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Solution of the diffusion equation 

 

We shall solve the diffusion equation: 
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using the Fourier transform. The Fourier transform of a given function f(x) of x is defined as  

 f̂ k  where: 

 

    -

-

ˆ ikxf k f x e dx



   

 

with the inverse Fourier transform being given by: 
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We take the Fourier transform of both the sides of the diffusion equation. On taking the Fourier 

transform of the LHS, the derivative is with respect to t and the integral with respect to x, so 

we can take the derivative outside the integration without any problem and whatever remains 

inside the integral is nothing but the Fourier transform of P i.e.  
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For the RHS, we have: 
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Integrating by parts we have
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Assu g that the boundary term vanishes sufficiently fast we have
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Another egration by parts yields
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whence on assu g that the boundary term does not contribute we get
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The  initial condition is P(x,0)=(x). Now, the Fourier transform of (x)=1 since    
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so that    ˆˆ ,0 1P k k    whence,    
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Now, we take the inverse Fourier transform, whence we get: 
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This is clearly the PDF of a normal distribution with a mean of 0 and with a variance of t, so 

that establishes that the variable that we were talking about is normally distributed with a mean 

of 0 and a variance of t, which is nothing but Brownian motion precisely what we wanted to 

establish. 

 

Central Limit Theorem: An Illustration 

 

I will not go into the proof of the CLT but, nevertheless, I shall illustrate it with an illuminating 

example that explicitly propounds its cardinal property viz that the underlying distributions of 

the variables is irrelevant. The limiting distribution invariably approaches the normal 



distribution irrespective of the underlying distributions of the random variables themselves. 

The only requirement is the finiteness of the means and variances of these underlying 

distributions. The theorem states that: 

 

Let Xi; i=1,2,…,n be independent identically distributed random variables each with finite 

mean and variance µ and σ2 respectively. Then the following expression is distributed as a 

standard normal variate.  
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To illustrate the theorem, we consider Xi, i=1,2,..,n as uniformly distributed IIDs over the 

interval (0,1) Then, we have: 
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so that p(xi)=1, Ɐxi є[0,1], i=1,2,…,n. 
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Please note the difference between Zn and zn  and Xi and xi. The capital letter e.g. Zn represent 

the random variable itself while the small letter e.g. zn is a value that the random variable Zn 

could possibly take from its sample set.  

 

The delta function   - nz z  constraint has been introduced into the integral so that, when 
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integral. In other words, only those points will contribute to the integral i.e. to this probability 

density function  nz where 1
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 is fulfilled. Now, 
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This is nothing but the PDF of the standard normal variate. So, after a lot of manipulation and 

we end up with the standard normal variate. We started with n uniformly distributed variables 

in 0, 1 and we ended with the normal distribution. 

 

So, this is the beauty of the central limit theorem, the central limit theorem does not depend on 

the distribution of the underlying variables which are being added to form the variable whose 

distribution is being considered. The underlying distribution is irrelevant. The requirements are 

(i) the mean and variance should be finite and (ii) the variables should be IIDs i.e. independent 

identically distributed variables.  

 

Brownian motion with drift 

 

The normal scaling of the n-step random walk that leads to BM is (T/n). However, by 

introducing a scaling of the step size as (T/n), we are able to adjust or manipulate the 

dispersion or volatility of the BM to conform to the data which we desire to model using the 

BM framework. By introducing  into the scaling of jump size, we are able to adapt the concept 

of Brownian motion to fit in variety of data. In fact, not only this, we can also add a trend or 

drift to the BM by using a step size of (T/n)+(T/n) where  is the rate of drift i.e. drift per 

unit time. We, then, have a combination of a non-stochastic term and a stochastic term. The 

stochastic term is scaled by  and the non-stochastic term by . The corresponding BM is 

called generalized Brownian motion or Brownian motion with drift. The infinitesimal 

increment of a generalized Wiener process can be expressed as:      

 

dx = µdt + σdW 

 

It has two components:  

 

(i)  a non-stochastic component given by µdt representing the drift and 

(ii) a stochastic component given by σdW where dW = z√dt, z is N(0,1) and σ is a scaling 

factor of the dispersion or diffusion of the process. 

 



Mean & variance of generalized BM 

For the generalized Wiener process: 

 

dx = µdt + σdW 

Mean = µdt;  Variance = σ2dt 

 

 
 

A clearly perceptible upward bias is discernible in the above diagram. The depiction shows an 

obvious random superposition over an underlying upwardly drifted process. The Brownian 

motion is random, it is fluctuating but it is fluctuating with a clearly perceptible upward bias 

and that is what is called a Brownian motion with drift. Of course the drift can also be negative 

nobody prevents there being a negatively biased Brownian motion. 

 

Drift rate & diffusion rate 

 

The mean drift per unit time for a stochastic process is called the drift rate. 

The variance per unit time is called the variance rate.   

 

Exponential Brownian motion 
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We also have exponential Brownian motion. There is an underlying exponential curve and BM 

is superposed over that exponential curve. Thus, random fluctuations manifest themselves 

about an exponential curve. The zigzag is there but the zigzag is superposed on a certain 

exponential curve.  

 

Ito process 

 

In the case of generalized BM, we had dx=dt+dW. In this case,  and   were constants, 

independent of x & t. But there exist stochastic processes where both these quantities  and  

are functions of x and t.  These are caused Ito processes where the drift as well as the diffusion 

or the variance are functions of x and t. The infinitesimal increment of an Ito process can be 

expressed as: 

 

dx = a(x,t)dt + b(x,t)dW 

 

Example 1 

 

A particle starts executing standard Brownian motion at t=0. What is the probability that the 

particle will be less than 10 units away from the origin after 100 units of time? 

 

Solution 

 

The spectrum of possible values of a BM W(t) at time t after initiation is normally distributed 

with a mean of 0 and a variance of t i.e. a standard deviation of (t). 

 

Hence, the possible values after time t=100 are normally distributed with a mean of 0 and 

standard deviation of (100) =10. 

 

We need to find the probability that -10<W(100)<+10 i.e. P(-10<X<+10) where W(100)=X is 

N(0,100). 

 

Expressing the above in terms of the standard normal variate 
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where the value has been obtained from normal tables.  

 

Example 2 

 

A particle executes scaled Brownian motion with drift in one dimension. The drift rate per unit 

time is 0.0001 units. The variance rate is 0.01. Calculate the probability that the particle is more 

than 2 units on the positive side of its initial position (origin) after 2500 units of time. 

 

Solution 

 

The spectrum of possible values of a BM with drift i.e. 

 

dx=dt+dWt =dt+z(dt) 

 



at time dt after initiation is normally distributed with a mean of  dt and a variance of 2dt i.e. 

a standard deviation of (dt). 

 

Here =0.0001, 2=0.01 and t=2500. 

 

Hence, the possible values after time t=2500 are normally distributed with a mean of 0.25 and 

standard deviation of (0.01 *2500) =5. 

 

Thus, after 2500 units of time, the mean position of the particle (as shown above) is 

0.0001*2500=0.25 above the origin and the variance of the possible positions of the particle is 

25 i.e. standard deviation is 5.  

We need to find the probability of the particle being more than 2 units above the origin after 

2500 units of time. 

 

Thus, we need to find out P(X>2.00) where X is N(0.25,25) 

 

Converting to standard normal variate P(X>2.00)=P[Z>(2.00-0.25)/5]=P(Z>0.35)=0.3632 

  

where the value has been obtained from normal tables. 

 

Example 3 

 

The marks in a class are believed to follow a normal distribution with a mean of 60 and a 

variance of 144. If the total number of students in the class is 100, what is the number of 

students who have obtained less than 42 marks? 

 

Solution 

 

Let X represent the marks obtained by various students in the class. Then it is given that X is 

N(60,144). We need to find P(X<42).  

 

The standard normal variate Z corresponding to X=42 is (42-60)/12 = -1.5 

 

Hence, we need to find P(Z<-1.5)=0.5000-0.3531=0.1469 

 

Since there are 100 students in the class, number of students below 42 =14.69 i.e. 14 students.      



Appendix 

 

Linear Combination of Random Variables 

Let X,Y be random variables and let W=X+Y where ,  are fixed (not random) real 

numbers. We need to find the mean and variance of W. We have 

E(W)=E(X+Y)= E(X)+E(Y)= E(X)+E(Y) 

Also E(W2)= E(X+Y)2= E(2X2+2Y2+2XY)= 2E(X2)+2E(Y2)+2E(XY) 

[E(W)]2=2[E(X)] 2+2[E(Y)] 2+2E(X)E(Y) 

Var(W)=E(W2)- [E(W)]2=2{E(X2)- [E(X)] 2}+2{E(Y2)- [E(Y)] 2}+2{E(XY)-E(X)E(Y)} 

=2Var(X)+2Var(Y) +2Cov(X,Y)  

=2Var(X)+2Var(Y) +2CORREL(X,Y)SD(X)SD(Y) 

For a linear combination of n-random variables 
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Some Results on Normal Distribution 

Linear combination of normally distributed variables 

 

If X1,…,Xn are independent normal variables, Xi being N(μi,σi
2) then the variate 
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where αi’s are constants. 

 

Proof 

 

The characteristic function of W is  
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(by virtue of independence of the Xi variates) 
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which is the characteristic functions of an N(μ’,σ’) distributed random variable. 

 

Hence the result follows by the uniqueness property of characteristic function. 

 

It follows as a corollary that if X1,…,Xn are independent normal variables, Xi being N(μi,σi
2). 

Then the sum  
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The normal distribution PDF from binomial PDF 

 

Let X be a binomial variate with mean np and variance npq. If n → , the probability 

distribution of the standardized binomial variable 
 X np

z
npq


   tends to that of a unit normal 

variate. 

Proof  

From the binomial distribution, we have:    
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Applying Stirling’s approximation to factorials viz.  
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As n  , the above expression approaches 
2
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As r takes values 0,1,…,n and n → , z takes values between -  and  . Also as r increases 

by value 1,z increased by the amount 
1

npq
, which for large n, would be taken as dz. Hence z 

can be taken as a continuous variable taking values between - and + and 
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