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Hereon, the theory of the pricing of derivatives is introduced. However, these derivatives 

are mathematical functions of the prices of some underlying assets like stocks, bonds, 

currencies, indices or commodities. Hence, it becomes necessary to understand and 

develop the modelling of the prices of such underlying assets.  

 

It is, obvious, that the future prices of such assets cannot be precisely predicted. They have 

a certain random component embedded in them. Indeed, were these prices to be fully 

predictable, the derivatives that we have talked about would have been absolutely useless 

and hence, worthless. 

 

Types of evolutionary processes   

 

On the basis of the behavior of processes or systems, in relation to the evolution with time, 

they can be classified into the following fundamental categories:  

 

(i) Deterministic process 

(ii) Stochastic processes 

(iii) Chaotic processes 

 

Deterministic processes are those processes whose future evolution is completely 

predictable. In other words, given the state of the system at one point in time, we can 

precisely ascertain its state at any futures point in time.  

 

Clearly, in order that a system be deterministic: 

 

(i) we must have a complete description of the initial state of the system i.e. we must 

have knowledge of all the variables that are required to facilitate a complete 

description of the system and we must have precise knowledge of their values at a 

given point in time. This would uniquely define the state vector of the system at 

that initial point. 

(ii) We should have complete knowledge of the time evolution of the variables that 

completely describe the state vector, thereby enabling us to obtain the time evolved 

state vector at a future point in time through the time evolved values of the 

variables. The mathematical description of this time evolution usually takes the 

form of differential equations derived from some physical law that the defining 

variables are believed to obey. 

 

So, two things are necessary, the initial state and the evolution equations which encapsulate 

the time evolution of the system. Once, we know these two, we can integrate them and we 



can obtain the state of the system at the future point in time. These are deterministic systems 

or deterministic processes. 

 

Chaotic systems are a variant of these deterministic systems. They are essentially 

deterministic, but they have an additional characteristic.  They are extremely sensitive to 

initial conditions. In other words, a small difference in the initial condition of two, 

otherwise identical, systems will manifest itself as an exponential blow up in the future 

evolution of the systems. Equivalently, a small error of measurement of initial conditions 

of such systems could result in the system evolving in an extremely different manner to 

that predicted on the basis of the original initial conditions. The chaotic map is extremely 

sensitive to initial conditions. It is sometimes said, in the context of chaotic systems, that a 

flap of a butterfly’s wings in Bermuda could cause a cyclone in New York at the future 

point in time. 

 

So any small difference in initial conditions manifests itself with exponential magnification 

as we move forward in time.  

 

Stochastic systems are those systems whose evolution in time cannot be precisely 

predicted. In other words, they have a certain random component embedded in their 

evolution.  

 

How that random component arises? It may arise due to  

 

(i) incompleteness of the set of variables adopted for describing the state of the system; 

(ii) imprecision of the measuring apparatus employed for measurement of variables 

describing the state of the system; 

(iii) incomplete knowledge of the time evolution of the variables describing the system; 

(iv) any combination of the above. 

 

The outcome is that there is an element of unpredictability in the time evolution of the 

system. In other words, given a certain initial condition, given a certain value of the 

system’s state at a point in time, we cannot precisely, exactly, estimate the value of the 

system’s state at a future time.  

 

Because the stochastic process evolves randomly in time, at every instant of time at which 

the process evolves, there is an element of randomness in the evolution of the process.  

Therefore, we can describe the evolution of the system by ascribing a random variable to 

each such instant of time at which the system evolves and as such, the entire process can 

be viewed as a collection, or a sequence of random variables indexed by time points at 

which the system makes a random transition. Thus, a stochastic process can be considered 

as a set  ; 0X t
t

  where each X
t
 is a random variable defined on a suitable 

probability space. 

 

And these random variables, can either be discrete or continuous. They will be indexed in 

terms of time points at which the system evolves or at which observations on the system 



are made, because we are talking about evolution in terms of time. Of course, at a very 

general level, we could have other indexing sets also, but for our purpose we shall always 

assume that this process is indexed in terms of time, because we are talking about evolution 

in terms of time. 

 

Markov process 

 

Now, there is a very important subset of stochastic processes, which are called Markov 

processes. A stochastic process is a general class of processes where the evolution is 

unpredictable. Markov process is a very specific, well defined class of stochastic processes, 

which has no memory. By no memory, we understand that the next step of the process, 

given its current position at a particular point in time, is independent of the manner i.e. the 

history or the path of how the process reached the current position. Its next step depends 

only on its current position. Given the position of the process at t=T, its location at t=T+1 

depends only on its position at t=T and not on any earlier time e.g. t=T-1 etc.  

 

Stated otherwise, the prior history of the process is irrelevant to the future evolution of the 

process. This is called a Markov process. The system or the process has no memory. Thus, 

a Markov process is a process, whose memory is restricted at any point of time to the 

immediately preceding time argument. So, whatever the state of the process is at t=T will 

determine how the process will evolve (of course, randomly) at t=T+1. 

 

Obviously, the evolution would be random. But, it would not be affected at all by whatever 

happened in history prior to t=T. The basic thing is, the future random evolution of the 

Markovian system is dependent only on its present state and not conditioned upon the 

history of how the process reached the present state. In other words, the path followed up 

to the current time is irrelevant, it is only the state at time t, which is relevant. 

 

Implications of Markovian property 

 

Under the Markov assumption, all the joint probabilities are expressible as products of just 

two independent probabilities viz.  

(i) The single-time probability  1 0,P j t  

(ii) The two-time conditional probability  2 0, ,P k t j t  

 

where  1 0,P j t  is the probability of the system being in state j at time t0 and   2 0, ,P k t j t

being the two-time conditional probability of the system moving to state k at time t given 

that it was in state j at time t0.  

 

The evolution of any discrete  stochastic process can be expressed in terms of the joint 

probability function  -1 -1 1 1, ; , ;...; ,n n n n nP j t j t j t  that represents the joint probability of the 

system being in state j1 at time t1, j2 at time t2,…, jn at time tn.  

 

 



Let us look at this carefully. Obviously, any general stochastic process, not necessarily a 

Markov process, needs to be defined in terms of the probabilities of the states at which the 

system is going to be at various instants of time at which it evolves. A stochastic process 

that evolves starting from t1 takes a random value in a sample space at t2, another random 

value at t3 and so on. In order to completely specify this process, we need to provide the 

joint probabilities of the system being in various states j1 at t1, j2 at t2 etc.  

 

A stochastic process can be represented by a collection of random variables indexed by 

discrete tie points. Thus, to completely specify a stochastic process, we need to specify the 

entire path probabilities. In other words, the joint probabilities of all the random variables 

that constitute the process taking up various values at the points at which the process 

evolves.  

 

To reiterate, in order to completely specify the system, we need the joint probability of the 

system, being in various states j1, j2, j3 and so on at times t1, t2, t3 … respectively. 

 -1 -1 1 1, ; , ;...; ,n n n n nP j t j t j t  is the n-time joint probability of the stochastic process taking a 

particular path between t1 and tn, the joint probability of various points on the path. 

 

Now, applying Bayes theorem,      ;P B A P B A P A  and proceeding iteratively, we 

have,  
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This is simply splitting up the n-time joint probability into its various components in terms 

of conditional probabilities viz. n-time, (n-1)-time, …, 2-time conditional probabilities and 

the 1-time probability  -1 -1 1 1, , ;...; ,n n n n nP j t j t j t ,  -1 -1 -1 -2 -2 1 1, , ;...; ,n n n n nP j t j t j t ,…, 

 2 2 2 1 1, ,P j t j t ,  1 1 1,P j t . 

 

Now, if the process is Markovian, we have 
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Thus, the joint probability of a Markov process can be expressed in terms of various 2-time 

probabilities and the 1-time initial probability  1 1 1,P j t .  

 

Now,  1 1 1,P j t  is the probability that the initial state i.e. the state of the system at t=t1 is 

j1.  2 2 2 1 1, ,P j t j t  is the conditional probability that the system in state j1 at time t1 evolves 

to the state j2 at time t2 and so on. So for a Markov process, we can write the joint 

probability of the entire stochastic process in terms of two-time probabilities 

 2 1 1, ,i i i iP j t j t 
and the one-point probability  1 1 1,P j t .  

 

Discrete time processes  

 

Stochastic processes usually evolve with time. They are, therefore, indexed with reference 

to points on the timeline. In discrete time processes, time is assumed to evolve in 

discontinuous jumps i.e. in discrete steps of a certain length. Discrete time can be 

represented by a lattice with lattice points labelled by integers.   

 

In discrete time processes, time is assumed to move in discrete chunks, in discrete steps. 

In other words, you cannot subdivide time indefinitely and arbitrarily. There is a lower 

bound up to which you can divide a period of time. 

 

The fundamental property here is that the index set that is used for indexing the set of 

random variables that constitute the stochastic process is discrete i.e. consists of only 

discrete values. So, in discrete time process, time is assumed to evolve in discontinuous 

jumps e.g.   t=0,1,2,…  

 

In such a scenario, you can represent time on a lattice where the points are regularly spaced 

and there is nothing in between. And the important thing is that the process when it evolves, 

it evolves only at the points on the lattice. It does not evolve in the interval between any 

two points on the lattice. It is only on the lattice points that the process makes a random 

transition from its immediately preceding value.  

 

So, the discrete time process is a process where time is considered in discrete intervals. 

However, the unit of time may be of choice e.g. one day, one hour, one minute or whatever, 

depending on the nature of the process and the problem. The time unit is not an issue, but 

time steps when expressed in that unit must be discrete.  

 

Thus, discrete time processes are those processes in which the system can change its state 

only at discrete instants of time. In other words, time may evolve continuously, the 

underlying time may evolve continuously but the system can change its state only at 

discrete points of time on the timeline.  

 

Therefore, as far as the system’s perspective is concerned, time is seen or time is apparently 

evolving in discontinuous jumps of a given length and that length constitutes the time step 

or the layer spacing. It is not evolving continuously because the system cannot change its 



state continuously, it can change its state only at given points in time, at discrete points in 

time.  

 

Obviously we can represent the discrete time in terms of a lattice. The basic thing is, that 

in the case of a system which is evolving continuously we can still discretize the time on 

the basis of the points that which we are making the observation of the cardinal parameters 

which are defining the state of the system. 

 

Discrete variable process 

 

In discrete variable processes, the stochastic variable is assumed to evolve in discontinuous 

jumps i.e. in discrete steps of a certain length. In other words, we can always find two 

values of the variable such that no value of the variable lies between them.  

 

Discrete variables can be represented by a lattice with lattice points labelled by integers.   

 

 

 

 

 

 

Thus, the variable which is going to evolve can either evolve to take discrete values among 

a sample set or the sample set can be a continuous interval wherein the variable can take a 

particular but unpredictable value. Thus, the random variable can have a discrete spectrum 

or a continuous spectrum. If it has a discrete spectrum, it is called a discrete variable 

stochastic process. If it has a continuous spectrum, if it can take any value within a given 

interval, then it is said to be a continuous stochastic process. Just like time, if you have a 

discrete variable stochastic process, you can represent it by points on a lattice. 

 

One step unbiased unscaled random walk 

 

Consider a stochastic variable X1 whose initial state (t=0) is represented by the origin (X=0 

at t=0). Let time be modelled discretely with time step T so that the first time step is at t=T 

at which point the variable X1 will make its first and only move. Let the move of the 

variable X1 also be discrete of with step size 1 unit. Hence, at t=T, the variable X1 will 

make a jump randomly i.e. unpredictably either to the value +1 or to the value -1 with the 

probability of each being ½. This is a single step unbiased unscaled random walk, single 

step because it involves only one-time step at which it makes a move, unbiased because 

the probability of the up-jump and down-jump are equal and unscaled because the jump 

size is independent of the number of steps. We write the position of the process at t=T as 

W1(T) where the subscript represents the number of jumps. Then,  

 

W1(T)=X1=±1; E[W1(T)] =E(X1) = ½ *-1 + ½ *+1= 0, 

E(X1
2) = ½ *(-1)2 + ½ *(+1)2= 1 so that σ1

2=1. 

 



It may be noted here that the first and only time step is of length T, but it is only one step, 

so nothing can happen in between. The process starts at t=0, when the clock strikes t=T, it 

will make one jump, either up or down with equal chance of it being either. The size of the 

jump in either case is one unit. 

 

Now, W1(T) is the set of possible positions of the process at time T i.e. at the end of one 

jump. Obviously W1(T) can take the values 1 with probabilities ½ each. I can also write 

W1(T) as W1(T)=X1 where X1 is a random variable that can take values 1 with 

probabilities ½ each.  

 

 
 

 

So, the critical parameters are the mean is 0 and the variance is 1. These are the important 

things. The variance is 1 and the mean is 0. This is the simplest possible random process. 

This is called the single step random walk. 

 

Two step random walk 

 

Let us now increase the number of steps. Let us now look at a two-step random walk. 

However, we still retain the time interval (0,T). But instead of having a single jump at t=T, 

we assume that the process makes two jumps, first one at t=T/2 and the second one at t=T. 

Thus, it makes two jumps equally spaced in (0,T). Thus, the single step has now been 

replaced by two steps but within the same overall time span. The overall time is still T but 

we have now spilt (0,T) into two discrete intervals (0,T/2) and (T/2,T). But time is still 

discrete, we have two discrete points on the time-line, T/2 and T. The process does not do 

anything between (0,T/2), makes a jump at t=T/2, again remains inactive in (T/2,T) and 

makes a jump at t=T.  



 

We represent the position of the process after the first jump at t=T/2 as W2(T/2). Then, 

clearly W2(T/2)=X1 where X1 is defined as above as a binomial random variable that can 

take values 1 with probability ½. This represents the first jump.  

 

Now, the position of the process after the second step i.e. at time t=T i.e. W2(T) is given 

by the jump second jump (X2, at t=T) from its position after the first jump so that 

W2(T)=W2(T/2) +X2 =X1+X2.  We have, 

 

W2(T)=W2(T/2)+X2=X1+X2=0,2,  E[W2(T)]=E(X1+X2)=0,  

E[W2(T)]2=E(X1+X2)
2= E(X1)

2+ E(X2)
2+ 2E(X1X2) =2, since E(X1X2) =E(X1) E(X2) =0 so 

that σT
2=2 as X1 & X2 are uncorrelated.  

 

 

 
 

From the diagram, we see that the process will make its first jump at T/2. It will either be 

up or down to +1, or -1. Hence, at t=T/2, the process will be either at P(T/2,+1) or Q(T/2,-

1). Now, we do not know whether it will be at P or Q, but it will be either at P or at Q. 

Now, from here it will make a second jump at t=T. If it is at P it makes a jump to either 

A(T,+2) or to B(T,0). These are the only two possibilities.  

 

Similarly, if it is at Q(T/2,-1), then the up jump will bring it to B(T,0) and the down jump 

will bring it to C(T,-2).  I emphasize once again, that this jump will take place at t=T. It 

will not take place earlier, time is discrete, the first jump takes place at t=T/2, the second 

jump takes place at t=T. 



 

Clearly W2(T) can take the values -2,0,+2 with probabilities ¼. ½, ¼ respectively.  

 

So, for the two-step binomial tree, the mean is zero, the mean continues to be zero, but the 

variance has changed from 1 to 2. This is important.  

  



Appendix 1 

 

Bayes Theorem 

 

Suppose an event A can occur if and only if one of the hypotheses B1,…,Bk is true. The 

probability P(Bi) of occurrence of Bi is known for each i,i =1,...,k. Also known is the 

conditional probability P(A/Bi) of occurrence of A given that Bi has already occurred, 

i=1,…,k. We want to find the conditional probability P(Bi/A) of occurrence of Bi given 

that A has already occurred. This is given in Bayes theorem that follows.  

To fix the idea suppose that a scientist observes a certain event A. He considers that A can 

happen only if one of the hypotheses B1,…,Bk holds good. Before observing A, he assigns 

certain probabilities P(B1),… ,P(Bk) of these hypotheses to be true. He also knows the 

conditional probability P(A/Bi) of occurrence of A when Bi is true. Now that he has 

observed the event A, how is he going to change his probabilities to different hypotheses 

B1,…, Bk? This is obtained by the conditional probability P(Bi/A). 

Generally, P(Bi) and P(Bi/A) will not be the same. Thus the occurrence of A generally 

changes one’s assignment of probabilities to different hypotheses. The probabilities P(Bi) 

which are assigned to Bi without any reference to A are called ‘a priori’ probabilities, 

i=1,…,k. The probabilities P(Bi/A) which are calculated after A has been observed are 

called ‘a posteriori’ probabilities, i=1,…,k. Our main interest lies here in the hypotheses 

B1…, Bk. 

Bayes theorem.  

Let an event A occur only if one of the hypotheses B1,…,Bk is true. Known are the 

probabilities P(B1),,…, P(Bk) of occurrence of B1,…, Bk respectively. The conditional 

probabilities P(A/Bi), i=1,…,k, are also known. The posterior probability P(Bi/A) is given 

by:  
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provided at least one P(Bt) >0,t=1,…,k. 

Proof. We have P(ABi)= P(Bi)P(A/Bi)=P(A)P(Bi/A) 

Hence  
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Example 1 



 

The manufacturing process employed by a company XYZ Ltd for its product can be carried 

out on two different machines viz. machine A and machine B. If the product is produced 

on machine A, the probability of it being defective is 0.05 and if it produced on machine 

B, the probability of being defective is 0.10. 60% of its production is carried out on machine 

A and 40% on machine B. The inspection department of the company during a regular 

inspection has come across one defective item. What is the probability that the defective 

item was processed on machine B? 

 

Solution: 
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Example 2 

  

The first of three urns contains 7 white and 10 black balls, the second contains 5 white and 

12 black balls and the third contains 17 white balls and no black balls. A person chooses 

an urn at random and draws a ball from it. The ball is white. Find the probabilities that the 

ball came from (i) the first (ii) the second (iii) the third urn.  

 

Solution 

 

Let Hi by the hypothesis that the ith urn was chosen and E be the event a white ball is drawn.  

       

 

   

1 2 3

1

2 3

1 7 5
, 1,2,3, , , 1

3 17 17
1 7

73 17 ,
1 7 1 5 1 29

1
3 17 3 17 3
5 17

,
29 29

iP H i P E H P E H P E H

P H E

P H E P H E

    



 

    

 

  

 

Example 3 

 

Two production lines manufacture the same type of items. In a given time line 1 turns out 

n1 items of which n1p1 are defectives; in the same time, line 2 turns out n2 items of which 

n2p2 are defectives. Suppose a unit is selected at random from the combined lot produced 

by the two lines.  

 

Let D be the event of a defective item, A, the event the unit was produced by line 1 and B, 

the event it was produced by line 2. Determine P(A/D), P(B/D). 

 



 

Solution 
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Similarly,   2 2
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Appendix 2 

 

Markov process 
 

A Markov process is a stochastic process with the following properties: 

 

(i)  The number of possible outcomes or states is finite. 

(ii)  The outcome at any stage depends only on the outcome of the previous stage. 

(iii)  The probabilities are constant over time. 

 

If x0 is a vector which represents the initial state of a system, then there is a matrix M such 

that the state of the system after one iteration is given by the vector Mx0. Thus we get a 

chain of state vectors: x0, Mx0, M
2x0, . . . where the state of the system after n iterations is 

given by Mnx0. Such a chain is called a Markov chain and the matrix M is called a transition 

matrix. 

 

The transition matrix of an n-state Markov process is an n×n matrix M where the i, j entry 

of M represents the probability that an object is state j transitions into state i, that is if M = 

(mij) and the states are S1, S2, . . . , Sn then mij is the probability that an object in state Sj 

transitions to state Si. 

 

In other words, the transition matrix is given by M=(mij) where mij is the probability of 

configuration Cj making the transition to Ci. 

 

Please note element mij is the transition probability from the jth state to the ith state.  

 

The state vectors can be of one of two types: an absolute vector or a probability vector.  

 

An absolute vector is a vector whose entries give the actual number of objects in a given 

state. 

 

A probability vector is a vector where the entries give the percentage (or probability) of 

objects in a given state. Note that the entries of a probability vector add up to 1. 

 

How to compute steady state of a Markov process 

 

Let M be the transition matrix of a Markov process such that Mk has only positive entries 

for some k. Then there exists a unique probability vector xs such that Mxs = xs. xs is called 

the steady state vector of the Markov process.  

 

What remains is to determine the steady-state vector. Notice that we have the chain of 

equivalences: 

 

Mxs = xs , Mxs − xs = 0 , Mxs − Ixs = 0 , (M − I)xs = 0, xs is a vector in the null space of 

(M-I) i.e. xs  N(M − I) 

 



Thus xs is a vector in the nullspace of M −I. If Mk has all positive entries for some k, then 

dim (N(M −I))=1 and any vector in N(M −I) is just a scalar multiple of xs. In particular, if 

x =(x1,…,xn)
T is any non-zero vector in N(M − I), then xs = (1/c)x where c=x1+x2+…+xn. 

 

Example 

 

A certain protein molecule can have three configurations which we denote as C1, C2 and  

C3. Every second the protein molecule can make a transition from one configuration to 

another configuration with the following probabilities: 

 

1 2 1 3

2 1 2 3

3 1 3 2

, 0.2 , 0.5

, 0.3 , 0.2

, 0.4 , 0.2

C C P C C P

C C P C C P

C C P C C P

   

   

   

  

 

Find the transition matrix M and steady-state vector Xs for this Markov process. 

 

Solution 

 

The transition matrix for a Markov process is given by: 

 

M=(mij) where mij is the probability of configuration Cj making the transition to Ci.  

 

Therefore  

 

1 2 3

1 0.3 0.3 0.4 0.7 0.3 0.4

2 0.2 0.5 0.2 0.2 0.5 0.2

3 0.5 0.2 0.4 0.5 0.2 0.6

FROM

M TO and M I

   
   

   
   
      

 

 

Now we compute a basis for N(M - I) by putting M - I into reduced echelon form:  

 

1 0 0.8966 0.8966

0 1 0.7586 0.7586 ( )

0 0 0 1

U and we see that X is the basis vector for N M I

   
   

   
   
   
   

 

 

Consequently, c=2.6552 and 

 

 0.3377

0.2857 .

0.3766

sX is the steady state vector of this process

 
 

 
 
 
 

 



 

Alternatively, let x=(x,y,z) be the steady state vector. Then we have (M-I)x=0 so that   

 

 

 

0.7 0.3 0.4

0.2 0.5 0.2 0

0.5 0.2 0.6

0.7 0.3 0.4 0 1

0.2 0.5 0.5 0 2

0.5 0.2 0.6 0 (3)

1 .

x

M I y

z

or x y z

x y z

x y z

which can be solved togther with x y z to get the above result

  
  

     
    

   

  

  

  

x

 


