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Black Scholes Delta 
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Delta & stock price 

 

As you can see from the above diagram, the change in price of the call option has a certain 

curvature. The slope of the curve changes from point-to-point along the curve. The slope at a 

given point gives the value of  at that point. In fact, the curvature is captured by the second 

derivative .  

 

In the Black Scholes framework =N(d1) so that:  
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ln . N(d1) is a monotonic increasing function of d1.  It follows that =N(d1) is 

a monotonic increasing function of S i.e. the slope of the call price curve increases with 

increasing S so that 0
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The  of OTM calls is close to 0 and that of ITM calls close to 1. It is immediate that  call=N(d1) 

 (0,1).  of OTM puts is close to 0 and that of ITM puts close to -1.  put=N(d1)-1(-1,0). 

 

As a general rule, of course, ITM options we will move more than OTM options because their 

 magnitude is higher indicating higher sensitivity to the price of the underlying. 

 

(i)  More a call is in the money, the greater is the probability of realizing its payoff.  

 

(ii) Also, the payoff of an ITM call at maturity is ST-K. This payoff is changes @ one unit 

for every unit change in stock price.  

 

Thus, a deep ITM call literally l mimics the stock. Therefore, any change in stock price is 

mirrored by an equivalent change in the call price and we have =1. 

.  

Conversely, if the call is well out of the money, then the probability of it being exercised at 

maturity becomes very small and therefore the realizability of the payoff is very small. Thus, 

small changes in the stock price so not significantly affect the realizability of the payoff even 

though the projected amount of payoff may change. The net result is that the call price does 

not get impacted by small changes in the stock price. Thus, for OTM options 0. 

 

Delta & expiration 

 

We have: 
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We find that: 

 

(i) if S  i.e. the call is deep ITM, then  increases rapidly to its limiting value of unity 

as the option approaches maturity. 

 

(ii) if S 0 i.e. the call is deep OTM, then  decreases rapidly to its limiting value of zero 

as the option approaches maturity.  

 

 
The above relationship between  and expiration is also depicted in the diagram. Please note 

that because time to expiration decreases as time passes i.e. we are moving closer to expiration 

with passage of time, we need to interpret this diagram while moving towards the left-hand 

side i.e. towards the origin. The origin represents the expiration.  

 

As seen in the diagram, when there is little time left to expiration,  moves very rapidly towards 

1 for ITM calls and 0 for OTM calls. For ATM calls, it tends to decrease at an increasing rate 



to some intermediate value. For ATM calls, we have  ln ln 1 0
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d1 and so =N(d1) also decreases. 

 

Short-maturity options react very significantly to changes in stock price compared to long 

maturity options. Long-maturity options are much less sensitive to changes in stock price or 

time to expiration compared to those that are very close to maturity. The underlying logic is 

that the time value of the option gets eroded very fast as expiration approaches. Therefore, the 

option prices become more sensitive towards expiration. 

 

Summary 

 

 

(i) Positions with positive delta increase in value if the underlying goes up.  

(ii) Positions with negative delta increase in value if the underlying goes down.  

(iii) dc=Δ.dS to first order. If Δ is positive, then positive dS will cause increase in call value 

and vice versa. 

(iv) Call delta increases with increase in stock price from 0 for deep OTM calls to 1 for deep 

ITM calls. 

(v) As expiration approaches, ITM call delta approaches 1 with increasing rapidity, OTM 

call delta approaches 0 with increasing rapidity. This is because time value erodes 

quickly as you approach maturity.     

(vi) Delta hedging provides immunity against price changes, but only in an infinitesimal 

region. For perfect hedging continuous rebalancing of portfolio is required. This is 

because delta value changes with every move of the stock price. 

(vii) However, if gamma is small, then the delta hedged portfolio is robust and rebalancing 

may be done at infrequent intervals. 

 

Gamma 

 

Gamma () is the first derivative of  with respect to the stock price. Equivalently, it is the 

second derivative of the call option with respect to the stock price S, 
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measures the rate of change of the slope of the call price curve i.e. the curvature of the call 

price curve. If  is small, the call price curve has small curvature, is relatively flat, and if  is 

large the curvature is significant. In this case,  changes very rapidly from point to point along 

the curve. Like the delta, the gamma is constantly changing along the call price curve, even 

with tiny movements of the underlying stock price. 

 

Gamma & hedging error 

 



 
  



 

 is a measure of the hedging error. Let us assume that at an arbitrary t, the stock price is at S 

and the corresponding call price is at C. At this point, let the stock price jump to a new value, 

say S’ whence the call price moves to C” along the call price curve C=f(S). At t, before the 

jump in the stock price from S to S’, suppose an investor creates a portfolio consisting of: 

 

(i) one unit of the call C; 

(ii) -=-(C’-C)/(S’-S) units of the stock. 

 

Then, after the stock price move to S’, the value of the portfolio becomes:    

 

Clearly the change in the call price is C=C”-C per unit  

The change in the stock price is S=S’-S  per unit 

Thus, change in value of -=-(C’-C)/(S’-S) units of stock = -(C’-C)  

 

Now, if the call price curve had no curvature, this portfolio would have been perfectly hedged, 

since the point C” would have coincided with C’ and the portfolio value would not have 

changed at all. The existence of curvature of the call price curve introduces a hedging error 

since the  value changes from point to point.  

 

Therefore, change in value of the portfolio after the jump = Hedging error due to the curvature 

of the call price curve = (C”-C)-(C’-C) = C”-C’. 
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Thus,  is a measure of the hedging error introduced in delta hedging due to curvature of the 

call price curve.  

 

Expression for Black-Scholes gamma 
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It is clear from the above expression that 0, as S+ and S0 and >0 for all intermediate 

values of S. In other words, 0 for both OTM & ITM calls, remaining positive throughout 

and reaching a maxima for ATM calls.  

 

Long calls always carry a positive gamma; short ones have a negative gamma. 

 

In the Black–Scholes model, we also have: 
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(i) As calls become further in-the-money, they act increasingly like the stock itself so that 

delta approaches one and gamma approaches zero.  

(ii) For out-of-the-money options, option prices are much less sensitive to changes in the 

underlying stock so that delta and gamma both approach zero. 

(iii) Thus, gamma generally at its peak value when the stock price is near the strike of the 

option and decreases as the option goes deeper into or out of the money.  

(iv) For a given strike price and expiration, the call gamma equals the put gamma. 

 

As calls go deeper in the money, they become certain to be exercised. Hence, a given change 

in stock price produces an equivalent change in expected payoff of the call.  settles down 

rigidly  infinitesimally close to one and does not change much for a small change in stock price, 

whence  approaches zero. 

 

With calls going deep out of the money a similar situation arises, with the call becoming certain 

not to be exercised. A small change in stock price does not significantly alter this “certainty” 

and so the call price does not change,  settles near zero. Further, the  also does not respond 

to small changes in stock price so that 0.  

 

Gamma & expiration 

 



 
For an at-the-money option, gamma RAPIDLY increases as the time to maturity decreases. 

Short-life at-the-money options have very high gammas, which means that the value of the 

option holder’s position is highly sensitive to jumps in the stock price. 

 

As the time to expiration draws nearer, the gamma of In-The-Money and Out-of-The-Money 

options decreases.  

 

As expiration approaches, because the realizability of the payoff becomes more and more 

certain,  also tends to decrease and approaches 0 at expiration. Both OTM & ITM calls’ 0 

as expiration approaches.  

 

As ATM calls approach expiration,  increases very rapidly. ATM calls have very high  

making their  extremely sensitive to the stock price. A large and positive  means that an 

investor takes a long position in short-maturity ATM calls. But if an investor has a portfolio 

with large positive , it follows that the portfolio  changes rapidly due to even small change 

in stock price. But the important thing is that a positive  operates in favour of the investor, as 

will be shown later. 



  
In the above diagram, we have calls with varying maturities, the yellow line is the 9-month 

maturity call, the blue line 6-month and the black line 3-month maturity call. The following 

features are apparent: 

 

(i) As the calls move from ATM towards ITM or OTM,  approaches zero. This holds for 

all the three calls and, is therefore, independent of maturity; 

(ii) The maximum  of all the calls occurs when they are at the money; 

(iii) The near-maturity (black) call shows the largest  of the three options in the region 

when the calls are ATM, although when the calls are ITM or OTM all of them have 

0. 

 

Volatility & gamma 

 

When volatility is low, the gamma of ATM options is high while the gamma for deeply ITM 

or OTM options approaches 0. The reason is that when volatility is low, the time value of deep 

ITM & OTM options is low but it goes up dramatically as the underlying stock price approaches 

the strike price.  

 

When volatility is high, gamma tends to be stable across all strike prices. This is due to the fact 

that when volatility is high, the time value of deeply ITM/OTM options are already quite 

substantial. Thus, the increase in the time value of these options as they go nearer the money 

will be less dramatic and hence the low and stable gamma.    

 

If the volatility is low, then an option which is ITM or OTM is likely to remain so, because the 

stock price does not fluctuate too much (low volatility). There is little chance of an OTM option 

bouncing ATM/ITM or vice versa. In other words, the moneyness is more or less crystallized 

and that being the case, the time value factor is small & not significant. If the time value factor 

of the option is not significant,  remains stable close to zero for ITM/OTM options.  

 



Time value is most for ATM options, so in the case of such options, because this time value 

erodes rapidly as the option approaches maturity  will be large and increasing at the maturity 

of the option approaches. 

 

However, if the volatility is high i.e. the stock price is showing significant fluctuations, then 

even deep ITM/OTM options have likelihood of bouncing into ATM or even OTM/ITM 

respectively. Thus, if volatility is high,  tends to be relatively stable across the spectrum of 

stock prices. If volatility is high, then ITM, ATM & OTM options carry the possibility of 

changing their moneyness character. The impact of stock price change is more equally 

distributed. All the money type options have significant time values and this time value must 

erode in each case to zero at maturity (time value of any option must necessarily be zero at 

maturity). Thus,  of OTM/ATM/ITM on high volatility stocks tends to be high and uniform 

on approaching maturity across the entire spectrum of moneyness. 


