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n-step random walk 

 

Let us, now, generalize to the n-step unscaled, unbiased random walk. For this purpose, we divide 

our time interval (0,T) into n+1 points 0, T/n, 2T/n,…, nT/n=T. The process is assumed to be 

located at the origin i.e. at (0,0) at t=0 and evolves in time by making a random jump of magnitude 

1 at each of the points T/n, 2T/n,…,T. Thus, the position of the process at t=T is given by its 

position at the immediately preceding evolution point i.e. (n-1)T/n or the (n-1)th step from which 

it will make the final jump at t=T to reach its final value. Since this final (nth) jump will also be of 

magnitude 1 with probabilities ½, it can be represented by our binary random variable Xn where 

XT takes the values 1 with probabilities ½. We, thus, have the recursive relation for the n-step 

walk as: 
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Thus, the position of the process at t=T can be expressed as the sum of the n binary random 

variables, each representing the evolution of the process at a time step. The mean value of the 

process remains zero while the variance of the process becomes equal to the number of time steps.  

 

Thus, as we increase the number of steps, the variance increases with the number of steps. For a 

single step we had a variance of 1, for 2 steps we had a variance of 2 and when we have n steps 

we have a variance of n. 

  

In fact, before we move forward, you can clearly see the Markov property here also. The jump at 

t=T is dependent entirely on the state of the process at time t=(n-1)T/n i.e. at the previous step and 

no earlier. So, the process’s position at the immediately prior evolution point determines its 

evolution at the current step. The earlier history is irrelevant; it is simply the position at the 

immediately preceding step which will determine its position after the random step at the current 

evolution point. So, this is clearly a Markov process.   

 

Scaled unbiased random walk 

 

Thus, as the number of steps increases, the variance of the process blows up i.e. it diverges.  

 

But our objective of generalizing the random walk is to evolve some mechanism of moving from 

the discrete time framework to the continuous time framework. Obviously, to achieve a continuous 



time environment, we need to squeeze the layer spacing i.e. the interval between two discrete time 

evolution points. Squeezing the time intervals implies increasing the number of time larger for 

larger the number of steps, smaller the interval between any two steps. The upshot is that we can 

achieve a continuous time flow by taking the limit n .  

 

However, as we increase the number of steps, the variance blows up and, indeed, in the limit n 

, it diverges. Now, if the variance diverges, the process values diverge within a finite time after 

its evolution initiates. This makes the process unsuitable for modelling applications in finance and 

physics. So, we have to find a way out of this.  

 

Now, we see that the variance is scaling as n where n is the number of steps. So, if we scale the 

jump size by 1/n i.e. if we scale the binary random variable X’i by Xi/n, then we have: 
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But that also makes no sense because now we end up with a mechanism where all processes have 

a uniform variance of 1 irrespective of the period of evolution. Thus, the variance, now, is 

independent of time of evolution. This is not observed in empirical behaviour where, as the time 

of evolution of the stochastic process increases we find that the variance also increases. Therefore, 

to have a uniform variance of 1 for all time evolution is really not resolving the problem.  

 

We look at an alternative. The alternative scaling we consider is Yi=Xi (T/n). Now, we have: 
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which turns out to be an acceptable value.  
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Thus, the process starts at the origin. The number of steps is n and the layer spacing is T/n. The up 

and down jumps are (T/n). The probability of up and down continues to be ½. So, we have an 

unbiased random walk. The recursive relation for the scaled walk i
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Let us now, take some arbitrary point t=t* in (0,T) and work out the variance of the process at this 

time. The length of each time step is T/n. hence, the number of time steps to t* is: t*/(T/n)=nt*/T.  
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Wn(t) is the spectrum of possible values that the process can take at time t. For example, Wn(T/n) 

is the value that the process can take at the end of the first step i.e. (T/n). Similarly, Wn(t) is the 

spectrum of possible values that the process can take at time t i.e. at the end of nt/T steps. 

   

 
 

This is illustration of the random walk. Gradually as we increase the number of steps, the zig zag 

also increases. As you can see here, the path that is being followed by random walk is continuous 

at all points. However, as the as the number of steps increases, the zig zagging would be so much 

that the paths would be nowhere differentiable, although they remain continuous.  

  



Random walk to Brownian motion 

 

Thus, we have now formulated a structure i.e. random walk which, albeit still being discrete, has 

n steps, the length of each spacing is T/n with the up and down jumps being of magnitude (T/n). 

In other words, at every evolution point of which there are n points, the process can jump by 

(T/n), the probability of either the up-jump or the down-jump being ½. 

 

At this point, we introduce the limit n. This implies that we are squeezing the layer spacing 

T/n to infinitesimal values i.e. moving towards continuous time. Not only this, if  n, the step 

size (T/n) also approaches infinitesimally small values i.e. we also move into a continuous 

variable regime.  

 

For resolving the continuous version, we can follow different approaches. We can invoke the 

Central Limit Theorem or the Diffusion PDE or the Stirling approximation. 

 

Central Limit Theorem 

 

Let us first state the theorem in the form relevant to our objective: 

 

Let Xi; i=1,2,…,n be independent identically distributed random variables each with finite mean 

and variance µ and σ2 respectively. Then the following expression is distributed as a standard 

normal variate.  
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The cardinal feature of the Central Limit Theorem is that the limiting distribution invariably 

approaches the normal distribution irrespective of the underlying distributions of the random 

variables themselves. The only requirement is the finiteness of the means and variances of these 

underlying distributions.  

 

The central limit theorem says if Xi, i=1,2,2,…,n are independent identically distributed random 

variables i.e. each has the same probability distribution and hence, the same mean and variance, 

then 1
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 in the limit that n approaches a standard normal distribution.  

 

The special part of the CLT is that the underlying distribution of the various Xi  are inconsequential. 

They maybe normally, binomially or uniformly distributed or whatever. In all cases, the limiting 

distribution approaches the normal distribution. All that is required is that the Xi should be 

independent, identically distributed and the mean and variance should be finite. That is the beauty 

of CLT that it does not care about the underlying distribution of the random variables.  

 

Application of CLT to the Random Walk 



Let us apply the CLT to Wn(t) to obtain its distribution as n. We have: 
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It may be noted that since we want to determine the distribution of Wn(t) at time t which 

corresponds to nt/T number of time steps, which is therefore the number of random variables Xi 

i.e. the index shall extend from 1 to nt/T instead of 1 to n. So, the n factor in the CLT Zn would be 

replaced by nt/T and the limit n will be replaced by nt/T. Now, this does not affect the 

limit because if n then nt/T and vice versa as both t,T are finite.  

 

In the limit that the number of time steps approaches infinity, the aforesaid construction of a scaled 

random walk converges to a mathematical structure called Brownian Motion W(t) that has certain 

well defined mathematical properties and plays a vital role in the modeling of stochastic processes.  

 

BM is also sometimes called a Wiener Process 

 

Properties of Brownian motion 
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BM plays a significant role in the modelling of stochastic processes. Just like we have straight line 

as the fundamental building block of deterministic curves, the Brownian motion structure 

constitutes the fundamental building block of stochastic processes. Let us retrace its properties: 

 

The process W(t) initiates at the origin and thereafter evolves continuously with increasing time.  

 

The possible values of the process, W(t), at any arbitrary instant of time t, are normally distributed 

with a mean of zero and a variance of t. 

. 

The increment W(s+t)-W(s) of the process is also normally distributed with the mean of zero and 

a variance of (s+t)-s=t. Furthermore, BM is a Markov process i.e. this increment W(s+t)-W(s) is 

independent of the history of the process up to W(s). In other words, whatever has happened up to 

W(s) does not affect this increment. This increment W(s+t)-W(s) simply depends on where the 

process is at time s and thereafter it evolves randomly. How the system arrived at W(s) in irrelevant 

in determining the distribution of this increment.  

Now, we can write the infinitesimal BM increment dW(t) in terms of standard normal variate also 

as z(dt) where z is the standard normal variate. Clearly since dt is not random, z(dt) is normally 

distributed with mean zero (since E(z)=0) and variance dt (since Var(z)=1).  

  

The BM process is not differentiable due to the extensive zig zagging. 

 

BM is a fractal. In other words, if we take any point on the Brownian motion, anew BM branch 

originates from there. In other words, the BM is self-replicating. If we look at it with a microscope 

with as much zoom as desired, it will still appear similar. That is what is a fractal. 

 

Although W is continuous everywhere, it is (with probability one) differentiable nowhere. 

 

Brownian motion will eventually hit any and every real value no matter how large, or how 

negative. It may be a million units above the axis, but it will (with probability one) be back down 

again to zero, by some later time. 

 

Once Brownian motion hits a value, it hits it again infinitely often again from time to time in the 

future.  

 

It doesn’t matter what scale you examine Brownian motion on – it looks just the same. Brownian 

motion is a fractal.  



 
 

 

Now, the above is a particular realization of Brownian motion. This is one realization which has 

occurred. You start again you will get a different realization but this is a prototype of Brownian 

motion.  
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WALKS 

TIME 
LENGTH 
/LAYER 

SPACING 

JUMP SIZE EXP 
VALUE 

VARIANCE 

SINGLE 
STEP RW 

T ±1 0 1 

TWO STEP 
RW 

T/2 ±1 0 2 

n-STEP 
RW 

T/n ±1 0 n 

n-STEP 
SCALED 
RW 

T/n ±√(T/n) 0 T 



n-STEP 
SCALED 
RW 

T/n ±σ√(T/n) 0 
σ
2

T 

n-STEP 
SCALED 
RW 

WITH 
DRIFT 

T/n (µT/n)± 

σ√(T/n) 

µT 
σ
2

T 

Brownian 
Motion  

->0 ->0 0 T 

Scaled BM ->0 ->0 0 
σ
2

T 

 

So, let us quickly summarize the results. For the single step random walk, the time length was T, 

the jump size was 1, the mean was 0, the variance was 1. For a two-step walk, we had a mean of 

0 and a variance of 2. For the n-step walk unscaled walk, the step time length became T/n because 

there were n steps and we retained the jump size as 1 and we ended up with a variance of n. We 

then did scaling of the jump size, made the jump size vary as (T/n), the time length was retained 

at  T/n and we ended up with a variance of capital T. Thus, now, we have the upswing and 

downswing as (T/n).  

 

Now, this is the standard upswing and downswing. If we want to model a particular process that 

has vibration amplitude which is different from this standard, we can do that by introducing scaling 

factor in the jump size and use (T/n), where  is called the scaling factor and we get the scaled 

BM.  behaves as a scaling factor, it adjusts the amplitude of the fluctuations. In other words, it 

changes the dispersion of the process about the mean position. So, by changing the size of the jump 

size by adding , the variance also changes to 2T. 

 

In addition to this scaling of amplitudes, a drift term can also be added to reflect an upward or 

downward trend. In that case, the jump size would become T/n+(T/n) where  is the drift per 

unit time. In this case the mean T  and the variance continuous to be 2T .  

 

Thus, the infinitesimal increment of Brownian motion with drift is given by: 

 

dx=dt+dWt =dt+z(dt) where z is the standard normal variate. 

 

Clearly, E(dx)= dt and Var (dx)= 2 (dt) 

 

Example 1 



 

 

A particle starts executing standard Brownian motion at t=0. What is the probability that the 

particle will be less than 10 units away from the origin after 100 units of time? 

 

Solution 

 

The spectrum of possible values of a BM W(t) at time t after initiation is normally distributed with 

a mean of 0 and a variance of t i.e. a standard deviation of (t). 

 

Hence, the possible values after time t=100 are normally distributed with a mean of 0 and standard 

deviation of (100) =10. 

 

We need to find the probability that -10<W(100)<+10 i.e. P(-10<X<+10) where W(100)=X is 

N(0,100). 

 

Expressing the above in terms of the standard normal variate 
X

Z
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where the value has been obtained from normal tables.  

 

Example 2 

 

A particle executes scaled Brownian motion with drift in one dimension. The drift rate per unit 

time is 0.0001 units. The variance rate is 0.01. Calculate the probability that the particle is more 

than 2 units on the positive side of its initial position (origin) after 2500 units of time. 

 

Solution 

 

The spectrum of possible values of a BM with drift i.e. 

 

dx=dt+dWt =dt+z(dt) 

 

at time dt after initiation is normally distributed with a mean of  dt and a variance of 2dt i.e. a 

standard deviation of (dt). 

 

Here =0.0001, 2=0.01 and t=2500. 

 

Hence, the possible values after time t=2500 are normally distributed with a mean of 0.25 and 

standard deviation of (0.01 *2500) =5. 

 

Thus, after 2500 units of time, the mean position of the particle (as shown above) is 

0.0001*2500=0.25 above the origin and the variance of the possible positions of the particle is 25 

i.e. standard deviation is 5.  



We need to find the probability of the particle being more than 2 units above the origin after 2500 

units of time. 

 

Thus, we need to find out P(X>2.00) where X is N(0.25,25) 

 

Converting to standard normal variate P(X>2.00)=P[Z>(2.00-0.25)/5]=P(Z>0.35)=0.3632 

  

where the value has been obtained from normal tables. 

 

  

 

 

 


