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Lognormal Distribution  

 

Calculus of functions of stochastic variables 

 

Just as deterministic curves can be considered as comprising of infinitesimal increments of 

straight lines, stochastic trajectories may be assumed to be formed by infinitesimal increments 

of Brownian motion. 

 

In other words, deterministic curves are an assortment, a combination of infinitesimal straight 

lines. Similarly, stochastic curves or curves representing random processes or stochastic 

processes can be considered as increments of infinitesimal Brownian motion.  

 

The following correspondence is very interesting: 
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The above is a comparison between the deterministic scenario and the stochastic scenario. If 

dx is a deterministic increment, then obviously because it has no randomness, the E(dx)=dx  

and Var(dx)=0.  Further, in Newtonian calculus, we ignore higher powers of dx so the E(dx2)=0 

and we truncate the Taylor series at the first order term. Further, Var(dx2)=E(dx4)-[E(dx2)]2=0. 

The results on variance also follow intuitively as dx has no randomness, it is a deterministic 

increment.  

 

In the case of BM, however, we have a different situation. We have, E[dW(t)]=0, by definition 

but E[dW(t)]2=dt. It is not zero, it does not vanish. Rather it is of first order in dt. Thus, while 

E[(dx)2] is ignored, it is assumed to be small enough, E[dW(t)]2=dt cannot be ignored because 

it is of first order in dt, Besides, Var[dW(t)]2 is of order (dt)2 showing that the variance of 

[dW(t)]2 can, indeed, be ignored. Thus, [dW(t)]2 has the mean value dt and is approximately 

non-stochastic, non-random. It follows that [dW(t)]2 has the value dt throughout, whence being 

of first order it must be retained in taking limits.  

 

Thus, in the case of dW(t) the increment of the Brownian motion, howsoever small it may be, 

dW(t)2 cannot be ignored because it is of the first order in dt it is approximately non-stochastic 

and therefore it has to be retained in the Taylor expansion and while taking limits in doing 

differentiation. 

 

Analysis of stock price model 

 

The infinitesimal stock price model was assumed as: 
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where (t) is Gaussian delta correlated white noise.  

 



The corresponding finite model shows the stock price to be log normally distributed as: 

 

 
   

 

 

2
2

22

ln - - - '
' 21

, ', ' exp -
2 - '2 - '

S
t t

S
p S t S t

t tS t t




 

    
     

       
 
 
 

 i.e.  

2 2

0

1
ln ln ,

2

distribution

TS N S T T  
  

    
  

  

 

Now the important to highlight that in the lognormal model, the mean and variance are 

independent of the stock price whereas in the differential model the they are both functions of 

the instantaneous stock price. This is the reason that the differential model cannot be extended 

for long time periods. 

 

It is interesting to compare the above two models. In the following example, I have tried to 

analyse the results by applying the two models to the same set of data in two situations. 

  

The data that I have used is =15%,, =30%, S0=1000. In the first case, I consider a time frame 

of 1 week= 0.0192 years and work out the probability of the stock price rising by 54 at the end 

of this period using both the models. With the differential model, I get Z=1.2286 whereas with 

the lognormal model I get Z= 1.21. The difference, though clearly discernible, is relatively 

small.  

 



  



Now, I rework the same problem but with a time period of one year i.e. I work out the 

probability of the stock price exceeding 1,054 at the end of one year from today given its 

today’s price as 1,000 and  and  as 15% and 30% respectively. With the differential model, 

I return the Z value as -0.32 while the lognormal model gives Z=-0.14, thus showing significant 

divergence at this time-scale.  

 

The two results clearly establish that the differential model is valid for only very small periods 

of time. 

 

 
The basic thing is, the correct model of the two is unquestionably the lognormal model. The 

differential model, however, offers a good approximation for small time-scales. Therefore, I 

emphasize that while working out probabilities or confidence intervals if the period involved 

is substantial, say exceeding 1 week, it is definitely better to use the lognormal model. 

 

Now we investigate, why this difference arises due to the use of the two models. Let us look at 

an example: Let the stock price at t=0 i.e. S0=1,000 and let the price at the end of one-time 

period (say 1 year) at t=1 i.e. S1=1,000. Naturally, since there is no net change in the stock 

price over the period, the net return is 0.   

 

Now, suppose that we split this time period of 1 year into two parts of 6 months each i.e.  0 to 

0.50 year and then 0.50 year to 1 year. Let the stock price at t=0.50 year be 1,100 i.e. S0.50=1,100 

and let it drop down to 1,000 at t=1 year so that the net return is again 0. But the percentage 

change in price over the first half year and the second half year are respectively 10% and -

9.09% with a total change of 0.91%, clearly incompatible with the zero net change in price and 

zero return.  

BASIC DATA

INSTANTANEOUS RETURN 0.15

STD DEVIATION PER ANNUM (Vol) 0.3

CURRENT STOCK PRICE 1000

EXPECTED STOCK PRICE 1054

TIME FRAME 1

SHORT TERM MODEL

MEAN 1150

SD 300

Z VALUE -0.32

LONG TERM MODEL

LN (S) 6.90776

MEAN OF LN(S) 7.01276

SD OF LN(S) 0.3

LN(S(T)) 6.96035

Z VALUE -0.17469

-0.14531



Now, I do the same exercise with the stock price instead of going up to 1100, but going down 

to 900 at t=0.50 year and then recouping to 1,000 at t=1 year. In this case, the percentage change 

in price over the two half year periods is respectively -10% and 11.11% with a total change 

over the year as 1.11%. This is, again, incompatible with the zero net price change and net 

return.  

 

Thus, in both cases, if the stock price goes up or down at a point in between the period for 

which the return is being calculated, then the return over the entire period calculated by 

aggregating the percentage change in prices of the two periods is more than the return 

calculated by using the net change in price over the entire period.   

 

The above can be generalized so that if there occur fluctuations during a period, then the return 

computed over the period by aggregating the percentage price changes over the periods at 

which the fluctuations occur works out to be more than the return computed by using the net 

absolute price change over the period. In fact, this explains the need for the correction of ½2. 

 
There is another interesting observation. In both the cases discussed above, the stock price was 

shown to make an up (down) jump followed by a reversal down (up) jump i.e. the two jumps 

were in opposite directions. 

 

Now, suppose the stock price makes the two jumps in the same direction i.e. from 1,000 to 

1,075 at the mid-point (t=6 months) and then to 1,150 at the end of one year. In this case, the 

percentage changes in price work out to 7.5% for the first half year and (-)6.98% for the second 

half year yielding an aggregate percentage price change of 14.48% for the year. This is against 

the net return of 15% over the year clearly showing that in this case i.e. when both price 

movements are unidirectional, the actual return exceeds the averaged return over the two 



periods. The same phenomenon happens when both the jumps are down. A generalized analysis 

is as follows: 
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This is an explanation of what we have just discussed. We have 3 points here A, C, and an 

intermediate B. The return over period AC is given by the net percentage change in price over 

AC i.e.RAC= dSAC/SA. But dSAC = dSAB+ dSBC so that RAC=(dSAB+ dSBC)/SA. 

 

But, RAB= dSAC/SA and RBC= dSBC/SB so that RAB+RBC= (dSAC/SA)+(dSBC/SB).  

 

Importantly, while working out the percentage change in price over BC we need to take the 

denominator as SB instead of SA. This is important. On simplification, we see that: 

 

0
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Thus, if the sum of the percentage changes in price over AB & BC is to be greater than the net 

percentage change in price over AC, then we must have that dSABdSBC <0 i.e. that there should 

be up and down movement of the stock or vice versa, the fluctuation in price should be 

bidirectional. The signs of dSAB and dSBC or the sign of the change in the price over AB and 

over BC must be in opposite direction. So that is what happened in the illustrations.  

 

Lognormal Distribution, its PDF, mean & variance 
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In our stock price model, we have 2 2
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Example 1 

 

A stochastic process is modelled as unscaled Brownian motion without drift i.e. standard 

Brownian motion in one dimension (µ=0, σ=1). What is the probability of the process being 

more than 1 unit away from its initial value, after 25 units of time? 

 

Solution 

 



Let X represent the displacement of the particle form the origin. 

Then, µ=E(X)=0, SD (s)=σ√T=5 

We need to find 1-P(-1<X<+1)=1-P(-0.2<Z<+0.2) 

From the normal tables: 1-P(-0.2<z<+0.2)=0.8414. 

 

Example 2 

 

A company’s cash position, measured in millions of dollars, follows a generalized Wiener 

process with a drift rate of 0.5 per quarter and a variance rate of 4.0 per quarter. What is the 

minimum initial cash position of the company (in millions) such that it has a less than 5% 

chance of a negative cash position by the end of one year? 

 

Solution 

 

Suppose that the company’s initial cash position is x. Then, the closing cash position, X, is 

normally distributed with a mean of x+4*0.50=x+2 and a variance of 4*4=16. 

 

We are given that the probability of the closing cash balance, X, being negative i.e.X<0 should 

not exceed 0.05. Thus, we are given that: 

 

P(X<0)=0.05 where X is N(x+2,16). The standard normal variate corresponding to X=0 is [0-

(x+2)]/4=-(x+2)/4. We are thus given that: P(Z<-(x+2)/4)=0.05. 

 

From the normal distribution table, we see that 5% of area to the left of z i.e. P(Z<z)=0.05 

corresponds to a z value of -1.645. Hence. We must have: 

 

-(x+2)/4=-1.645 or x=4.58 million.    

  


