
Business Analytics And Text Mining Modeling Using Python

Prof. Gaurav Dixit

Department of Management Studies

Indian Institute of Technology-Roorkee

Lecture-17

Built-in Capabilities of Python-IX

Welcome to the course business analytics and text mining modeling using python. So in previous

few lectures we have been focusing on the you know built-in capabilities that are available in

python platform and data structure part most of it we have been able to cover and now let us

move to the next aspect that is errors and exception handling. So this is mainly required to be

able to write robust programs.

(Refer Slide Time: 00:56)

And for this we have this mechanism in python where we can use try except blocks and using

these you know blocks we would be able to deal with certain errors, certain exceptions that you

know are sometimes required to be handled. So let us start so first you know we will talk about

the improper input values. So it might so happen that you know we are passing in our argument

to a particular function which is not accepting a particular you know kind of input value.

So in that case it might show some error, so how do we, how can we use the try except blocks to

handle that kind of error or exception. So let us start, so first thing improper input values, so

when we are saying improper input values then we might get into this exception value error

exception that means the input values, the appropriate input values was not passed on.

(Video Starts: 01:56)

So let us run this, so what we are doing here we are calling the code function and 1.2345, we are

trying to convert this value into a floating point number. So because this is a correct input, so

immediately we get the output without any error or exceptions. Now if we try the same function

float and pass on the value as you know a string value as an argument let us say something. So

you can see in the next line that I am going to run the only argument that we have here we are

passing a string value here.

However the string value cannot be appropriately converted into a float point number. So

therefore this is an improper input value and therefore we will get into value error exception. So

let us run this and you can see that we have got value error you know this exception and you can

see could not convert string to float you know. So something was the string that we passed.

So it could not be you know convert into a floating-point number because it is an improper value.

Now if we run into this kind of problem how do we handle this in our code, so for this we can

use try except blocks. So in this we would like to define these kind of blocks, so we will you

know use the def keyword and we are writing this our try except blocks, this is attempt float1

attempyfloat1.

So this value x is the argument that for which we are writing this and then we have this try

keyword try colon and then return float x. So if the value is proper then we will be returning the

the return value of the floatx function, if the value is not you know proper then we will run into

the except block and we will be returning this message improper input value. So that the coder or

the analyst will know that improper input value was passed on.

(Refer Slide Time:03:35)

So let us run this block, so now after defining this try except block attempt_float1, if we pass on

this 1.2345 and there should be no problem here, so you can see we got 1.2345 as the output,

however if we again try you know something that string value and we try to pass it on to this you

know this new function attempt_float1 and in this if we run this you can see you know improper

input value as the output because that value was not found to be you know appropriate. So an

exception was thrown.

So to deal with that exception we have written this try except block within this function. So in a

sense this is a wrapper to the original attempt_float1 is a wrapper to the float function where if

any exception is thrown we are handling that within this particular wrapper attempt_float1. So

instead of using the inbuilt functions that are there in python float form we can write our own

user-defined functions.

So that you know any exceptions and error handling could also be done. So let us move to the

next example, now this is about second kind of exception that we might have to handle. So this is

improper input types. So it might so happen that a particular input type a particular you know

data section is not accepted by a you know particular function, but that is being passed on. So

this is referred as type error exception where a wrong kind of type has been passed on.

So in this case again we are using the float function here and you can see in the parenthesis we

are passing just one element which is a tuple object here and having 2 elements 1,2. However the

float is not supposed to accept this kind of type. So because of that we are getting type you know

error exception. So the argument has to be string or number, you might think that string is also

not something that should be acceptable.

However in the string format we might pass on a numeric value, so a numeric value within

double quotes or single quote it could be a string value but it can be appropriately you know

handled by the float function. So string again allowed type, so you would see that if we if I run

this in the error you would see that type error float argument must be a string or a number. So

because in a string there is a still possibility that a numeric value can be passed on within the

double quotes or single course in value. (Refer Slide Time: 05:32)

So to be able to deal with that cases the float argument except the string also as an argument in

python. However tuple is not accepted here, so for tuple we are getting type error exception.

Now how do we manage this, so for this again we can write a you know wrapper function here

def attempt_float2 and in this function again we are defining certain you know try except blocks,

So you can see we have 1 try block and the 1, 2 except blocks.

So here in the try block as before we are returning the you know floatx, so if there is no error no

exception that has been thrown then we would like to return the whatever return value we get

from you know float function. Now the second except block is handling the value error which we

have already discussed. So if the improper input value like you know a string value where the

characters are you know they are like something that we did.

So to handle that we have this exception block here, except a value error and we are returning

this improper input value. Now the second case that we are discussing in our type error, so we

have the second except block here except type error and in this case we are returning the

improper input type as the message. So that the user or the coder or the analyst will come to

know that you know the improper input type was passed on as an argument to the function.

So attempt_float2 in this second wrapper function that we have that I have written here you

know we are handling both these types, we have 2 exceptions blocks a value of 1 for value error

the another for type error. So if I define this if I run this line of code and now this function would

be defined. Now if I pass on an appropriate value you know 1.2345 you can see this appropriate

this is you know being passed in within these single quotes here.

So if I run this there is no problem in this string, this is a string but it can be appropriately

converted into a numeric value and therefore convert into a floating-point number. So this is

okay, now in the second example I am passing on something, so in this case this is an improper

input values. So if I run this so you can see improper input value. So because something this

particular string is made of characters. (Refer Slide Time: 09:25)

So this is not acceptable, so we have already handled this exception, so we have caught the

message improper input value. Third example is that where we are passing on in tuple, so

attempt_float2 and in the parentheses we have this one argument and that is a tuple made of 1

elements 1,2.

So if we force on this so a exception type error would be erased here and that we are handling in

this function attempt_float2, so if I run this we will get this message improper input type. So in

this fashion you can see depending on the kind of exception scenario that we might you know

expect depending on the kind of you know data that we might be dealing with certain scenarios

might be possible.

So we can always write these kind of wrapper kind of functions which will have try and accept

blocks and we will be able to handle different scenarios and in this sense we will be able to write

and develop robust programs. So when we say you know robust, so we would be able to handle

different kind of inputs different kind of scenarios errors and other things that may happen there.

Now let us move on to the next aspect, earlier example that we have just discussed, there we

were handling these 2 there we had 2 except blocks and we were handling value error and type

error you know separately. However we can use try and except block where we can write except

block which can you know catch multiple exception types using just one statement. So how do

we define that.

so this is the example you can see now we are writing another function here attempt_float3 and

in this case you can see that try block is same as before we are just returning the float value and

then we have just one except block however we have in the parentheses we are you know

mentioning both kind of exceptions value error, type error. So this is a tuple, so these 2

exceptions we are handling.

And if you look at the you know the return masses that we have here is improper input value or

type. So it could be either value error exception or type error exceptions. So in one statement we

are trying to handle, we are trying to catch multiple exception types here. So in this fashion we

can define this function and you know handle these kind of exceptions. So let us run this, now

you can see a next example that we have at attempt_float3 and we are passing a numeric in the

string form a numeric value in the string form. (Refer Slide Time:12:54)

So if I run this we will get this floating point number and next example again that we are passing

on something this string value to this attempt _float3 function and if I run this you can see I am

getting improper input value or type. So we are not you know it might not matter as to you know

you know deal them separately rather we can club them in this fashion using 1 except block and

we can adjust our messaging also that improper input value or type.

So one of these 2 things occurred and that we have handling 1 you know multiple exception have

been handling 1 statement or 1 except block. Now if we pass on tuples then again we will get the

same message. So this is the way to handle this, there might be certain scenarios where we would

like to execute a code block regardless of whether try block succeeds or not. So to deal with

these scenarios we have another you know another keyword and other block that can be used that

is using finally block.

So in this case whether the try block succeeds or not this is code block is going to be you know

executed. So let us take this example here, so the example that we are taking here is about

generating locks or cleaning of the python objects, given any scenario we might be creating and

initializing and processing you know many my python object. So irrespective of the so you know

respective of the code that we are writing we would always like to clean up the python objects

that we might have created we might have used.

So this kind of situation we would like to this kind of code execution we would like to perform

irrespective of whether a particular you know try block succeeds or not. So in such situation we

might also prefer to not suppress exceptions. In this case we can use the finally block, so if you

look at the code that we are writing is that I have written here. So first thing is I am opening this

temp.txt file and in the file mode is write. (Refer Slide Time: 16:04)

So this is write only a file mode, we will talk about file handling in detail in later lectures,

however in this example we have just opened a file and we get file object fl and the file is going

to be opened in the write only mode. So any message that we would like to write in this file, so

you can consider this like a logging thing. So we are trying to create a log here, generate log

here. So this file log file has been opened you know in the write mode.

So then in the try block you know we are writing fl.write and done, so in a sense in the you know

try block succeeds then we you know will have done message there and then we have the except

log . So in that case you know some exception is there then we would be writing in the log not

done. So that would be written there. Now we have the finally block here, so again finally and

then colon and then we have this block here.

So this particular block is going to be executed regardless of whether the try block succeeds or

not. So what we have in this block fl.write and log1 fl.write log2 and fl. you know close. So we

will be writing these 2 statements there in that file you know file object fl and that means this file

temp.txt and then we will flows this file object. So in a sense we have recorded our you know

blog statements and then we have cleaned up the existing you know a python objects which is in

this case you know this fl this file object.

So let us run this, so once we run this we can you know always you know have you look at the

log that we have just generated. So for this we will have to use this read method. So fl.read. So if

I run this you see I get an error here io operation on closed file right. So this error we have

received, so actually what is required is that that the file was not opened in the read mode and the

file was actually closed.

So first we need to open the file in the read mode and then we will be able to read the contents of

the file. So by default in python platform the files are open in the text mode. So we can first open

this file fl1, this new file object open temp.txt this file object fl1 would be created in the read

mode and then you know fl1.then we will be able to read the you know contents of that file. So

let us run this and you can see in the output we have got done log1+log2.

So you can see why we have got these messages because if we go back to the block that we had

run you can see that you know first the try block has succeeded, so we got the masses done here

and then once you know after that finally block is going to be executed regardless of whether try

block succeeds or not. But in this case try block succeeded.(Refer Slide

Time:18:41)

So then we will have log1 and log2. So those 3 you know messages are actually written in this

log file done log1 and log2. Now let us close this file fl1, there might be certain scenarios that we

would like to execute a code block only if try block succeeds. So only you know the try log is

goes through only then we would like to execute this certain piece of code. So for that we can

use else block.

So how to define this, so again we are taking this the same example here the temp.txt file we

already have we also have some data written in this file. So let us open this file fl2 file object, let

us open this temp.txt, in another file mode write a which is for you know appending in the file

appending any content in the file. So first we have the try block here and fl2.try. So we are

typing you know done.

And only if this block succeed then we want if we want to execute the code then you can see we

have the else block here and in this we are printing this statement succeeded. So this particular

else block is only going to be executed, if the try block succeeds. If the try block fails then the

you know this else block is not going to be you know executed and the except block might be

executed where we have the you know print failed statement.

And the finally block is also there, so finally block will also be you know be executed. So we

will be closing this you know file object. So let us run this, if I run this you can see here that we

have caught this message succeeded here, you can see the succeeded message we have got here.

So that means the try block that was successful that succeeded and therefore else block was also

executed.

And therefore we have got this we have printed this message succeeded. So 2 additional block

you know in addition to the try and except block that we typically have we can have you know

these 2 additional blocks else and finally. Now let us move to the file management aspects in the

python object. So how do we work with files in python that is quite simple in this particular

language platform and python is particularly very popular for text and file managing.

So we will talk about the file management aspects now. So one of the important thing that we

one of the first thing that we do in file management is to open a file and there are various

operational mode to open a file it could be read-only mode, it could be right only mode, it could

be read and write and you know various other modes are also there we will be discussing them.

So first thing is opening a file in a particular operational mode.

(Refer Slide Time:21:53)

So by default the file is open in the read-only mode or the open function we have already

discussed and used in the previous examples as well and as far as the file path that is the first

argument that is to be passed in the open function it could be relative or execute. So we can give

either the full path in an absolute sense or if we are working if we have all our files in the

working directory itself within the current directory itself.

Then we can just use the relative addressing and just give the name of the file that we want to

open. So here I am defining a path variable here path temp1.txt and I would like to open this file

open this path here file path object here. So if I just try to run this I will get an error here that no

such file or directory temp1.txt. So this example I have written actually to tell you that if the file

does not exist we are going to run into this kind of file not found error.

So first we need to ensure that the file is there, so temp.txt is the file that we already have there,

so we will run this again so next file object fl3 and we will run this and this file is already there.

So we will just use it for you know to discuss other aspects. So now let us talk about the lead

method, the use of read method is that whatever data that we want to read we can indicate in the

arguments or we if we do not indicate all the data that is part of that file that would be returned in

the form of is you know string.

So read method returns data from file as a string, so in the fl3.read, in this if I run this you know

if I make this method call. So you can see we have got this string as an output done then slash

and then log1 slash and log2, then session done and done. So this is the string that we have in

this file. So this is how we can read it. Now once we read a file we might reach to the end of the

file so in that case if we again read the file then an empty bytes object is going to be return.

So if I run the next line again if I repeat fl3 dot read again if I execute this you can see an empty

object has been created because we have already these the end of the file, had we passed on you

know some integer value as an argument to the read method, then those many characters would

have been you know read and would have been you know given in the output and the file

position will also change and the next you know read will start from those positions.

So in this case we had you know returns of all the data in the previous call therefore we these the

end of file and therefore an empty bytes object is returned in this case. Now we have also used

the close function, so the main purpose of this particular function is to closing the file objects

that are typically created with the open function. So this is an important cleanup operation in the

sense the resources that are involved in you know in a file object.

 (Refer Slide Time: 25:19)

They would be returned back to the operating system, so this is a cleanup operation, so it is

recommended to always close all the file objects. So if I run this flt.close then this worker file

object is going to be closed. Now there are going to be certain scenarios where we would like to

iterate over the lines in a file. So in a file we might be having you know text data and we would

like to iterate over the lines of you know lines of data that we might have in that file.

So how this can be done, so we can treat file handle as a list and then this iteration over that you

know handle can be perform. So here is an example, so first thing we are creating this file object

fl3 open path. So that temp.txt that we have created that file is going to be open in the read-only

mode and then we are running a for loop, so far line in fl3 and then we have passed remember

we had discussed the paths keyword before.

So we do not want to do anything any operation then we can use the past keyword we have

talked you know previously that because we do not have any you know braces or other you know

was kind of that kind of syntax that is typically used in other languages therefore we require this

kind of a statement if we do not want to execute anything. So in this case we just wanted to

demonstrate that we can iterate over the lines in a file.

So this is how we can do it, so if I run this so because we have iterated over all the lines in this

file therefore you must have least at the end of the file. So therefore if I try to lead this file then

in the next line that I have fl3.read then I should be expecting an empty bytes object. So that is

the case here you can see in the output number 26 you can got the empty bytes object because we

have already iterated over all the lines in the file.

Now there is something called end of line marker, so by default slash n is the end of line marker.

So let us take an example to understand this aspect as well, so let us open the file temp.txt open

path path is indicating that file name temp.txt and then we are running a loop for line in fl3 and

the only statement that we have in the for block is print that line. So we would be iterating over

the lines in this file and we would be printing each line. (Refer Slide Time: 28:23)

So if I run this particular you know code here you can see I have got done log1 log2 done done,

so you can see that each of these lines have been printed as a new line in the output. So that is

itself is indicating that slash n is the you know end of line marker here is the shalh n being used

as the l marker here. Now sometimes you might know you might not you know you might want

to have a check or you know you might forget to remember that whether a particular object is

open or not.

So for that also we have a method called closed, so this particular closed method is going to

return true if the file is closed otherwise if the file is open then it will return false. So in this case

you can see that fl3 file object we have we there are still open we have just printed all the lines in

that you know fl3 in that file. So if I run this fl3.close because this file is open I should get false

as the return value.

So you can see this, so this can be really useful when we want to put a check somewhere you

know to make sure whether a file is open or not. Now if I again if I try to you know read this file

here you can see that you know that empty bytes object is returned here. Now sometimes you

know you might want the you know list of lines which are free from end of line markers so that

can also be done for that we can use the a list comprehension where we have this transformative

expression line.rstrip you know method.

So it will strip the line of any end of line markers and we are iterating over all the lines in that

file. So you can see line in this list comprehension in the within the brackets we have line .rstrips

and then for line in open paths. So if I run this you can see all the lines that we had in this file. So

we get a list of all those you know all those statements, all those lines done log1 log2 done done.

So in this end of line markers is marker is gone that has been stripped off.

Now I can close the file here fl3.close, now another aspect is cleaning up open files so though we

can we can use the close method to close any file object that might be there. However sometimes

might be difficult to track all the file objects that we might have created. So for that to you know

to ease that that aspect cleaning of aspect we have another you know another keyword and

blocks that can be used.

So this is with keyword, so this is actually used to perform automatic cleaning of resources like

file objects after the execution of with block. So whatever is there in the with block once that

part is executed, all the file objects all the sources they are going to be cleaned up. So let us take

an example here, so with keyword then with open path as fl4. So essentially this is you know we

are creating this fl4 file object with this function open path.

And we have just a one line in this with block where we would like to again we have the list

comprehension. So line.rstrip or line in fl4, so essentially we will get the list of you know these

statements in the lines that you have in the file. So if I run this you can see that you know fl4 that

will we can have a check whether fl4 file object was closed or not. So now perform this fl4.close

if I run this you can see true as the output.

So the output you know that this list comprehension that was performed and once that is

executed if we check whether the file object is still whether the file is still open or not you can

see fl4.flow that is true. So cleaned up automatically enough of resources has happened. So we

can always write about file management file processing that we want to perform you know using

the with keyword you know.

So this will ensure the automatic cleanup of this sources. Now once the file is closed if I try to

read this file here fl4.3 you can see I will get this value error io operation on closed file. Now let

us move on to the other aspects here. So there are other you know python file modes, so let us

talk about the file modes which are typically used for writing. So one thing is this would be used

carefully because purpose of sometimes for different we might have different writing different

scenarios for writing content in the file.

So we have different file modes that can be used to cover all of those scenarios. So first one is

the write mode write only mode, so for this we have within single course we have to specify ‘w’

, so this right only more this is used to create a new file and once we use this write mode if there

is any file and having some data with the same file name then that is going to be erased. So if we

have a temp.txt and some data is there and if we create a new file object.

And we open the same file in the right mode using W write only mode using W file mode then

the previous all the data that would be gone because we would essentially be creating you know

a new file with the same file name, on the next file mode is small x within single quotes a small x

this is also write only mode only the operational part of is file mode is slightly different in the

sense we create a new file if the file path does not already exist.

So this is to address the scenario where we might already have and you know existing file and

therefore if the file is already there we might not like to create you know another file. So in that

case you know we can use this file mode x. So it will open the file in the right only mode and

however if the file is file with the same name is already existing. So opening of that file in that

right only mode will actually fail.

Now there is certain scenarios we might like to you might like to add content you know in an

existing file we would like to write content into an existing file, so for that we have another file

mode appending. So this is within single course so we can type ‘a’ so this is to append to existing

file and if in case the file does not exist already then it is going to be created and whatever

content we want to write that would be written there.

If the file is there if the file is existing and we want to write something, so at the end of the file

the particular content is going to be written. So let us take an example here, so we will take the

example of this file mode a which is to which is for appending to exist file. So we will have fl5

and other file object here and open function and we are passing this file temp.txt that we have

already created.

So we are using a as a file mode, so that means whatever we want to write that is going to be

added at the end of the file. So we call the file function fl5.write and if you want to write this

string append it you know. So this string is going to be this write method will write this pass the

string to the file. So if I done this you can see the output you have got 9 that is actually number

of characters that are to be written into the file.

So that is return here let me close this file now fl5.close and now if I want to deed the lines and

that are part of this file. So I can use this with block with open temp.txt where we have just now

written appended as fl6 and I will record I am using another method lead lines to read all the

lines that are in that file and I am storing that in the lines you know variable here. So if I run this

I will have lines and again if I execute this.

So you can see this is this list of strings the last element is appended, so you can see at the end of

all the you know of the file this particular string has been written, if I try to open this file in

another file mode writew w mode, then if I try this fl6 open temp.txt w because you know

whatever content that is there this file is already existing. So whatever data that is there that is

going to be erased here. So if I run this now here if I try to just you know read this file ok this is

open in the write only mode.

So I would not be able to read here, so you can see not readable because I need to open the file in

the read mode. So first I will close this and then I will open this file open path and then I will

lead this and you can see we have got the empty bytes object.

(Video Ends: 38:14)

Because we had used the write mode and for an existing file the same file name. So therefore all

the data all the content that was there in the file that was erased. So we would like to stop at this

point and we will continue our discussion on file management in the next lecture, thank you.

Keywords: file managing, file management, float, python pandas.

