
Business Analytics and Text Mining Modeling Using python

Prof. Gaurav Dixit

Department of Management Studies

Indian Institute of Technology Roorkee

Lecture-30

Python Working with Data-Part I

Welcome to the course business analytics and text mining modeling using python. So, in

previous lecture we were able to finish another module that was on python pandas package. So,

in this particular course we have been able to cover the introductory part of the text mining and

then the python for the analytics which is the you know covering the major number of lectures in

this course.

Because the python is the platform which we would be using ex10sively for text mining. So, we

were able to cover the basics for python, the building capabilities, the numerical python package

and the pandas. Now we are coming to the part where we would be talking about how we can use

python to work with data. So, we would be starting those aspects in this particular lecture, so let

us start.

So, as you would expect that in this part we would be using some of the packages and libraries

that we have discussed in the previous lectures. So, we would be in this first thing will load

required library modules.

(Refer Slide Time: 01:35)

So, first thing is NumPy as np pandas as pd and certain library within pandas series and rid of

data frame that we would be using quite of10.

(Video Starts: 01:44)

So, let me run this, so all these are required, then first thing that we typically do is that loading

required library modules and you know. So, first thing is NumPy and pandas and then certain

library modules there, so let me run this. And the first thing while discussing about working with

data first thing will talk about the csv files many databases they are stored in csv file and excel

files.

So, in this starting lecture on working with data will focus on csv files and excel files, so let us

start with the csv. So, first thing reading a csv file into a data frame, so data frame is the

particular data structure python object where we can actually you know import the csv data. So,

let us take example of this file ex1.csv before we go ahead and import the data stored in this

particular file into a data frame in this python environment.

Let us have a look at the con10ts of this particular file, so as we discuss in the python basics

lecture we can use certain magic commands for these purposes. So, in this case we are using this

%pycat you know command here, so %pycat and the name of the files in this ex1.csv. So, if I run

this you would be able to see the con10ts of this particular file as you can see in the popped up

window at the bottom of this page that first we have ABCD message.

So, these are the headers then we have the you know 1, 2, 3, 4 hello and 5, 6, 7, 8, so these are

the values. So, small you know data said that we have in this file for a demonstration purpose, so

that you were able to see. Now looking at this file you could see that the values were separated

by commas, so what the csv related function was for example read_csv, they could be used to

actually you know import that data into a read that particular data into a data frame.

So, next line of code you can see on the left hand side we have df and on the right hand side we

have pd.read_csv. So, this is the function that we would be using within the parentheses we are

passing the you know file path of this csv data set that we have. So, in this case this file is

currently stored in the current working directory itself, so I just have to specify the file name, so

that is the path itself in this case.

So, if I run this you would be importing the data we would be loading the data into a data frame,

so you can see in the output 4 that ABCD message and the 3 rows 0, 1, 2 and the data has been

loaded into the python environment. So, this is how data stored in a csv file can be easily

imported into a data frame object in python environment. Now sometimes some of the csv files

might not be carrying the header rows, so how to deal with those scenarios.

(Refer Slide Time: 04:14)

So, let us take an example here again, so reading file without header, so we have this ex2.csv

file. So, let us have a look at the con10ts of this file again we will use the %pycat magic

command here. So, if I run this here and again you can see in the pop-up window that header is

gone, it is the same data that we use in the previous example - the header row. So, let me close

this and the next line of code they were we are calling again this read_csv function.

First argument is as usual that file name like we did in the previous command and then we are

specifying a header argument here, the keyword argument header here as none because we do

not have a header row here. Now default column names you know in case we do not have header

they would be by default they would be you know integer numbers would be used, so 0 to nc-1

that means number of columns -1, so that would be used by default in case header is not present.

So, in this case if I run this file and you can see the output the column names the column index

has changed and it has become the default one 0 to nc-1. Let us move forward, so in such

scenarios where we do not have the header row in the data set we can also use another argument

called names which will specify which will allow us to specify the column names and column

index for such data set.

(Refer Slide Time:14:11)

So, you can see here we are specifying names a, b, c, d message, so we have we have total 5

columns as you can see in the previous output. So, in this case we can specify the names for

those 5 columns and again we can use the read_csv function to read the data and the data frame.

So, if I run this you can see in the output 7 in that the header, the column names have been

changed.

Now sometimes you know we would like to you know you skip certain rows because they have

the unwanted data. Many data sets the you know people who have actually develop those data set

they typically to explain the data and the variables and many other things that are part of a

particular data set, they have comment section there. So, for our analysis purpose for the

analytics purposes those comments might not be required.

So, therefore we can skip some of those rows where the comments have been written, so let us

take example of this ex4.csv. So, if we look at the con10t of this file using the magic come

command let us have a look let me run this. And you can see the popped up window you can see

here the few comments you know are there and so we have the functionality here in the read_csv

function.

So, that we would be able to escape you know those rows having comments, so in this case we

can use this skipped rows argument here. And you can see that we have a specified those

particular rows which we want to escape, so if I run this we would be having a data frame with

just the data that we want and the comments have been skipped. Now let us move forward the

next thing that we can talk about is you know handling missing values.

So, in this particular context if you look at the default behavior here you know the typically when

we have missing values will have na or nan in the case of python. So, this is referred as a sentinel

value, so the nan that is typically used in python is actually a sentinel value. So, sometimes you

know we would like to you know change this default sentinel value and nan that is there.

(Refer Slide Time: 20:06)

And for that again we have certain mechanism we can use to change that, so let us take example

of ex5 let us have a look at the con10ts of this file. So, you can see here if we have nan all those

things here. So, if we want to change you know something like foo in this particular data frame.

So, let me first read it, read this data frame here, so you can see.

Now if you really focus here we have 2 nans in this data frame and you can see in the last

column with the column name message and the third row foo is mentioned. So, this we consider

this has to be a meaningless string you know we can change the sentinel and consider this also a

kind of na value here. So, how do we you know perform this kind of you know transformation

here.

So, we can use using we can use this particular argument nan_values to change this marking of

sentinel values. So, making meaningless values such as foo using sentinels, so we can define the

sentinels as a as a dict object here. So, you can see message column and within message column

we have passing a list of you know such values, so in this case foo. So, we would like to change

this as well to na.

So, if you look at the next line, let me first define the sentinels and the next line where we are

calling read_csp function for this file ex5.csv. And you can see that na_values argument there

and we are passing the sentinels be just defined and if I run this. In the output number 13 you can

see that the place where we had the foo the last column with the column name message and the

last row last cell, so nan is has been you know written over there.

So, in this fashion if there are other if there are missing values with others you know terms we

can convert, we can change the sentinel marking and we can you know convert them into any

nan as well which is the default term to denote, to indicate, a missing value. So, in this fashion

we can you know transform our data set, now let us talk about another aspect of analytics where

we would be dealing with larger data sets.

(Refer Slide Time: 25:03)

So, whenever we are dealing with larger data set and we just want to have a look at the data the

kind of variables and other things that are there. So, loading a large data set will take a lot more

time, so sometimes just to understand the data the kind of data that is there. It would be better if

we are able to read a sample cases from a larger data set. So, how do we perform this, so let us

talk about the so various ways we can various approaches we can take to execute this.

So, in the first approach that we are going to discuss will configure display setting, so we will

have slightly compact display setting. But mean by this we would like to reduce the number of

rows that are going to be displayed in our output here. So, this is the attribute here that we can

use pd.options.display.max_rows. So, here we are specifying the maximum number of rows that

can be displayed, so that is 10 and we can define it like this or any other number.

So, let me run this, now this is define, now will take an example of this data set ex6 which is a

slightly larger file that we will see you know we will have a look at this safe attribute and we will

find out how many rows and columns. So, I can you know first thing will load this will read this

data into a data frame, so df1 reads csv and let us have a look at the shape of this.

(Refer Slide Time:29:05)

So, you can see that df1.7 output 16, 100005 so in the first dimension we have 10,000 elements

that instant 1000 rows and 5 columns. So, this is 1000*5, so it is a large data set and we would

prefer to have a look at a smaller sample of this and not load all the 10,000 you know

observation which would be you know which will take time.

So, because we have configured the display parameters and the maximum number of rows that

we can display is 10. So, if I try to print df1 here, if I run this you can see in the output 70 how

many rows have been actually printed. So, you can see first few rows from the start of the you

know dataset and last few rows from the you know end of the data sets, you can see index you

can focus on the row indices here starting from 0, 1, 2, 3, 4 and then .. and then those observation

are not been displayed.

And the last you know 5 observation from the end of the data set 9995 and all those things. So,

you can see 10,000 rows*5 columns that is the kind of dimension we are talking about and only

10 observations have been displayed in this fashion. So, this is quite useful when we are dealing

with larger data set. Now we can achieve the same thing following a second approach, so in this

case we can use n rows argument and we can specify the number of rows that we would like to

display.

So, again while we are reading the data from ex6.csv into a data frame, we can specify n rows in

this case let us say 5. So, if I run this particular code here, so you can see only 5 rows starting

from 0 to 4 row indices those have been printed here. Now to there is another way but for

slightly different context that can also be adopted. So, in this approach what we typically do is

we use chunk size argument where we can specify a chunk in terms of number of rows.

(Refer Slide Time: 36:36)

So, a number of rows which we would like to sample actually, so that we can specify using

chunk size. So, in this case a different object is written not data frame rather a text parser object

is written. So, if we call this function pdand.read_csv and the file name ex6.csv which is the

larger dataset and specify the chunk size let us say 500. So, we would like to sample 500 you

know observation from the you know full data set.

Then this chunk is going to be returned as a tax parser object, so if I run this we will get this tp if

you want to have a look at this what is this tp about. So, you can see in the output 20, you can see

the type of this per particular python object there. Now we have a function for this kind of object

get_chunk, so that will allow us to display the rows from this particular object.

So, we can call tp.get_chunk and if I run this you can see we are just displaying 10 observations

here because the display settings if you remember we have already configured, so that is 10. So,

from this chunk of 500 we have got these 10 observation, to confirm that you can look observe

the row indices here starting from 0, 1, 2, 3, 4 and then we have 495, 496, 497 like that. So, you

can see that the you know first 500 you know observations from the full data set have been taken

as a chunk.

(Refer Slide Time: 40:26)

And from that because we had configure the display option for up to maximum 10 number of

rows, so therefore 10 rows in this particular fashion have been displayed. Let us move forward,

so till now we talked about writing till now we talked about reading data from csv file into a data

frame. Now let us talk about writing a data frame into a csv file, so sometimes certain analysis

certain output we would like to write into a csv file.

And so we can use 2_csv method to perform this, so if we have data frame let us say df and we

can call this .2_csv function. And we can pass on the new file name that is let us say write1.csv.

So, whatever data is there in this data frame df, that is going to be written in this particular you

know new file. So, if I run this and because this is now written, so you know we can have a look

at the you know contents of this file.

So, we can use this magic command %pycat here, so if I run this we will have a pop-up window

and you can see this new file has been created and the data as well. Now let us move forward,

now there could be other delimiters, so one is csv which is essentially comma separated for the

comma separated kind of data. Now certain you know text files might have data you and they

might be using other delimiters for example to tab, spaces.

So, how they can be handled here, so now we will use sys.standard output that means in the

output here itself you would like to display and for this we will like to import this is module here.

And the same function df.2_csv and you can see we are writing to sys.stdout which is also a file

but a system file. So, that is the file which is responsible for printing the output in the standard

you know in the console.

(Refer Slide Time: 40:56)

So, in this case it will be printed here itself and you can see here we are specifying the different

separator. So, a different separator is there and so whatever you know we are going to write you

know we will take data from df and will be writing that into the sys.standardout in the console

output and different separator is going to be used. So, if I run this you can see in the output you

know instead of comma we have different you know separator.

Now sometimes in the data we might have empty string as a sentinel you know, so that would

typically indicate for missing values, sentinels that would be difficult to detect you know

typically in a if you are using a simple text format. So, how do we change this, so again let us

take the example of this ex5, so let me load this in a data frame df2.

So, here you can see that we have any nans and if I write this df2 into console output here, you

can use 2_csv function here also. So, if I run this and if you look at the you know output that you

know some of the nans for example if you look at the second row here you can see up after 4 and

nan is gone that is replaced with the empty string.

So, how do we overcome this, so for that we can use another argument na_rep, so it will replace

the sentinel marker for na, so we can make it null. So, in the next line if you see that we can

again call this function df2.2_csv and against sys.stdout and second argument na_rep we are

replacing this you know sentinel marker here. If I run this now you can see after 4 in the second

row we have got null to indicate the missing value.

Now let us move forward, now we will focus on excel files which are also typically use to store

data sets. So, how do we work with excel file in python environment, so let us talk about reading

an excel file into a data frame and because in an excel file we might have multiple sheet in csv

file we have just 1 sheet. Wherein excel file we might have you know multiple sheets, so how do

we read multiple sheets multiple sheet that could be present in a file.

So, for this we can use excel file function slightly faster way you know if we are reading

multiple you know sheets from an excel file. So, using this function will get an excel file kind of

object and that we could use to actually import the data from that sheet into a data frame. So, let

me take example of an excel file in this case ex1.xlsx so I am using this excel file function let me

run this code and this object is created, now let us have a look at this object, so you can see here

that this is an excel file object.

Now we would be using this ef you know this particular object in read_excel function, so

read_excel function can be used to read the data you know into a data frame. So, you can take an

example you can have a look at this example pd.read_excel then ef this excel file object and c21.

So, we are specifying in the second argument the sheet that we would like to you know read

from the data set into a data frame.

(Refer Slide Time:38:26)

If we have multiple sheet we can you know call this function many times and different data

frames can be created. So, in this fashion we are dealing with multiple sheets this excel file

object can really be helpful to you know read data from the file and from different sheets into

different data frames. So, if I run this and again you can have a look at the output here output

number 33 and this is the data frame that we have got.

However sometimes we would just be having 1 sheet in the data set and we would be all are you

know we would just be focusing on 1 sheet we might not require to import the other sheets into

the python environment. So, in those cases we can directly use the read_excel function where in

the first argument instead of the excel file object we can specify the file path.

So, in this case x1.xlsx directly and the first sheet, sheet1 and we would be able to read the data

into a data frame and again you can see. So, 2 ways depending on the scenario we are dealing

with and you know we would have an easy way to import and read data into python

environment. Now let us talk about writing a data frame into an excel file, so here again we have

excel writer function.

So, again this is also suitable for writing you know multiple sheets whenever we are having

multiple sheet, we can use the excel writer object. And for different sheets we would be able to

write you know in the file. So, let us say let us let us call this excel writer for in you know this

for writing this cwrite2.xlsx. And if I run this and you can have a look at the this object excel

writer object and we can use this function to_excel function to actually write the data frame into

the excel sheet.

So, here you can see we are calling we are using df3 data frame which would be written into this

excel file and we the excel file object and sheet 1 where this data frame is going to be written.

So, if we have multiple data frames to be written we can use those data frame and keep on

changing the sheets and different sheets we can write as using this excel write object.

So, if I run this and now we can use the save method to actually you know save this file, so

ew.save and we will have that file saved there in the disk. Now if you want to avoid excel writer

or because we are just interested in 1 sheet so we can pass the file path directly to the you know

to_excel function and we can write the data frame into that file. So, we can also say df3.to_excel

on the file name write 3.xlsx, in this case again we would be able to write that file.

Let us move forward, now next thing is so till now we will we talked about you know working

with csv files and working with excel files. And now next thing would be working with web

APIs, now nowadays there are many websites which provide public APIs to provide data fields

you know via JSON or other format for analytics purposes, for research purposes and many other

fare you know fare purposes for that particular data.

So, to perform you know there are many packages that are available to achieve this to work with

web APIs. So, one easy to use package is request package, so we will use that to to work with to

demonstrate web API example here. So, first thing import this package in import request, so we

will be importing this. Then let us take an example of github website, so here we are taking you

know further we are taking last 30 github issues for pandas posted on github.

So, this is the URL for all these issues here, so we will be using this perk particular URL and

first thing is to get a response object. Because as you could see that we talked about excel writer

object, excel file object because whenever we are required to deal with a particular file, a

particular object again and again. So, these kind of classes are really useful because we can you

know a use object again and again as and when required.

So, in this case you can see we are calling request.get and URL, so we will get a response object

for this URL and you can look at the type of the object here as well. Now we can use JSON

method, so that is to obtain a list of so when we apply this method what we will get in the return

is that list of dicts having all the data on a github issue page, so except for the comments.

So, except for the comments all the data that is going to be there this particular you know method

is going to written that. So, let me store that in v1, so v1=rest.json and if I run this and have a

look at the v1, so as I said v1 is a list of dict. So, you can see a list and then the list is starting and

different columns and the associated value part, so key value pairs in the dict. And many dicts

are there, so you can scroll down and see for yourself.

Now next thing that we are required to do is that we can create a data frame with fields of

interest. That means you know whichever fields are require for our analytics purposes we can

pick those fields and there will be columns and we can create you know a data frame. So, we can

use this pd.data frame here and v1 is the data that we are passing the first argument and then we

can specify in the columns you know argument in the fields that where we are interested in.

So, if I run this we will have data in df4, so if I run this you can see in the output 48 you can see

number, title, labels, state. So, these are the columns and we have got the data as you can see the

row index, so this is a 30*4 column. So, if you remember we wanted you know just 30 rows

there, so now here other values you can see number, the title, title means the you know pandas

issues you know and the title that has been given by the visitors.

And other labels and the store state whether that particular issue is still open or closed, so those

details you can see in this particular data frame. So, this is how we can actually deal with you

know we can use web APIs to download data which could be useful for analytics purposes.

(Video Ends: 30:56)

So, we will stop here and in the next lecture we will start our discussion on certain other aspects

you know of you know data management fare you know dropping you know na values or

replacing them. Certain some of those scenarios and many other things we would be discussing

in the next lecture, thank you.

Keywords: Evaluation metrics, Numerical python, text mining modelling, arguments,

exception handling etc.

