
Business Analytics and Text Mining Modeling Using python 

Prof. Gaurav Dixit 

Department of Management Studies 

Indian Institute of Technology Roorkee 

 

Lecture-26 

Database Using python-Pandas-Part I 

 

Welcome to the course business analytics and text mining modeling using python. So, in the 

previous lecture we started our discussion on the new package that is pandas. So, we will start 

we will do a slight you know recap of what we discussed you know briefly in the previous 

lecture and then we will pick up from there. So, as we have discussed you know in the previous 

lecture as well that NumPy package mainly for generic numerical processing. 

 

However if we want to work with tabular kind of data structure kind of data that we typically do 

in the analytics area, then pandas package actually provides all those facility. However panda is 

based on NumPy and you know various other packages also, so that is why we have covered 

them before. So, that the foundation is there when we discuss the pandas package and many 

things that we would be learning in this package. 

 

They would be directly you know relevant for the analytics the data processing part, the data 

transformation part, the summary statistics that we typically generate. So, all those things you 

know they you know we would be using lot more of you know pandas functionality to directly 

perform some of these analytics related task. 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 01:49) 

 

So, let us start, so as we discussed pandas package this is typically used to work bit 

heterogeneous data that is tabular data. That means all the columns they would be representing 

different variables and therefore they could be different data types as well, one could be you 

know continuous another could be a categorical, so that kind of differences. So, in terms of 

python context one would be one could be having floating or integer data point another would be 

having you know a string or you know or boolean kind of data type. 

 

So, that is going to be one difference, so that is what upon pandas provide us, facilitates faster 

and easier data processing. So, because many functionality they are for they are happy in develop 

to work with heterogeneous data. So, therefore directly they are going to be relevant for data 

processing and these functionalities make this processing easier and faster. So, as we discussed 

you know this we first typically import the libraries import pandas as pd, so this is first thing that 

we do, so let me perform this. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 05:30) 
 

 

(Video Starts: 02:58) 

 

So, before I do this like we have been in a previous few lecture we have started doing this 

aspects also we have started varying the output, so let me clear all the previous output and now 

let us start. So, first importing of this package, now then certain libraries we would be using quite 

often, so we would like to import you know these library series and data frame. These are the 

you know data structure that we would be discussing in this lecture. 

 

So, let me run this, now the series and data frame these are the 2 structure, so let us start with the 

series. So, as we discussed series is a sequence of values similar to what we have done in 1d 

array along with an explicit you know custom index to access the values. So, we will have the 

index here which would be explicit it would not be. So, whenever we are whenever we create a 

series object and whenever we are trying to print it we would see an explicit index you know in 

contrast to what we have in array where we just see the you know sequence of values. 

 

Here in series we see the sequence of values and also an explicit index, now I have also mention 

custom index because we can always manipulate this index as per our requirement. Because as 

you would understand that in tabular data, structure data set that we typically use in analytics, 



there the indexing we sometimes you would like to change. Because these are nothing but labels, 

so they could be represented using numeric codes or you know string value. 

 

So, therefore sometimes you would like to you know modify these you know the explicit index 

that we have in series and data frame. So, you know that is why I have mention that explicit 

custom index to access the values. Now another way to understand the series is that it can be 

considered like a fixed length dict where you can understand dict whatever we have discussed in 

the previous lectures. 

 (Refer Slide Time: 06:30) 
 

 

 

That key you know value appear that we have in dict, so as elements of dict. So, here also a kind 

of mapping is happening, the mapping is between index values to data values, so that kind of a 

mapping is being done in series. So, in a way we can consider series as a dict kind of object dict 

like object. Now the next the construction part, so how do we create a series object, so typically 

created using a series function so 1 code 1 example code example we have given here series 1. 

 

And this is the series function pd.series and within the parenthesis you can see there that we are 

passing a list of you know 4 values here. In this first example we have not specified any index , 

so we have a default index in this which is 0 to n-1 where n is the total number of you know 

elements that are going to be present in the series. So, you know that is going to be the default 



index. 

 

So, in this case if I run this we will have created a series objects series1, so if I run this again you 

can see here in the output series1 with 4 values and indexing again just like in other data 

structure and indexing starts with 0, so this is also 0 indexed. So, the index as you can see is 

displayed explicitly here the first column is actually the index 0, 1, 2, 3 and then we have the 

values you know fall of the series, that is 4 values 22, 33, 44 and 55. 

 

And then the data type of these values integer64 bit, so this is the series object, this is the simpler 

way of you know constructing or creating a series object here. So, let us move forward, so next 

thing is you know series properties or attributes, so let us first talk about the values attribute. So, 

this values attribute is like an array object, so if I run series1.values the only you know the 1 

column of values that we had in series1 that is going to be or printed here, produced as output 

here. 

 

So, series1.output you can see in the output it is clearly mentioning array and the values there, so 

you can see the column that we have it is actually. So, you can see how the data structures of 

pandas package series and data frame they are actually based on arrays. And arrays they are 

actually we have discuss in the NumPy you know package. So, this is the certain you know 

similarities and foundation that you should be able to notice here.  

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 11:31) 
 

 

 

Now next attribute is index, so index we have talked about however we have an attribute and we 

can access using that. So, series1.index, so this is quite similar to you know when we call this 

function range n, so the output is quite similar to that, so this index is based on or similar to the 

functionality of this function. So, if I run series1.index you can see in the output we have range 

index you know start point, stop point and the step over there. 

 

So, this is how the values part and the index part can be accessed using these attributes, now let 

us move forward. Now as we said that the explicit index that we have for series object you know 

this can be customized. So, we can customize this you know as a list of labels, so let us look at 

this example series2 and on the right hand side we have pd.series. 

 

And you know within the parenthesis we are passing the list of value, sequence of values and 

then index we have mentioned 4 levels here a, b, c, d you can see 4 values and correspondingly 4 



indices we have mentioned here. So, if I run this I would have created a you know customized 

index and you can see the first column is referring to the index the custom index that we have 

just created starting from a then b then c and d and then we have the you know a 1 column of 

values then 22, 33, 44, 55. 

 

Let us move forward, so we can also check the presence or absence of labels in a series. So, like 

we discuss that you know the series can be considered as a dict kind of object, so here also key 

value kind of thing you know those kind of you know presence and absence, we can find out 

here. So, let us see whether this index c is present in series2, so if I run this line number 9 and 

you can see it is present as you can see in the output number 8. 

 

So, therefore in the output 9 comes out to be true similarly another example let us see this label e 

whether it is present in series2 or not. So, as you can see in the output 8, it is not present so 

therefore we should be expecting false as the output, so that is the output that we have got. 

Similarly let us also retrieve these values and index attribute for this series2, so series2.values, so 

you can see this array with 4 values and index, you can see a, b, c, d. 

 

So, this is how we can create kind of index and do few things check presence and absence of 

labels and access the attributes also just like the you know regular you know series object. So, 

accessing values using label indices, so how we can do that, so for this again brackets operator 

we can use. So, in this case series 2 within the brackets we can specify the label here, so for an 

example a, so series2 within brackets a. 

 

 

 

 

 

 

 

 

 



 (Refer Slide Time: 13:41) 
 

 

 

So, in this fashion we would be able to access the value corresponding to this index label a, so 

that comes out to be 22. Similarly if we want to check you know if you want to you know access 

value of our multiple indices, so that can also be done. So, within series2 and within brackets we 

will have to specify a list of labels. So, in that list of label you know in this next line of code 

have indicated the 2 labels a and c. 

 

So, let me run this and you can see or output number 14, we have 2 levels a and c and 

corresponding values as well. However you know the order is not really important here when we 

are accessing values in this fashion. So, if I run something like this series2 and within brackets I 

am specifying a list of these labels. So, if I run this and you can see that whatever order we had 

indicated in the brackets operator the output is also according to that order. 

 

So, in any order, so order in that sense is not important that like order is fixed rather whatever we 

are indicating as per that the output is going to be retrieved. So, let us move forward, now here 



because in this data structure that we just talked about series the link between in the index and 

value that is very important. And it is suppose to be a stable link it is suppose to be robust link, 

so whenever we are operating on the values of the series object any operation that we are 

performing. 

 

So, this link would not be disturbed, so that is the case here also, so index value link is not 

disturb by execution of various operations. So, another aspect is that automatic alignment of 

index label with corresponding values and results just like in R platform. So, in previous courses 

that I have taken you know for the NPTEL platform business analytics and data mining modeling 

there in the R platform also you know you would always see whenever we are applying any 

operation the index this link between index and columns and values that is very consistent, the 

same thing is here. 

 

So, automatic alignment is inbuilt in this functionality, so we will do a filtering example here, so 

we will take the series2 object and within the brackets we have put this conditional statement 

series2 greater than 0. So, all the values which are greater than 0 they are to be you know, so this 

will return a boolean you know output and only those indices which comes out to be true, only 

those are to be displayed. 

 (Refer Slide Time: 16:24) 
 

 

 



So, if I run this you can see since all the values are greater than 0 therefore we have got you 

know this kind of output, consisting of all the values of this series object. So, let us move 

forward scalar multiplication, so we can multiply this series you know with some scalar value 

like 9. And in the output you would see that all the elements of this series object they have been 

multiplied. 

 

So, in a sense broadcasting has happened you know over the rows, so for all the rows this scalar 

you know value has been multiplied and broadcasting has been done. So, broadcasting is an also 

an important concept in the python platform, so through a few examples we would be you know 

covering this however we would not be going to for more details of that aspect. 

 

Now let us take another example let us take this math operations will import NumPy here also. 

So, we will take exponential of the series2 so np.exp is the function that we are calling and we 

are passing on this you know data structure series2, this object here. So, let us see how this 

function is going to work because now NumPy, all NumPy functions are going to work here 

because essentially as we have discuss these 2 data structures series and data frame, they are 

based on arrays. 

 

So, let me run this, so you can see in the output all the you know series values an exponential 

have been taken and that output has been displayed here in the output number 18. Now let us 

take another example, so in this case we will take you know another type of data structure and 

convert you take that you know data and convert it into a series kind of object. 

 

So, we will convert python dict object into a series of object because as we discuss that we said 

that series can also be considered like a dict kind of you know some behavior is like you know 

that kind of thing. Because mapping between index and values is also there in series just like in 

the big dict object where we have the mapping between keys and value pairs. So, in this case you 

can see we have taken this example pin code and a few towns or cities in the Uttarakhand state of 

India they have been you know given as an example here. 

 

 



 (Refer Slide Time: 21:48) 
 

 

 

So, pin codes we have for these towns root Roorkee and 247, Dehradun, Haridwar and Nainital. 

So, if I run this we will have this dict and we can pass on this dict object to our pd.series function 

and this function will handle you know take this data and convert it into a series object. So, if I 

run in the next line and let me run and access the value, so you can see that the key part of the 

dict object that we had that has been taken as the you know index in the series object. 

 

So, in code dict object that we had city names, town names, Roorkee, Dehradun, Haridwar and 

Nainital. Those have been taken as you know indices in the series object. And the pin codes that 

we had in the dict object the value part of the dict object we had the pin codes, they have been 

taken as the value part in the series object. So, you can see how this you know translation is 

happening here, so we can easily convert dict object into a series kind of thing. 

 

Now if we want to access the index part that we have just created for series3 object. So, let me 

run this line of code you can see index with 4 terms names of 4 terms here and in this fashion 

you can produce this output. So, now sometimes we might be require to change the index also, 

we might like to add few more rows or something in our data, so for that we will have to modify 

the index also. 



 

So, you know that can be run using the index argument you know in the series function. So, let 

us take this example cities and this is a list of you know these town names, so in the cities we 

have added one more Dehradun, Haridwar, Nainital, Roorkee and Tehri Garhwal. So, here you 

would see we have change the order also here, so in the next line of code, so let me first create 

this object cities this list object. 

 

And now we are passing on this list object cities into the second argument in the series functions. 

So, first one is pin code the dict object that we had created, so and the next one is the index, so 

now this because we are clearly specifying we are using this keyword argument here and clearly 

is specifying our index here. So, this index would be taken while constructing the series object 

number 4 series4, so data value part would be taken from pin code. 

 

And then the index part would be taken from this index argument the cities and this series4 you 

know object is going to be constructed. So, let me run this and you can see in the output that first 

is as per the order as specified in the cities index Dehradun, Haridwar, Nainital and Roorkee. So, 

order is as per that and then Tehri Garhwal but we did not have the pincode value for Tehri 

Garhwal in the dict object, pin code. 

 (Refer Slide Time: 24:09) 
 

 



 

So, therefore that is missing and the missing values in this package python and in the python 

platform and in this package as well, they are specified as nan. So, you can see the same has 

happened, so while we are changing index if there are any unmatched indices. So, for them you 

know those indices are going to be created, so a sort of a union is going to be formed. 

 

So, here you would see as per the pin code the dict object we have a number of indices and as per 

the index you know argument index keyword argument we had specified cities. So, while we are 

taking values from there and indices from here the matching will happen and for the matched 

values we have the indices, correct alignment, automatic alignment, indices and values wherever 

we do not have you know we have you know one thing missing, a new row is going to be 

created. 

 

And you know if the value is not there then nan is going to be displayed, so that kind of output 

has been produced here. Now if you want to detect missing data in these objects, so for that we 

have these function is null and not null function, so we can use them. So, for example series4 

object we can call this pd.is null this function and you can within the parenthesis, we can pass on 

this series4 object here. 

 

So, if I run this and you can see in the output number 25 which you know data is missing, so in 

this case you can see is null. So, you can see Tehri Garhwal for that value part is missing, that 

comes out to be true others are false . So, you can see also data type d type is also indicated as 

bool similarly not null. So, this is another function to perform the similar kind of processing, so 

here you can see that you know only a first 4 values Dehradun, Haridwar, Nainital, Roorkee for 

them it comes out to be true, the last one it is false. 

 

Because you know it is actually null, so we can in this fashion we can detect any missing data in 

our series object. Now these were the is null and not null these are the function that we had use, 

we also have the corresponding methods is null and not null we have these corresponding 

methods. So, we can also call them, so series4.is null, so in this fashion we can call these 

methods, so let me run this and you can see the output. 



 

Similarly series4.notnull method also we can call this one also, so in this fashion we would be 

able to produce this output. Now let us look at the alignment feature, so once again, so series3 

this 3+series 4 if we perform this addition operation here between these 2 series objects. So, let 

me run this and you can see that the values in the output 29, so the pin codes you know though 

pin code is a categorical variable here. 

 (Refer Slide Time: 27:47) 
 

 

 

We are still into our python part, so these are numeric values, so they have been added up, so you 

can see Dehradun the you know pin code series3 and series4 both had same values, added up 

Haridwar, Nainital, Roorkee added up Tehri Garhwal where we did not have value and it is nan 

and you can see everything is aligned. So, whenever we are performing these kind of 

mathematical arithmetic operations you can see the alignment between index and values is 

maintained and accordingly the operation is apply. 

 

So, for the matched you know indices the operation will work for the unmatched of course you 

know nan is going to be there. Now let us move forward, now we have another you know aspect 

another attribute here name attribute we have for series object. So, series4.name, so in this case 

we can specify the name attribute for this series object as pin code, we have the name attribute 

for the index also. 



 

So, for the series object as well as it is index, so we can use series4.name to specify the name 

attribute of the series object and we can type code series4.index.name to specify the name of the 

index. So, in this case it is about you know series about pin code you know values to pin code 

numbers. So, if I run this name would be you know defined and similarly for index those are 

actually city you know city in names. 

 

So, now let us have a look at the series4 object, so you can see that city is you know appended 

like a header there on top of the list of towns in the first column that we have city you can clearly 

see. And for the name of the series you can see last line, last row in the output name pin_code, so 

for this series object this name is also indicated there. Let us move forward, next aspect about 

this is changing index, so we also have you know index attribute. 

 

So, we can use that also to change index, so let us have a look at the you know index values here, 

this is our series. And in this if you look at the first column which are the index value 0, 1, 2, 3. 

So, for some people they might not prefer the 0 indexed thing, so for that they can customize 

their index and they can make it like 1, 2, 3, 4. So, in the next line of code we are doing exactly 

that series1.index and we have passing this list sequence of values 1, 2, 3, 4 

. (Refer Slide Time: 30:48) 
 

 

 

 

So, if I run this I would be able to change the index, so earlier when we change the index we use 



the index argument in the series function. Now this time and we are changing index we are using 

the index attribute to assign it a new index. So, these are 2 different ways to perform the same 

thing, so now let us have a look at the output. So, you can see output number 35 that series1 and 

the first column index has been changed 22, 33, 44, 55 and the corresponding indices are 1, 2, 3, 

4. 

 

So, those were the main points about the series data structure, series object. Now let us move 

forward to another very important you know data structure that is data frame. So, in our previous 

courses we as we have seen that we have been typically importing the excel you know datasets 

you know into a data frame kind of you know a variable in R platform. 

 

Similarly here in the python platform we have data frame object and this is also you know to 

built with similar kind of data set, excel you know, tabular format excel kind of data set. So, let 

us talk about this data structure, so data frame, so the name is also happens to be the same and 

represents physically 2-dimensional data in a tabular format of rows and columns. And it is like a 

dict of series elements having a common row index. 

 

So, if you know if we can have a dict and all the you know there we have key value 

combinations. So, all the values they can be you know series elements and the keys that we have 

if the keys are common, so that is how we can consider this data frame. So, common key and 

multiple you know series elements, so that kind of would dict we can consider a data frame as 

that kind of dict object. 

 

So, data frame have both row and column index, so in the series we have the explicit index but 

only the you know row index. In this case in the data frame will have the row and column index, 

so will have the indexing for the multiple columns that will have and also as usual we will have 

the indexing for the several rows that we are going to have in our data. So, row index is similar 

to series index that we have discussed and default is going to be 0 to n-1 and of course we can 

customize it as we have seen. 

 

Now column index is nothing but variables name because essentially these we are suppose to 



work with the heterogeneous data different columns, representing different variables they could 

be of different they could be having different data types. So, therefore the column index is 

typically variables names and by default they are sorted alphabetically. So, columns can be 

variables of different value types as you can see in numeric string boolean anything.   

(Refer Slide Time: 33:45) 

 

 

So, these are so when we say numeric string boolean 3 this term logi is coming from the 

language perspective. That is the you know python platforms perspective that is different data 

type, different value types are defined you know one of these numeric string boolean. But from 

the analytics perspective we talk about you know categorical continuous variable however you 

can clearly see that like we have discuss in our previous courses how they can be easily mapped. 

 

Now let us focus on the construction part of data frame, so how a data frame you know object is 

created. So, created using a data frame function, so let us take an example we will take year wise 

metro population data for few metros in India. So, here we are you know defining a dict object, 

dict1 here and you can see the first key is metro where we have a list of string values indicating 

the metro names and repetition is also there because this is a year wise data. 

 

So, for different years and for these metros we will have the population in crores, so hypothetical 

example here. So, you can see matt metro 6 values Delhi, Delhi, Delhi and Mumbai, Mumbai, 



Mumbai because in the second key value combination year we have data for 2011, 2012, 2013 

and then you can see the repetition 2011, 2012 and 2013. So, from 2012 to 2011 to 2013 will 

have data for these 2 metros Delhi and Mumbai and you can see population in crores few 

numbers we have given for this example. 

 

So, if I run this you will have the dict1 object and then we can pass this dict1 object to create a 

data frame. So, we can call this function pd.data frame and pass on this dict1 object and then we 

will have our data frame. So, let me run this and let us have a look at the output, so you can see 

output number 38 and you can see a table has been displayed there. So, you can see 3 columns 

are there metro, year and popcr, that is population in crores. 

 

So, in metro you can see you know first row Delhi then Delhi then Delhi the next 3 rows 

Mumbai, Mumbai, Mumbai, years 3 years 2011 and 12 and 13 and same for Mumbai and 

population crores. And you can see the all this is 0 index, so very first column explicit index in 

column is there 0, 1, 2, 3, 4, 5, so this is the main structure of our data frame object. Now as you 

would expect that we would be dealing with you know larger data sets.  

(Refer Slide Time: 36:42) 
 

 

 

 

 

So therefore it will run into you know several 100s and 10000s of rows. So, if we just want to 

have a look at you know few values from the data set we can use this particular you know 



method here df.head. So, it will just you know display first 5 rows of data, so if I run this you can 

see. In this case we just have you know 6 rows of data. So out of that first 5 rows are going to be 

displayed as you can see in this output number 31. So, this is how you know we can actually 

work around you know data frame and series object. 

(Video Ends: 32:53) 

 

Now we have lot more to discuss about a data frame as well as series and how we can you know 

apply different operations you know do certain processing as per different analytics scenarios. 

So, we will continue our discussion in this lecture, we will stop here, thank you. 

 

Keywords: dataframes, data structure, pandas, prediction, exception, classification. 


