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Assumptions underlying stock [price distributions 

Infinitesimal time model 

 

(i) Stock prices are assumed to follow a Markov process. The Markov property of stock 

prices is consistent with the weak form of market efficiency i.e. that the current market 

price encapsulates its entire past history and, therefore, the current price is the only 

relevant information for future price prediction. Whatever is today’s stock price 

encapsulates everything or incorporates all information about the prior behaviour of the 

price. 

 

(ii) The expected instantaneous percentage return i.e. the percentage change in price (dS/S) 

over an infinitesimal time interval dt required by investors from a stock is independent 

of the stock’s price. If investors require a 15% per annum expected return when the 

stock price is 10, then, they will also require a 15% per annum expected return when it 

is 50. Thus, we can write: 
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(iii) The variance of instantaneous percentage return over infinitesimal time dt is constant 

and independent of the stock price.  An investor is just as uncertain of the instantaneous 

percentage return when the stock price is 50 as when it is 10. 
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Combing (ii) & (iii), we can write: 
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The model    
dS

dt dW dt z dt
S

        is the model of stock prices that we usually 

employ when desirous of modelling these prices over small time scales. As per this model, 

(dS/S) i.e. percentage change in stock price is normally distributed with a mean of dt and a 

variance of 2dt i.e. (dS/S is N(dt, 2dt). Given S at time t i.e. St, since dS=St+dt –St, it follows 

that St+dt is normally distributed with mean St+Stdt and a variance of 2St
2dt i.e that St+dt is 

N(St+Stdt, 2St
2dt).  

 



However, it is strongly emphasized that this model holds for infinitesimal (small) time scales. 

 

Finite time model 

 

We use the Ito’s lemma to arrive at a finite time version of the aforesaid infinitesimal model of 

stock prices. We assume  , lnG S t S  where dS Sdt SdW   .  Using Ito’s Lemma find 

the drift and diffusion terms and the distribution of G(S,t). 

 

Ito’s Lemma states that if G(x,t) is a twice differentiable function of x where x is given by 

dx=adt+bdW, then  
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This shows that the drift term of  , lnG S t S  is 21
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At this point it is pertinent to highlight that the primary difference between the two models is 

the appearance of the 2 term in the latter model. Tracking its origin backwards, it is seen to 

arise due to the second derivative term  
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 in the total differential of G=ln 

S. This, as explained earlier is the hallmark of stochastic processes. 

  

  

Now, the fact that ln ST is normally distributed, means ST is log normally distributed. Hence, 

we arrive at the famous log normal distribution of stock prices.  

 

Distribution of returns 
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So the stock prices are log normally distributed but the logarithmic returns are normally 

distributed. 

 

Relation between the infinitesimal and finite time model 

  

We define the logarithmic return over a time dt as ln
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Clearly, the former model translates to the latter in the limit that the second order and higher 

terms in lnr T  are small enough to be insignificant and therefore be ignored i.e. when T is very 

small. Equivalently, the infinitesimal model is the first order approximation of the log-normal 

model.  

 

Modelling of assets with continuous yields 

 

In case the stocks or other similar assets (e.g. currencies) are such that they generate continuous 

yields @ q per unit time compounded continuously, the above models get modified respectively 

to: 
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 (finite time model) 

In other words, all the above analysis will hold with the replacement q   .   

 

Example 1 

 

Consider a stock that pays no dividends, has a volatility of 30% per annum, and provides an 

expected return of 15% per annum with continuous compounding and has the current price of 

INR 1,000. Calculate the probability that the stock price will increase by INR 36 or more in 

one week from now. Assume that “one week” qualifies as an “infinitesimally small” time 

period so that we can use the usual stock price model for infinitesimally small time periods. 

Also assume 1 week = 0.0192 year. 

  

Solution 
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In the given problem S0=1,000, =0.15, =0.30, dt =0.0192. Hence, 
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Thus, dS is normally distributed with a mean of 2.88 and a standard deviation of 41.57.  

 

We need to find out P(dS>36)=P(Z>(36-2.88)/41.57)=P(Z>0.80)=0.2119 

 

Example 2 

 

A stock price follows a lognormal distribution with an expected rate of return  of 14% and a 

volatility of 30% p.a. The stock pays dividends at a rate of 2% p.a. (with continuous 

compounding). The current price of the stock is INR 1,000. Calculate the expected price of the 

stock after six months. 

 

Solution 

 

The stock price is distributed as follows: 

 

2 2

0

1
ln ln ,

2

distribution

TS N S q T T  
  

     
  

 

 

Hence,   2

0

1
ln ln

2
TE S S q T 

 
    

 
 

Now, by the properties of lognormal distribution (See Appendix) 
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Example 3 

 

A stock price follows a lognormal distribution with an expected rate of return  of 14% and a 

volatility of 30% p.a. The stock pays dividends at a rate of 2% p.a. (with continuous 

compounding). The current price of the stock is INR 1,000. Calculate the probability that the 

stock price will exceed INR 1,100 at the end of six months from now.  

 

Solution 

 

The stock price is distributed as follows: 
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q=0.02, =0.30 and T=0.50 so that  
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We need to find P(ST>1,100)=P(lnST>7.003)=P(Z>(7.003-6.9453)/0.045)=P(Z>1.28) =0.1003 

 

Example 4 

 

A stock price follows a lognormal distribution with an expected rate of return  of 14% and a 

volatility of 30% p.a. The stock pays dividends at a rate of 2% p.a. (with continuous 

compounding). The current price of the stock is INR 1,000. Calculate the 95% confidence level 

for the stock returns at the end of six months from now.  

 

Solution 

 

The stock returns are normally distributed as follows: 
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The 95% confidence interval for the return will be given by  
lnln 1.96 0.075 0.83rE r     

 

Fokker Planck equation 

 

In the above derivation, Ito’s equation has been used to arrive at the lognormal distribution of 

stock prices. We started with G=ln S. Why? This issue makes the derivation somewhat obscure.  

We do the same derivative using a more explicit & intuitive approach viz the Fokker Planck 

equation: 

 

The stock price equation  dS Sdt SdW t    where dW(t) is standard Brownian motion 

increment  and E[W(t)]=0, E[W(t),W(t’)]=min(t,t’) is a stochastic differential equation. It can 

also be written in the form  
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Brownian motion, although strictly speaking, Brownian motion is not differentiable at any 

point. Therefore, rigorously speaking, there is no mathematical derivative of Brownian motion 



but  t  serves something like a derivative for Brownian motion at a conceptual level although 

technically, it is not correct.  

 

We shall start with a general form of the Langevin equation        dx t f x dt g x dW t  , 

obtain the corresponding Fokker Planck equation, then write and solve the Fokker Planck 

equation for our stock price equation. 

 

We, therefore, start with the Langevin equation: 
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Discretising the above equation, we obtain, 
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Let G(x(t) be an arbitrary function of x(t), then, 
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Taylor expanding       G x t f x dt g x z dt  , we get 
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Hence, 
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Now, we make the Ito assumption i.e. that when discretizing the Langevin eq we compute 

g(x(t)) at the beginning of the time step, i.e. using the value t, and not (t+dt)/2.  



 

To understand the Ito assumption, let us look back at the integral expression for area viz. 
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intervals identified by, say i=1,2,3,…,n; (ii) take the value of yi=f(xi) at the initial (starting) 

point of every interval  (iii) multiply it by the forward increment dxi i.e. the forward length of 

the interval (this gives us the area of the ith strip (iv) sum up all these n areas and finally (v) 

take the limit as n. This gives us the area of the region enclosed by the x axis and the curve 

between the ordinates x=a and x=b.  

 

The relevant point in this procedure is that we take the value of y at the beginning of each 

partition and multiply it with the forward increment i.e. dx in the direction of increasing x. This 

is the Ito assumption. yi is the initial value of y and dxi was the increment in the direction of 

increasing x.  

 
Suppose PQR is the curve, PC constitutes my yi and I multiply with dxi which is the forward 

increment CD i.e. yi is the initial value relevant to the interval CD and CD constitutes the 

forward difference. This is called the Ito assumption. 

 

It must be emphasized that this scheme is not unique and one can develop a calculus using the 

final value QD and the backward increment DC or, indeed, a mid-value of y between C & D. 

All the approaches would be correct. But equations that we arrive at for describing a particular 

phenomenon would be different, yet it would be equally well described in that framework.  

 

However, this assumption is very important. If we use this assumption, we can do some 

simplification. g(x) and z become independent of each other and therefore when we take 

expectations, the expectations get uncoupled and we have e.g. 
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Similarly,  
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Hence, we have: 
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Now, the expectation of the function F(x(t)) of a random variable x(t) with a probability 

distribution P(x,t) is defined by: 
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Now, G(x) is an arbitrary function. We choose      -G x t x t X . This will have a spike 

at x(t)=X and will be zero elsewhere. In other words when we do the integration with this delta 

function in the integrand, it captures only those values for which x=X and throws out the rest 

of the values of the domain. Consider the integration:  
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When we do this integration, this  - X   will operate to pick out X   in the integrand 

and return 
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where an integration by parts enables us to shift differentiation from  - X   to 

   ,f P t     together with a change in sign, assuming vanishing boundary term. We then 

use the property of the delta function and obtain the result. For the remaining term we have,  
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we obtain the result by integrating by parts twice and then using the delta function. 

 

Putting all the results together in: 
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we obtain the Fokker Planck equation as: 
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Fokker Planck equation for stock price 

 

The Fokker Planck equation: 
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corresponds to the Langevin equation: 

 

       dx t f x dt g x dW t   

 

However, our stock price follows the Langevin equation: 
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It follows that the Fokker Planck equation for the stock price is: 
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Solution of the Fokker Planck equation for stock price 

 

The Fokker Planck equation for the stock price is: 

 

     
2

2 2

2

1
, ', '

2
p S t p S t p where p p S t S t

t S S
 

  
          

 or 

     
2

22 2

2

1
2

2

p p
p p S S

t S S
    

  
    

  
 with boundary conditions: 
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The boundary condition are justified as follows: 



 

(i)  At t=t’, stock price S=S’; 

(ii) if the stock price vanishes at any time, it stays zero thereafter and if S(0)>0, then it can 

neverbecome zero at any later time so that p(0,t|S’,t’)=0 essentially for S=0; 

)iii) price cannot increase unboundedly in a finite interval. 

 

To proceed with the solution, transform variables as follows: 
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To convert the above equation to a diffusion equation, we make a second substitution: 

   , ,xf x e g x    where ,   are free variables. We get the transformed equation as: 

 

   
2

2

2
2 3 3 2

g g g
k k k g

x x
   



  
                

 

 

We can, now set      
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k k k k              to transform the above 

equation to the diffusion equation: 
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which has the standard solution: 
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On retracing tto the original variables, we get: 
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Setting ln S   
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This is clearly the PDF of a normal distribution with a mean of  
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
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 and  a variance 

of  2 't t  . Thus, ln S   is normally distributed as above implying that S is lognormally 

distributed.  

 

  



Appendix 

 

Some properties of lognormal distributions 

 

 

The lognormal probability density function 

 

Let X be a random variable following the lognormal distribution with PDF (x). Then, Y=lnX 

is normally distributed, say with parameters  and 2. 

 

Then, we have PDF of Y as: 
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Now, by the definition of PDF, we have: 
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Mean of lognormal distribution 

 

2

20
0

1 1 (ln - )
( ) ( ) exp -

22

x
E X xf x dx x dx

x






  

   
 





  

 
2

2

1 ( - )
exp - ln

22

uu
e du Put u x









 
  

 





 

2 2 2 2 2 4

2 2

1 ( - ) - 2 1 ( - - ) - 2 -
exp exp

2 22 2

u u u
du du

     

  

 

 

         
         

         

 
 
 

 

2 4 2 2 2

2 2

2 1 ( - - )
exp exp - exp

2 2 22

u
du

    


 





        
       

       





 

 

The last step follows because 
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 is the PDF of a normal variate with a mean of 
2   and a 

standard deviation of . 

 

Variance of lognormal distribution 
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