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Option greeks: Definition & Motivation 

 

Let us start with the generalized Black Scholes option pricing formula for the value of a call 

option on a yield-bearing underlying asset: 
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It follows from this formula, that the instantaneous value of a call option is dependent on the 

following variables: 

 

(i) The instantaneous stock price S;  

(ii) The term to maturity T;      

(iii) The stock volatility ; 

(iv) The riskfree rate r; 

(v) The yield on the underlying asset q. 

 

The strike price is not a variable. It is the exercise price and it is fixed by contract and remains 

constant over the life of the option. 

 

Thus, in order to study the impact on the call price of each of these variables, we examine the 

change in the call price due to infinitesimal changes in each of these variables. We do so by 

doing a Taylor expansion of the call price around a certain value predetermined value fixed by 

some initial values of these variable i.e.  0 0 0 0 0 0, , , ,c c S T r q . We have, on Taylor 

expanding: 
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The above Taylor expansion enables us to define the fundamental option greeks as the various 

partial derivatives that are shown in the round brackets viz. 
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This left hand side represents the call price at a slightly displaced value of these parameters 

from the original value at which the call price was  0 0 0 0 0 0, , , ,c c S T r q . Consequent to a 

slight shift in the underlying parameters, the call price shifts to 

 0 0 0 0 0
c S S T T r r q q    , , , , .  

 

We have defined the option greeks as the partial derivatives of the call price with respect to the 

underlying variables. Clearly, therefore, these option greeks represent the sensitivities of the 

call price to these variables viz. the stock price, the time to maturity or their time expired, the 

volatility of the stock, the risk-free rate and the yield around an infinitesimal neighbourhood of 

the point at which they are computed. 

 

Recall that partial derivatives are simply the ratio of the changes in the value of a function 

f(x,y) to an infinitesimal change in the value of one of its argument, while keeping the other 

arguments unchanged i.e.
 ,f x y

x




 is the ratio of the change in value of  ,f x y  i.e.  ,f x y  

and the infinitesimal change in value of x i.e. x  causing the change  ,f x y  while keeping 

y unchanged.  

 

Other than , all the greeks are first order derivatives. This is because we chose to truncate the 

Taylor series at that point. We assumed and accepted that the anticipated changes in these 

variables would be small enough for higher order  terms to be insignificant. However, it is 

not at all mandatory that we must truncate the Taylor expansion at the level of first order and 

ignore all the higher order terms. With the increase in computing power, indeed, higher 

accuracy in predicting derivative prices can be achieved by including higher terms of the Taylor 

expansion. 

 

Although the set Delta, Gamma, Theta, Vega, Rho and Phi constitute the fundamental set of 

option greeks that are in regular use, the set of option greeks has been actually extended to 

include the second order partials with the increase in computing power e.g. 
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Of course, all these derivatives need to be valued at the point of reference i.e.  0 0 0 0 0, , , ,S T r q  
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with these greeks being valued at the point of reference i.e.  0 0 0 0 0, , , ,S T r q . The complete 

set of greeks, presently in use are tabulated below: 
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Nevertheless, the fundamental ones are Delta (), Gamma (), Theta (), Vega (), Rho () 

and Phi (). The others are more of cosmetic nature but nevertheless they contribute to 

enhancing accuracy. 

  

Delta 

 

The option delta is the rate of change of the value of the derivative position with respect to its 

underlying price. It is given by the partial derivative 
c

S


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
 of the value of a given derivative 

position with respect to the price of the underlying asset. Thus, it represents the slope of the 

curve between the price of the underlying asset and the value of the derivative position. For 

example, for a call option, delta would represent the slope of the call price curve with respect 

to the price of the underlying asset.  

 

It has been shown earlier that delta of a BS call is equal to N(d1). Now, N(d1) is the cumulative 

standard normal distribution function. Hence, we must have,  10 1d   N . Thus, 

call(0,1).  

 



The BS put delta, on the other hand is N(d1)-1 so that its value lies between -1 and 0 i.e. put(-

1,0).  

 

From put-call parity, it can be established that the sum of the absolute values of the delta of the 

call option and the delta of the put options is equal to 1. We have, from put-call parity, 
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The call value curve is shown in this diagram. Call value is not a linear function of the stock 

price. The slope of this curve at any given point gives us the value of  at that point.  

 

Not only does the plot have a curvature, so that the slope () changes from point to point, 

but the curvature () changes from point to point along the curve. 

 

In other words,  is different at different stock prices. It changes from point to point along this 

price curve. This change in the value of  is captured by the second derivative which is called 

the . 

 

Now, when the stock price registers an increase, the (i) probability of the call option finishing 

in the money on maturity also increases and (ii) the potential payoff from the ITM call which 

is proportional to stock price at maturity ST is also likely to increase. It follows that the value 

of the call option also registers an increase. Thus, the value of delta is invariably positive.  

 

The above is best elucidated by the following example:   

 

A stock price follows a lognormal distribution with an expected rate of return  of 14% and a 

volatility of 30% p.a. The stock pays dividends at a rate of 2% p.a. (with continuous 

compounding). The current price of the stock is INR 1,000. Calculate the probability that the 

stock price will exceed INR 1,250 at the end of six months from now.  

 



Suppose, now that the stock price has spontaneously gone up to 1,100. Calculate the revised 

probability of the stock finishing at 1,250 at the end of six months. Assume the jump was 

spontaneous.   

 

Solution 

 

The stock price is distributed as follows: 
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We need to find P(ST>1,250)=P(lnST>7.13)=P(Z>(7.13-6.9453)/0.21)=P(Z>0.88) =0.1894 

 

In the second case, the ln of the stock will be distributed as: 
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We need to find P(ST>1,250)=P(lnST>7.13)=P(Z>(7.13-7.0406)/0.21)=P(Z>0.426) =0.3350 

 

The positivity of  also follows from its Black Scholes value of N(d1). Since N(z) is the 

cumulative standard normal distribution, it represents the probability the standard normal 

variate Z can take values between - and z i.e. N(z)=P(Z<z) where Z is N(0,1). Obviously, it 

must be non-negative.  

 

In fact,  as the value of d1 increases, N(d1)= must also increase since  
1 21

2
1

1

2

d

d e d









 N  

. Now, from the expression for d1 viz. 

 

2 2

1

1 1
ln ln

2 2

qTS S
r T r q T

K K
d

T T

 

 


   

       
      

 

it is obvious that, other things remaining unchanged, d1 is a monotonically increasing function 

of ln S and hence, of S.  Thus,  of a call is not only essentially positive, but it also increases 

with increase in stock price so that 0
S


  


.  

 

Delta & stock price 

 



  
 

(i) As a general rule, in-the-money options will move more than out-of-the-money options. 

 

(ii) When the call option is deep out-the-money, it has a delta of 0. The call will not move 

much at all due to movements in the underlying asset. This is because the call is very 

likely not to be exercised and the payoff will not be realized. Hence, its rate of change 

of price is independent of the rate of change of price of stock. 

 

(iii) When the call option is deep in-the-money, it has a delta of 1. The call will move point 

for point in the same direction as movements in the underlying asset. This is because 

the call is very likely to be exercised and the payoff on the call is ST-K. Hence, its rate 

of change of price mimics the rate of change of price of stock.  

 

Consider a call that is deep out of the money e.g. one written at 50 with the current stock price 

hovering around, say 10. Suppose, now, that the stock price rises to 11. The question is whether 

this change will significantly affect the expected payoff from the call. For this purpose, we 

need to ascertain (i) whether this change significantly affects the probability of exercise of the 

call and (ii) whether it significantly influences the amount of payoff.  

 

Now, in the given situation, it is very probable that the option will not be exercised on maturity 

since it is likely to finish OTM. Even if there is a small increase in the stock price, the 

probability of non-exercise is not likely to improve significantly, given the massive gap 

between the exercise price and the current stock price. It is still probable that the option will 

finish OTM. Because this perception of non-exercise is not going to change significantly, even 

the increase in the potential payoff, if any, is likely to be completely eclipsed, the value of the 

option is not likely to change much. As a result of which delta of OTM options is pretty close 

to zero. 

 

What happens at the other end of the spectrum i.e. when the stock is very high? Option exercise 

at maturity is, now almost a certainty and a payoff of ST-K is going to result. If the stock price 



increases/ decreases by a small amount, the probability of exercise is not likely to be affected, 

the option will, still most likely finish ITM and be exercised. The payoff will result.  

 

However, the value of the payoff will change precisely by the change in the value of the stock 

price at maturity. The current value of the call will, therefore, change by the present value the 

change in maturity stock price. But this will be precisely the current change in stock price. 

Thus, the call price will change precisely by the change in current stock price i.e. =1. Let us 

take an example, Suppose the current stock price increases by 1 unit. Then, the expected 

increase in stock price at call maturity i.e. t=T will be erT. Thus, the expected payoff from the 

call will increase by the same amount erT since the payoff from call is ST-K (as the call is certain 

to be exercised). Thus, the increase in call’s current value which is the present value of this 

expected increase in call payoff is e-rT erT =1= increase in stock price. Thus, in this situation 

=1.   

 

As the stock price moves close to the exercise price, then any small change in stock price 

significantly affects the probability of the option ending ITM/OTM. Therefore, the realizability 

of a payoff at maturity as also the amount of payoff are both affected although uncertain. As 

such, in such situations  hovers around 0.50. 

 

Delta of put options 

 

(i) When the underlying price rises, the price of the option will decrease by  amount.  

 

(ii) Put  will increase (move from a negative to zero) as the option moves further out-of-

the-money.  

 

(iii) When the put option is deep in-the-money and has a  of -1, then the put will move 

point for point in the opposite direction as movements in the underlying asset.  

 

In the case of the put options, when the price of the underlying rises the put option tends to go 

out of the money and hence become cheaper. As the price of stock increases the value of the 

put option decreases since the payoff from a put at maturity is max(K-ST,0). The payoff is 

inversely related to ST.  Hence, <0. It ranges in (-1,0). Put  will increase from -1 to 0 as 

the option moves from ITM to OTM.  

 

 of OTM puts is close to 0 as they are unlikely to be exercised while  of ITM puts is close 

to -1 since the payoff varies as the negative of the maturity stock price ST. 

 

Thus, as the put option moves from OTM to ITM, the  changes from 0 to -1 and vice versa. 

 

In the BS framework put = N(d1)-1. 

 

Delta & Expiration 

 



 
 

It may be noted that time to expiration increases along the X-axis. Thus, as the option 

approaches maturity, we need to move towards the left i.e. towards the origin in interpreting 

the above diagram. In actual fact, time to expiration decreases, so we have to look at this graph 

backwards along the X-axis while reading the timeline.  

 

The  of ITM call approaches 1 as the option approaches maturity. Payoff of the an ITM call 

is s ST-K. As we approach the call maturity date, there remains less time available for the stock 

price to fluctuate. Thus, the closer one is to maturity, the greater is the chance that the stock 

will sustain its current value S at call maturity and hence, greater is the chance of realizability 

of the payoff close to S-K. Thus, closer will be  to unity. 

 

Clearly, the probability of the stock touching a particular value at maturity from a certain 

current value decreases as maturity approaches. In fact, the variance of ln ST (in this model) is 

directly proportional to the term to maturity T, so that as maturity approaches, the variance and 

hence the amplitudes of fluctuations decline. Simply stated, there is greater certainty of the 

stock price finishing in any given interval.   

 

Recall an earlier example wherein we were given that a stock price follows a lognormal 

distribution with an expected rate of return  of 14% and a volatility of 30% p.a. The stock 

pays dividends at a rate of 2% p.a. (with continuous compounding). The current price of the 

stock is INR 1,000. We were required to calculate the probability that the stock price will 

exceed INR 1,250 at the end of six months from now. We found that  

 

The stock price is distributed as follows: 
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We need to find P(S0.50>1,250)=P(lnS0.50>7.13)=P(Z>(7.13-6.9453)/0.21)=P(Z>0.88) =0.1894 

 

Now, suppose we are required to find the probability of the stock price touching 1,250 at the 

end of 3 months from now. We have 
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We need P(S0.25>1,250)=P(lnS0.25>7.13)=P(Z>(7.13-6.9266)/0.15)=P(Z>1.356) =0.0875 

showing that as maturity becomes closer, the probability of hitting a target price given a current 

price diminishes. In other words, the certainty around a particular current price increases.   

 

 

For at the money calls, the call value fluctuates significantly with changes in stock prices as 

the options get closer to maturity. For ATM calls, we have  ln ln 1 0
S
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d1 and so =N(d1) also decreases.  

  

Similarly, for OTM options, as maturity approaches, there is lesser possibility of any current 

favourable price movements carrying a positive impact on the option moneyness at maturity, 

the  becomes more and more rigid towards 0.  

 

In all the types of options, ITM, ATM & OTM, the slope of the  curve increases in magnitude 

as the call approaches maturity, although the slope is positive for ITM options and negative for 

ATM & OTM options. It means that the price of the call will change more in a given time 

interval of same magnitude when this interval is closer to maturity.  

 

Curvature of the call price curve & delta, Delta hedging 

 

(i) Delta indicates the number of shares of stock required to mimic the price behavior of 

the option. Thus, delta is also called the Hedge Ratio. 

(ii) Delta neutrality means the combined deltas of the options involved in a strategy net 

out to zero.  

(iii) Delta neutral portfolios are insensitive to price changes of the underlying asset within 

an INFINITESIMAL region around the point at which Delta neutrality is attained.  

 



(iv) However, since every change in the underlying price changes the Delta, it is necessary 

to continuously rebalance the portfolio to achieve sustained Delta neutrality after every 

stock move.  

(v) Nevertheless, a gamma (derivative of delta) near zero means that the option position is 

robust to changes in underlying prices and immune to price change over a significant 

range of values and hence, portfolio rebalancing need not be so frequent. 

 

 is the change in value of a call option due to a small change in the price of the underlying 

asset. Therefore, if one constructs a portfolio of one call and - units of the stock, the price 

change in the call will be neutralized by the price change in the stock position and one gets a 

risk-neutral portfolio. Let us call it  risk-free portfolio. 

 

However, since the curve c=f(S) is nonlinear, it has a curvature. Because of this curvature, the 

slope i.e. the  changes from point to point along the curve. Therefore, with every price change 

the  also changes. Hence, if a portfolio is delta neutral at a particular point on the curve, as 

soon as the stock price makes a shift, the delta value required for neutrality becomes different. 

Therefore, the portfolio loses its delta neutrality. Thus, although we can construct a  risk-free 

portfolio by using one unit of the derivative and - units of the stock, it would remain -neutral 

over a very small (infinitesimal) range of stock prices, every time the stock price registers a 

change, the portfolio will lose its delta neutrality ( as its delta will change) and will have to be 

rebalanced. 

 

Thus, theoretically, it would be necessary to rebalance the -neutral portfolio after every stock 

price move to sustain the neutrality. This is an impracticable exercise. The bottomline is that if 

one has a -neutral portfolio or a  risk-free portfolio, the  risk-free portfolio remains risk-

free only for infinitesimal changes in the stock price and not for large changes in stock price.  

Large changes in stock price will not be neutralized inter se, between the price of the derivative 

and the price of the stock. That is very important, that is where all the problems creep in. 

 

Thus, to sustain -neutrality over sustained regions of stock price movements, it is necessary 

to rebalance the portfolio frequently. How frequently would depend on the rate at which  

changes with respect to the stock price i.e. on the value of  which is simply the rate of change 

of delta with respect to the stock price. 

 

So, if  is small, i.e.  is changing very slowly due to changes in stock price, the required 

frequency of rebalancing would be much less. However, if  is large, then frequent rebalancing 

to counter the rapid changes in  with changes in stock price would be required. 

 

Delta positive strategies 

 

(i) Long Call  

(ii) Short Put  

(iii) Bullish Call Spread  

(iv) Bullish Put Spread  

(v) Covered Call Write 

 

Delta negative strategies 

 

(i) Long Put  



(ii) Short Call  

(iii) Bearish Put Spread  

(iv) Bearish Call Spread  

(v) Covered Put Write  

 

Delta neutral strategies 

 

(i) Iron Condor  

(ii) Butterfly  

(iii) Short Straddle  

(iv) Short Strangle  

(v) Long Straddle  

(vi) Long Strangle  

(vii) Long Calendar Spread  

 

Iron condor 

  

An iron condor consists of the following: 

 

(i) Long OTM put (X) at K1 

(ii) Short OTM put (Y) at K2 

(iii) Short OTM call (A) K3 

(iv) Long OTM call (B) K4 

 

K1<K2< K3<K4 

 

Initial investment 

 

Let us first look at the initial investment. 

 

(i) Let us, first look at the put spread. We have long OTM put X at K1 and short OTM put 

Y at K2 with K1<K2. Now, for put options, the premium varies directly with the exercise 

price i.e. higher the exercise price, higher the premium since put is a right to sell the 

asset at the exercise price. Since, the long put (purchased) is at a lower exercise price 

and the short put (sold) it at a higher exercise price, there will be a net cash inflow from 

this combination of put options when the spread is created. 

 

(ii) Now, the call spread. We have short OTM call A at K3 and long OTM call B at K4 with 

K3<K4. For call options, the premium varies inversely with the exercise price i.e. higher 

the exercise price, lower the premium since call is a right to buy the asset at the exercise 

price. Since, the long call (purchased) is at a higher exercise price and the short call 

(sold) it at a lower exercise price, there will be a net cash inflow from this combination 

of call options at the creation of the strategy. 

 

(iii) Thus, both the put spread and the call spread result in a cash inflow at inception so that 

the iron condor strategy will generate a cash inflow at inception. 

 

Payoff of iron condor 

 



Let us now look at the payoff at maturity of the condor. As usual, we divide the stock price 

spectrum as  0<ST< K1; K1<ST<K2; K2<ST<K3; K3<ST<K4; K4<ST. Then, 
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(i) Now, long put option X has a strike of K1, so it will be exercised if 0<ST< K1 and will 

generate a payoff of K1-ST.  

(ii) Short put Y has strike K2 and will be exercised if ST<K2. It will generate a payoff of 

ST-K2. 

(iii) Short call A has strike K3 and will be exercised if ST>K3 generating a payoff of K3-ST. 

(iv) Long call B has strike K4 and will be exercised if ST>K4 generating a payoff of ST-K4. 

  

If we aggregate all these payoffs, we find that in every scenario except when K2<ST<K3, the 

payoff is negative. And even when K2<ST<K3, the payoff is zero. Thus, in the best case scenario 

the payoff is zero, otherwise it is always negative. However, we had a positive cash flow at the 

inception of this strategy.  

 

Thus, if the stock price ends up as K2<ST<K3 at options maturity, the investor makes a zero 

loss at maturity but retains the positive cashflow of -PX+PY+PA-PB i.e. the net premium from 

the strategy which is equal to the difference between the premia of the two calls and the premia 

of the two puts that constituted the strategy at the time of inception.  

 

So, the iron condor at maturity does not give a positive payoff but it does give a positive inflow 

at the time of creation of the strategy. 


