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Calculus of stochastic variables 
 

We, now, take up elementary calculus of functions of Brownian motion. The immediate 

question, then, is why we need a special or different calculus for functions of BM? Why is it 

that the conventional Newtonian calculus does not fit the bill?  

 

Let us say, we have a simple function of Brownian motion f(Wt)=Wt
2 so that df(Wt)=d 

Wt
2=2WtdWt. Integrating conventionally, we get  
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To evaluate the integral on the RHS, we partition the interval (0,t) into n parts (0, t/n, 

2t/n,…,nt/n=t). WE, then, express the integrand as a sum of series with each term being the 

value at the beginning of the partition into increment over that partition as shown below: 
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Now the difference term inside the bracket is just the

increment of BM from one partition to another
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By the properties of Brownian motion, Brownian motion is a Markov process. The evolution 

of a Brownian motion does not depend on its past history. Therefore, the initial term 
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Now, let us look at the LHS. We write this again as the sum of a series 
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The fact that E(z2)=1 is easily established. We have: 
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Thus, we conclude that    2
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functions of Brownian motion. The Newtonian calculus that we have does not fit in with the 

Brownian motion, why? For this purpose, let us work out the value of  
2

0

t

sdW . We have, 



 

 

 

2
1

2

0
0

,

1. - .

, 1. - .

1. - .

, 0, . ,
/

0,1 .

nt

s

i

n i

t t
dW W i W i

n n

t t
Now each W i W i is a BM increment

n n

t t
W i W i

n n
and hence is N t n Thus z

t n

is N distributed





    
     

    

    
    

    

   
   

   



 

 

2

,

2

,

22 2

, ,
0

1 1

, 1.

Sin ,

var 1,

.

n i

n i

n nt

n i s n i

i i

Hence z is distributed with mean

ce the sequence z is a sequence of

n independent iables each with mean

t
z has mean n so that dW z has the mean t

n 

 

 

        
21

2

t
To unders d what happens in case of a BM increment dW instead of dx
we do a Taylor ansion in both cases

For y f x we have dy df x f x dx f x dx

Thus when we talk about Newtonian differentiation it is clear
that we truncate t

    

tan , ,
exp :

, , ' " ...

, ,

 
 

   

2

0dx

he Taylor ansion at the first order term i e dx
and we write dy f x dx

In other words we asume dx to be so small that dx and higher

powers can be ignored To justify this we add the iting prescription
Lim f x f x







exp . .
'

,

. lim
'

 

 

 
 

 
22

2 2

1

1 1

x b

nx b x b
i

n i
x a x a

i i
x a

dydy
L ds dx dy dx dx

dx dx



 


 




     
           

         






  lim  



Let us further explore it geometrically. When we try to work out the length of an arc, we have 

a given function y=f(x) and we are required to work out the length of the arc that this function 

maps between the points x=a and x=b. We integrate ds=(dx2+dy2) between these limits x=a,b 

where ds is an infinitesimal length e.g. PQ and we integrate it to obtain the entire length of the 

arc. 

 

The points P, Q on the curve y=f(x) are assumed so close to each other, that PQ approx. a 

straight line. This is integrated to obtain the arc length L. Thus,  at the infinitesimal level, we 

assume that the curve is constructed by an assortment of infinitesimal straight lines.   

 

We write this infinitesimal length PQ in terms of dx and dy as (dx2+dy2). Now, the very fact 

that we are writing ds=(dx2+dy2) conveys a very important geometrical meaning. The 

geometrical meaning is, that we are assuming that in the region CD which is of length dx, the 

curve is a straight line, the interval dx is so small that in this small infinitesimal interval, the 

curve PQ=ds= (dx2+dy2) can be approximated by a straight line and therefore we can apply 

the Pythagoras theorem and write ds as (dx2+dy2). 

 

The points P and Q on the curve y=f(x) are so close to each other that PQ approximates a 

straight line and therefore we can write the distance PQ = (dx2+dy2) i.e. in accordance with 

the pythagoras theorem. The fallout is that at the infinitesimal level when we talk about 

Newtonian calculus, we assume that the entire curve is constituted of infinitesimal straight lines 

combined together in an appropriate pattern. 

 

At the infinitesimal level, if I were to zoom in very, very high, I would see only a straight line 

and that is the important thing which is to which is conveyed by the Newtonian calculus. This 

philosophy is violated in the calculus of Brownian motion.  
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Another example relates to the area computations. To compute areas, we integrate ydx. When 

we integrate ydx, it is obvious that y the length i.e. the initial value of the function is multiplied 



by the width, dx, of a thin strip of at that point. In other words, we assume that CPQD is a 

rectangle and hence, its area is given by CP x CD=ydx. Equivalently, we premise that PQ 

length is a straight line in this small domain dx. 

 

Because of assuming PQ as a straight line, CPQD is nothing but a rectangle and because the 

strip is a rectangle  the area of the strip is given by the initial value (y) and the forward 

increment (dx). So that is another example where conventional calculus assumes that, at the 

infinitesimal level, deterministic curves are constituted of assortment of small straight lines. 

 

But that does not happen in the case of Brownian motion, let us see why.  

 

Let us consider the case of BM. We have, 
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We introduced a very simple example f(Wt)=Wt
2 and showed that Newtonian calculus leads us 

to inconsistent results. The reason is that in the case of Newtonian calculus, we can safely 

ignore second and higher order terms of the Taylor expansion on the premise that we are taking 

infinitesimal limits on dx i.e. dx0 so that (dx)2 and higher orders can be ignored. This does 

not happen to be the case when we work with infinitesimal increments of BM because squares 

of BM increments i.e. (dWt)
2 have a mean of dt (which is of first order in dt) and a variance of 

2(dt)2. Thus, (i) the mean is of first order in dt and (ii) the variance is of second order in dt 

which means that it is much too small to be of relevance. In other words, we can assume that 

the mean of (dWt)
2 is of first order in dt and is non-stochastic (as its variance is too small). It 

follows that (dWt)
2 cannot be ignored in the Taylor expansion and we need to retain terms up 

to at least second order to get a mathematically consistent calculus. 

 



This is what we did in the in our example when we calculated the Newtonian derivative of 

f(x)=x2, f’(x) was 2x, so 2xdx was what we got of d(x2) and retained only the first order term 

in dx where dx small enough that higher orders of dx could be safely ignored. But when we 

talk about Brownian motion, the expression dWt dWt contributes to the second order term. 

Now, dWt=zdt where z is standard normal variable, so dWt dWt =z2dt. Now, z2 has a mean 

value of 1 and a variance of 2 whence dWt dWt =z2dt has a mean of dt and variance of 2dt2. So 

the first thing we get is that dWt dWt is at least in the mean, at least in expectation is a first 

order term in dt and because it is the first order term in dt, it cannot prime facie be ignored. 

Thus, unlike (dx)2, we cannot simply throw away dWt dWt.  

 

Let us look at the variance, the variance of dWt dWt is 2(dt)2. Now, the variance of a stochastic 

process is of the order of dt i.e. is in first order in dt, Brownian motion is a typical example.  

Brownian motion has a variance which is of order dt, scaled Brownian motion also has a 

variance of order dt. However, in this case, we are finding that the variance is second order in 

dt. If dt is small that means the variance is very, very small and if the variance is very, very 

small we can approximate it by a non-stochastic variable because small or negligible variance 

means that fluctuations are negligible or that the underlying variable’s evolution is 

deterministic. Thus, dWt dWt is deterministic and of order dt.  

 

We find that dWt dWt not only has the mean dt but has also got a very, very small variance and 

therefore is almost deterministic i.e. does not have fluctuations. Thus, if it has expectation of 

order dt, then it is throughout of order dt and therefore obviously it cannot be ignored. 

 

Thus, the second order term dWt dWt which we ignore in conventional calculus, has a finite 

deterministic value at least at the first order in the case of stochastic calculus and because it is 

of the first order in dt we need to take it into account in working out the differentials. 

 

Mean & variance of z2 

 

We have used two results in the above section viz. E(z2)=1 and Var(z2)=2. The former has 

already been established. We prove the latter here: 
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In the above we have used the fact that (1/2)= which is proved below: 
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Ito calculus 

 

So far the problems and the issues arising from the calculus of functions of Brownian motion 

have been discussed. In other words, we have discussed how the Newtonian framework fails 

when we talk about calculus of functions of stochastic variables. Now, let us see how do we 

remedy the situation.  

 

The solution is provided by a very celebrated Lemma which carries the name of the person 

who has propounded it, the Ito’s Lemma. It states that: 

 

Ito’s Lemma: Let G(x,t) be continuous & at least twice differentiable function of a stochastic 

variable x and time t and let x be defined as the stochastic (Ito) process: dx = a(x,t)dt + b(x,t)dW 

Then, we have: 
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A skeleton proof of the lemma runs on the following lines: 
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Thus we get the Ito Lemma as
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The important thing in the above derivation is again, as alluded to earlier, that dWtdWt  

becomes deterministic in t. In fact, it has an expected value of dt and a negligible variance. 

Hence, it may be approximated by a deterministic dt with no stochastic or random component. 

Thus, dWtdWt cannot be ignored in the Taylor series expansion.  

 

Hence, we cannot altogether ignore the term (dx)2. When we do the expansion of (dx)2, we  

will have to retain the term involving dWtdWt which is equal to dt. Hence, we write: 
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Drift rate and variance rate 

 

 

2
2

2

' , ,

var ,

1
. . .

2

. inf

int ,

From Ito s Lemma function G x t of a stochastic

iable x satisfies the Ito equation

G G G G
dG a b dt b dW

x t x x

From this eq we see that in an initesimal time

erval dt the process G is stochastic with a drif

    
    

    

22
2

2

1
. . , var .

2

t

G G G G
rate a b iance rate b

x t x x

     
    

     

 

 



 

     
 

   
 

 

   2

2
1

1

2
1

2

t

t t t t t t

t

t t t

t

t t

t t t t
t t

Let F x t be continuous at least twice diff

Then by Taylor ansion
F W t

dF W t F W t dW F W t dW dW dt
t

F W t
F W t dW F W t dt

t

For non licit time dependent F W

F W dW F W F W





   


 

   
 



 

, & .

, exp :
,

, ' , " , . ...

,
' , " ,

exp :

'    
2

1

1

2i

t t

t
t t

F W dt



  "

 

 

This is a simpler form of Ito’s lemma. In the earlier case, we had function of a stochastic 

variable x that had both a drift and a diffusion term i.e. dx=adt+bdW and time t. Now, we 

consider a function of Brownian motion dW and time alone. Thus, there is no drift term and no 

scaling of BM. Hence, we consider F(Wt,t) instead of G(x,t).  

 

So,  
1

2
t

F W t dt" ,  is the piece that is additional when we talk about stochastic calculus. And 

now, let us use this expression to evaluate F(Wt,t)=Wt
2. We have: 
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showing the Ito framework to be consistent. 

 

 

The result that we you arrived at using summation by series is consistent with the result that 

we arrived through Ito's lemma. 

 

Example  

 

Let  , lnG S t S  where dS Sdt SdW   .  Using Ito’s Lemma find the drift and diffusion 

terms and the distribution of G(S,t). 

 

Solution 

Ito’s Lemma states that if G(x,t) is a twice differentiable function of x where x is given by 

dx=adt+bdW, then  
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In our problem  , lnG S t S , 
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This shows that the drift term of  , lnG S t S  is 21
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Further,  lnd S  is normally distribution with a mean of 21

2
dt 

 
 

 
 and a variance of 2dt

. 

Equivalently  ln TS  is   2 2

0

1
ln ,

2
N S T T  
  

   
  

. 


