm whether 

statistical or data mining. Typically, categorical variable they are converting into dummy 

variable and so how do we perform this process. So, this so dummy variable this is about 

converting as you can see in the comments converting categorical variables into dummy 

variables. So, what are dummy variables they are going to be filled with 1s and 0s. 

 

So once we indicate the presence of that category in a row observation or case. And zeros will 

indicate the absence of that category in a row or case in a particular observation. So, given 

categorical variable and it might be having values like you know if there are you know 4 

categories. So, those categories we might have numeric codes like 0, 1, 2, 3. So therefore these at 

particular column for that categorical variable might be filled with these values 0, 1, 2, 3 you 

know for different observation different value. 

 

Now we would like to convert such a column into dummy variables where for each category will 

have a you know separate different dummy variable. And in each of those dummy variable the 

values would be either 0 or 1 one were indicate the presence of that particular category for that 

row and 0 will indicate the absence. So, that is the kind of transformation that we are require to 

perform in dummy coding. 

 

So, let us take a categorical variable with k distinct values that means category corresponding to 

categories. So, we will take this data frame here, so if you look at here we have this 1 column 

with variable and it has you know 3 distinct values a, b, c and we have 6 rows. So, we can use 

get_dummies function which will actually perform this dummy coding for us. So 3 distinct value 

as I talked about a, b, c. 

 

So, I can call pd.get_dummy I can pass on df14 and the column name var here. So, for this 

column will have be dummy variables here, so you can see now in the output 2, 5, 7 3 columns 

with the name a, b, c and you can see only zeros and ones. You can compare this particular 

output with the previous output with the variable column. So, you can see for b for column a in 

the row when we have b so that means for that row b category is there, so that means a is 

absence, so that is why 0 and 0. 



 

So, or in other way you can map it like this for column a wherever 1 is present that means in the 

column variable a would be indicated. So, you can check it back with the var column, so you will 

get the idea about what we are trying to do here. Now while we are creating these dummy 

variables we would like to sometimes we would like to rename them as well. And in this 

renaming you know most times more often the typical practices that we would like to prefix 

these dummy variables with the variables name. 

 

So, for that we have this prefix argument in the get_dummies function, so we can use that, so 

pd.get_dummies df14 this variable and we can prefix var here. So, if I run this you can see in the 

output 2, 5, 8 and you can focus on the column names here. So, they have been changed from a 

to var_ab2 var_b and c has been change to var_c. now we can combine dummy creation and 

binning process. 

 

So binning is about you know converting a continuous variable into categorical variable. But 

eventually when you convert it into a categorical variable you will also be doing dummy coding. 

So, why not combine these 2 processes, so we can use of combination of get_dummies and cut 

function and perform this. So, let us take this variable 3 and these are the values and let us take 

this binning for this you know variable these bin edges. 

 

And if we perform the binning on this variable 3 using this bins let us have a look at the output. 

So, you can see pd.cut upto 262 you can see how this binning has work, now let us combine. So, 

if you look at how we are combining this, so we are calling pd.get_dummies function. Because 

this is the later process, so within this we are passing the pd.cut because this will give us the 

categorical variable. 

 

So, essentially categorical variable is input for the get_dummies you know variable to produce 

the dummies. So, the pd.cut output of that particular function is going to be the argument for 

get_dummies in this case. So, if I run in this fashion you can see the column that we have just got 

in the output that you know you can see focus on the column names 0000.2, 0.2 to 4 0.4. So, you 

can see all those you know bin edges that we have they have bin intervals have been created. 



 

And those are being used as the column names. And dummy coding has also happen for each of 

these column names we have we are filling the zeros and ones. So, indicating the presence sort of 

sense, so in this fashion we can in one go we would be able to convert the categorical variable 

into continuous variable to categorical variable and also transform the categorical variable into 

multiple dummy variables. (Video starts: 31:22) 

 

So, we will stop here and in the next lecture will start about discussion on another important 

aspects especially in the context of this particular course that is string and text processing, so let 

us top here, thank you. 
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