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Now, as I mentioned earlier, we can arrive at the mathematical structure of Brownian Motion 

through a diffusion phenomenology. In fact, this approach is more transparent, instructive and 

intuitive. The very term Brownian motion was coined to commemorate the work of Robert 

Brown in this area who studied the dynamics of pollen grains subjected to a fluid motion. The 

grains were immersed in a liquid and their movements minutely studied under a microscope. 

The resulting patterns were studied. We can start with the concept of diffusion and arrive at 

arrive at the mathematical formulation of Brownian motion. 

 

Consider a particle executing a random walk on a one-dimensional infinite discrete lattice. Let 

the length of each step i.e. the distance between two neighboring points on the lattice be x . 

Let each time step be of length t . Let the discrete points on the lattice be identified with the 

coordinates 0, 1 , 2 ...x x x     .  

 

Let the point be assumed to start at the origin at t=0 so that the initial condition is P(x,0)=δ(x) 

at t=0. Let its position at a given instant t=t be at the coordinate x=X. 

 

 
Let 

 

(i) p=probability that the randomly moving particle moves one step to the right in the next 

step i.e. the probability that the coordinate increases by Δx in time t; 



(ii) q=probability that the randomly moving particle moves one step to the left in the next 

step i.e. the probability that the coordinate decreases by Δx in time t; 

(iii) r=1-p-q=probability that the randomly moving particle stays in t where it is at time t. 

(iv) p,q,r are assumed constant over the length of the walk i.e. for all time and space steps.  

(v) P(X,t)=probability of finding the particle at the coordinate x=X at time t=t. 

 

The particle is executing random motion and let us say, at any point in time the particle is at a 

coordinate x=X. x is the general representation of the x axis, x=X is a specific value of small x 

at which we are exploring the dynamics of the particle. Then, p be the probability that the 

randomly moving particle moves 1 step to the right. In other words, if it moves from, say, 

current coordinate 3x to 4x i.e. in the direction of increasing coordinate x.  Similarly, q is 

the probability that it moves 1 step to the left, that means it moves in the order of decreasing 

coordinate x. The probability of the particle not moving anywhere is r. p, q and r are assumed 

to be uniform over the length of the walk i.e. for all time and space steps. P(X,t) is the 

probability of finding the particle at coordinate x=X at time t.  

 

Now,  a particle can be at position x=X at time t+t if  

 

(i) the particle is at X-x at time t, the probability of which is P(X-x,t) and it moves one 

step of distance x to the right in time t, the probability of which is p; or 

(ii)  the particle is at X+x at time t, the probability of which is P(X+x,t)  and it moves 

one step of length x to the left in time t, the probability of which is q; or 

(iii) the particle is at X at time t, the probability of which is P(X,t)  and it does not move in 

time t, the probability of which is r=1-p-q. 

 

Thus,  

 

(i) pP(X-x,t) is the probability that the particle will reach x=X at t=t+t  by moving one 

step to the right in t; 

(ii) qP(X+x,t) is the probability that the particle will reach x=X at t=t+t  by moving one 

step to the left in t; 

(iii) (1-p-q)P(X,t) is the probability that the particle will remain at x=X at t=t+t  if it is at 

x=X at t=t. 

 

Further, we assume that the particle can take only one step in the time interval t. So, the total 

probability of finding the particle at x=X at time t+t is the sum of (i)+(ii)+(iii) above i.e.  
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Now, in the limiting case, the LHS can be written as: 
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Let us look at the RHS 
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Now 
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Putting the pieces together 
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 For an unbiased random walk p=q= ½   
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Now, we take the limit x0, t0  and assume that 
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. The rationale behind 

this assumption can be traced back to the parameters of the scaled random walk wherein we 

set the jump size as (T/n) and time step as T/n. This choice of parameters clearly justifies the 

above limiting structure 
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 and we obtain the diffusion equation for the 

unbiased random walk as: 
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