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We have discussed earlier that in the case of American call on a non-dividend paying stock, it 

is never optimal to early exercise the American call. If an investor owns an American call on a 

stock and the stock is not expected to pay any dividend during the lifetime of the option, then 

it is never optimal that the option should be exercised early. The important premise in this 

contention is that the stock should be non-dividend paying. Remember it is an American option, 

so it can be exercised early i.e. before maturity but by virtue of arguments, we established that 

it is not optimal to exercise the option early. 

 

We, now, relax this assumption and examine the optimality of early exercise of American call 

on a stock that is expected to pay dividend during the lifetime of the option. 

 

Early exercise of American calls on dividend paying stock 

 

We are going to investigate now whether, in the case of American calls on a dividend paying 

stock, it can ever be optimal to early exercise the option. 

 

We first establish that when examining the optimality of early exercise of American calls on 

dividend paying stocks, it can, if at all, only be optimal to exercise at a time immediately before 

the stock goes ex-dividend.  

 

For simplicity, we assume that there is only one dividend payment, say D, during the life of the 

call option. We assume that the stock goes ex-dividend at t=Td in (0,T) where T is the maturity 

of the option.  

 

Now, if an option holder exercises the option any time before dividend date, he gets the stock 

for the exercise price and also the dividend on the dividend date if he holds the stock till then.  

 

However, if he delays the exercise until just before the ex-dividend date, then he still gets the 

stock at the cost of the exercise price and also the dividend. Hence, in so far as the cost of 

getting the stock is concerned and the dividend thereon, it does not really matter whether he 

exercises the option just before the dividend date or much earlier. But by deferring the exercise 

to just before the ex-dividend date, he gets the following advantages: 

 

(i) the cash outflow on account of exercise price gets deferred resulting in saving of interest 

cost; and 

(ii) if the investor exercises the option just before the ex-dividend date, then, in the event 

that the stock price falls below the exercise price, he can decide upon avoiding the 

exercise of the option and acquiring the stock in the market, a possibility that he 

foregoes if he exercises the option earlier. 

  

Further, if he plans to sell the stock before the ex-dividend date, he can get a better profit by 

selling the unexercised option, compared to exercising the option and then selling the stock.   

 



Hence, we shall consider the possibility of early exercise only just before the ex-dividend date 

i.e. when the stock goes ex-dividend. In other words, it is sufficient for us to investigate the 

optimality of early exercise at point just before t=Td where Td is the ex-dividend date i.e. it is 

not necessary for us to examine the viability of this proposition at a date earlier to the ex-

dividend date.  

 

In view of the above, we need to compare the following situations: 

 

(i) Exercise of the American call immediately before the stock goes ex-dividend i.e. at 

t=Td; and 

(ii) Carrying the call unexercised. 

 

In case (i), since we are considering only one dividend, D, for which the stock goes ex-dividend 

at t=Td, the option will, obviously, be exercised only if 
dTS K  (because if 

dTS K , the option 

exercise will make no sense as the payoff in that case will be zero) and will yield the payoff 

dTS K .  

 

In case (ii) i.e. if the option is not exercised, the stock price will drop down to 
dTS D  

immediately after the stock goes ex-dividend. The stock price will fall by the amount of 

dividend immediately after it goes ex-dividend. With this stock price, i.e. after the stock has 

gone ex-dividend, the lower bound on the option price will be 
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the lower bound on the call option price at any arbitrary time t in (0,T) during the life of the 

option is given by: Current Stock Price at t – Present Value of Exercise Price at t.  

 

Thus, if 
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optimal to exercise the option because the lower bound on the option price post ex-dividend is 

exceeding the payoff from the option before ex-dividend so that the least value of the 

unexercised option is more than the payoff on exercise.  

 

On the other hand, if D>K{1-exp[-r(T-Td)]} it may or may not be optimal to exercise the call. 

If D is greater than K{1-exp[-r(T-Td)]}, the above analysis does not conclusively establish 

that it is optimal to exercise the call option. 

 

However, for any reasonable assumption about the stochastic process followed by the stock 

price, it can be shown that it is always optimal to exercise at time Td for a sufficiently high 

value of 
dTS . The > inequality will tend to be satisfied when the ex-dividend date is fairly close 

to the maturity of the option (i.e., T–Td is small) and the dividend D is large. 

 

We have concluded that if the stock pays no dividend, then it is certainly not optimal to early 

exercise an American call, because the  LHS of 
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zero and hence, the inequality will invariably be satisfied. So if D is zero then it is surely not 

optimal to exercise the call early, which we have already established by other grounds. So the 

current argument is consistent with the earlier approach. But if the dividend is large enough 

and this period is small, in other words the payment of dividend is close to the maturity of the 

call then there could be a possibility that early exercise could be optimal.  

 



Now we come to another interesting result. The interesting result is called Girsanov's Theorem. 

What Girsanov's Theorem says, although it is a very technical theorem, we shall talk about, we 

shall leave out the mathematical nuances. We shall talk about the philosophy of the theorem 

and in context of our pricing, what it says is that see we have been talking about real life 

probabilities, we have been talking about risk neutral probabilities. 

 

So it is interesting to explore the inter-relationship between them and Girsanov's theorem gives 

us that inter-relationship. The inter-relationship says that when we move from one world to the 

other, that is when we move from the real world to the risk neutral-world or vice versa, the 

expected return changes. The drift changes, however the volatility remains unchanged. The 

volatility, the underlying volatility, if you move from the risk neutral-world to the real world 

or vice versa remains unaffected. Of course, the rates of return and trends or the drift terms do 

undergo a change. 

 

Girsanov’s Theorem 

 

Consider a single step binomial tree of length T in the risk neutral world. The stock price at t=0 

is S0  and at the end of the single time period of length T, it can jump to either uS0 with 

probability qu or dS0 with probability qd=1-qu.Thus, 
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Then, we have, the expected stock price at t=T i.e. at the end of the jump

   0 01-TE S quS q dS  . Now, if r is the riskfree rate of return, then the expected stock price 

at t=T is   0
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Now, if the stock, at t=T, jumps to uS0, the probability for which is q, the percentage change 

in price is 0 0

0

% 1u

uS S
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S


    and if the stock price falls to dS0, the probability for which is 

1-q, the percentage change is %d = d-1. Thus, the variance of the percentage change in price is: 
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Now, if we define 2 as the variance of the percentage change in stock price per unit time, then 

we have,    2 2rT rTe u d ud e T    .   A possible solution to this equation due to Cox & 



Rubinstein upto first order in T is given by: ;T Tu e d e    as shown below: 1ud  ; 
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Proceeding similarly, we can show that the variance of the percentage change in stock price 

over time T in the real world yields a similar expression viz. 
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however,  p is the real-world probability of an upswing, given by, 
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 and  is the 

real-world expected return.  Using this value of p, we get: 
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If we substitute ;T Tu e d e    in this equation, we find, on ignoring higher powers of T, 

that the expression equals 2T .  

 

And what we end up with is basically that the expression for u and d of the drift rates in the 

risk-neutral world r or real world . Although the probabilities q in the risk-neutral world and 

p in the real world depend upon these drift rates, the jump sizes (volatilities) are independent 

of these rates. In either case, we find that the same u and d satisfy the requisite equations. 

 

The above analysis shows that when we move from the risk neutral world to the real world or 

vice versa, the expected return on the stock changes, but its volatility remains the same, at least 

in the limit as T0. This is an illustration of Girsanov’s theorem, a celebrated result in 

stochastic finance.  

 

The drift rate does change on transition, u and d and hence, the volatility does not change. The 

jumps do not change.  

 

Putting it more generally, when we move from a world with one set of risk preferences to a 

world with another set of risk preferences, the expected growth rate in variable changes but the 

volatility remain the same.  


