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Solution of the Black Scholes equation 

 

Although several approaches exist for solving the Black Scholes equation, we shall be doing 

so by transforming the equation to the diffusion equation followed by solving the emanating 

diffusion equation by constructing the appropriate Green’s function for the problem. 

 

(i) Transformation of variables 

 

The Black Scholes equation is:  
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subject to the boundary conditions:  
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The boundary conditions are  

 

(i) at t=T, i.e. the maturity of the call (Recall that we are valuing a European call), the 

value of the call will equal its payoff i.e. max(ST-K,0); 

(ii)   if stock price touches 0 at any time during (0,T), then it remains 0 thereafter throughout, 

including at t=T i.e. ST=0 with certainty whence, there exists no probability of exercise 

of the call and the realization of any payoff thereon. Hence, the value of the call at any 

earlier time after S touches 0, also becomes 0 because it is, now, (i.e. after S touches 0) 

known with certainty that the call will yield a payoff of 0 on maturity. 

(iii) if the stock price rises unboundedly high at any point in (0,T), then it is certainly not 

going to fall below the exercise price K at t=T, so that the option will definitely be 

exercised in this case and the payoff of ST-K will certainly materialize at t=T. Since K 

is a constant independent of S and t, this payoff is simply the payoff from the holding 

of a stock displaced by a fixed amount K. Thus, in this case, the call mimics the stock 

for all practical purposes. Hence, the value of the call at any earlier time in (0,T) after 

the stock has risen to a sufficiently high value, will be the value of the stock less the 

present value of K at that point. Further, if S is large enough compared to K such that 

the present value of K be ignored compared to S, then then the call price will 

approximate the stock price S, at that point in time. 

 

We make the following transformation of variables: 
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Transformation (3a) i.e. ln
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x
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 serves three purposes (i) it converts our independent 

variable S into a dimensionless variable (S/K) because S and K are in the same dimensions, 

both being in money units; (ii) by introducing the new variable as a logarithm i.e. ln
S

x
K

 
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 
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we eliminates the S dependency of the coefficients of the Black Scholes PDE i.e. the drift and 

diffusion coefficients become independent of S; and  (iii) since S is assumed to be log-normally 

distributed in the model, it immediately follows that ln S and therefore ln(S/K), with K being 

a constant, is normally distributed. Hence, x is normally distributed and we can work in the 

environment of the normal distribution. 

Transformation (3b) i.e. 
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  converts this terminal value problem to an initial value 

problem since t=T gives =0.  

Transformation (3c) i.e.  ,C Kf x   makes the dependent variable C dimensionless because 

C and K are in the same dimensions, both being in money units. Therefore, f(x,) which is our 

new dependent variable is dimensionless. 

 

Making these substitutions yields:  
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With the boundary conditions: 

 

   0: ,0 max -1,0xf x e   ,  : , 0x f x    ,  : , xx f x e    (5) 

 

Transformation to the diffusion equation 

 

A diffusion equation has the form: 
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To convert eq (4) to the form of eq (6), we make a second set of substitutions given by the 

following: 

 

   , ,ax bf x e g x          (7) 

 

where a,b are free real numbers to be determined in such manner as to convert eq (4) with the 

substitution of eq (7) into the form of eq (6).  

 

When we substitute eq (7) into eq (4), we get: 
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In order that eq (8) takes the form of eq (6), a, b need to be so chosen that the coefficients of  

g

x
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 and g, both vanish. Thus, we need to set: 
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On setting these values, we get 
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The boundary conditions on g take the form: 
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where  is any real positive constant. 

 

Solution of the diffusion equation 

 

We need to solve eq (10) subject to the boundary conditions (11).  

 

From the substitution 
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other words, g(x,), is defined only for positive . Therefore, in order to extend this definition 

of this function over the entire real line i.e. -<<+, we invoke the Heaviside step function 

defined by   0 0
1 0

for
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 and write      g x g x , : ,  whence  g x,  is clearly 

defined over the entire real line.  Now,  
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where the last step follows from          0 0 0g x g x , ,

       0g x g x , , . Thus, we have   
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Eq (12) has the solution  
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where  0p x y, ,  is the Green’s function for eq (12) representing the transition probability 

function and the integration kernel. It satisfies: 
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with the solution: 
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whence  
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and so 
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Now, the boundary conditions. We are given the boundary condition for g(x,0) as: 
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Applying this condition to g(y,0) in the integral (17), we get: 
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integration region to positive y. Also, we need only retain  
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Returning to the original variables, we have 
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Appendix 

  

A note on Green’s functions 

 

Let  
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be a given differential equation. We need to solve for g(x).  

 

Let  ;G x y represent the Green’s function for  eq (A1). Then,  ;G x y  satisfies 
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