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Lecture 11: Futures Hedging: No of Contracts 

 

Issue of lot size and optimum number of contracts 

 

In fact, there are two issues that need to be considered in this context: 

 

(i) The number of units in which an appropriate position should be established in the 

futures market to design the optimal hedge for a given exposure; and 

(ii) Having determined the number of units that need to be shorted/longed in the futures 

market, the number of contracts that need to be traded for achievement of said 

optimal position.  

 

In fact, the issue (ii) arise because futures are standardized contracts.  They are standardized 

in terms of the contract size i.e. the number of units of the underlying that are covered by 

one contract. The lot size is prescribed in the terms of the futures contract by the exchanges 

when the contracts are released for trading. Lot sizes specified in the contract are not 

changeable during the life of the futures contracts. Thus, it becomes necessary to account 

for the integrality of the contracts when designing the hedge. Thus, given an optimal 

position in terms of the number of units to be positioned in the futures market, we may not 

be able to match that requirement precisely as trades in the market are in terms of lot sizes. 

Hence, we still need to determine how many contracts are to be traded for the optimal 

hedge.  There would be a certain element of rounding off involved. This also contributes 

to the imperfection in futures hedging.  

 

The issue at (i) is one which relates to matching of the hedge with the exposure i.e. what 

should be the number of units that should be taken by the hedger in the futures market to 

design the optimal hedge in context of his exposure. There are different approaches to this 

problem. 

 

(i) The case of forward contracts is somewhat simplistic. The underlying is usually the 

same as the exposure. The number of units hedged by the forward contract 

coincides with exposure. The hedge maturity also coincides with the forward 

maturity. As a result, there is no basis risk and the hedging is perfect. The price at 

which hedged asset will be acquired/sold is known at hedge inception with 

certainty.  

 

(ii) Let us, now look at a futures hedge. Let Qs be the exposure (in number of units), S0 

be the spot price per unit at hedge inception (t=0) and SN the spot price at hedge 

maturity (t=N). Let F0 & FN be the corresponding futures prices. Let Qf be the 

quantity in which a futures position is created for the purpose of the hedge. Let 

Qf/Qs=h (hedge ratio) so that Qf=hQs. Then we have: 

 



 Value of the hedged portfolio at hedge inception t=0:  

 

Vh,0=QsS0+QfF0= Qs[S0+hF0] 

 

 Value of the hedged position at lifting of the hedged t=N:  

 

Vh,N= QsSN+QfFN = Qs[SN+hFN] 

  

Change in value of the position t=0 to t=N: V= Qs(SN-S0)+Qf(FN-F0)  whence  

 

 V= Qs(SN-S0)+hQs(FN-F0)= Qs[(SN+hFN)-(S0+hF0)] 

  

 Now, if the hedge maturity coincides with futures maturity so that SN=FN by 

convergence  

 

 V= Qs[(SN+hFN)-(S0+hF0)]= Qs[SN (1+h)-(S0+hF0)] 

 

 If the hedge ratio =-1, then the above expression simplifies to V=-Qs(S0-F0)=-V0,h 

 

 Hence, value of the portfolio at hedge maturity =V0,h+V=0 

 

 Thus, under the conditions: (i) underlying same as exposed asset (ii) hedge maturity 

coinciding with futures maturity and (iii) hedge ratio =1, we get a perfect futures 

hedge. Recall that these are conditions similar to what we had for the forward 

hedge.  

 

(iii) In case (ii), we have been able to design a perfect hedge, the value of the portfolio 

at hedge maturity (t=N) is known with certainty at hedge inception (t=0). However, 

the conditions involved are much too rigid to be of serious practical utility in the 

context of futures hedging. We, therefore, look at an alternative approach viz the 

minimum variance hedge. We make the conscious assumption that variance 

(standard deviation) is an appropriate measure of risk. On that premise we work out 

the hedge ratio corresponding to the hedge of a given exposure such that said hedge 

ratio minimizes the variance of the hedged portfolio over the life of the hedge. We 

use the notation as in (ii) above. We have: 

 

    0 0s N f N s fV Q S S Q F F Q S Q F          where the tilde represents 

random variables. Now, the variance of the hedged portfolio over the hedge period 

is:   
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confirming that the above value of Qf corresponds to minimum variance. Thus, in 

the special case of minimum variance hedge ratio, we have: 
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of minimum variance hedge is the regression coefficient of the regression of 

changes in spot prices over the changes in futures prices.  
 

In the above, S0, F0 being spot and futures prices at t=0 are known at hedge 

inception. However, SN, FN being future spot and futures prices at the projected 

date of hedge maturity are not known and, indeed, are random variables. It follows 

that S=SN-S0 and F=FN-F0 are also random variables. They ill have respective 

means, variances and probability distributions as well. 

 

Note that the hedge ratio embeds a negative sign in this sign convention. As such 

Qf will be negative of Qs if  is positive. Thus, for positive correlation between spot 

and futures, the positions in the futures markets will be opposite to that of the cash 

asset.     

 

Note also that our degree of freedom i.e. the controllable variable in the entire 

formalism is the futures position i.e. the amount of underlying that we position in 

the futures for the hedge inception. The hedge is instituted by taking a position in 

the futures market. The amount of that oosition is, obviously, at the discretion of 

the hedger. Hence, in this formalism the hedger would choose that amount of 

futures units which would project a minimum variance of the hedged portfolio over 

the hedge period. Thus, the optimization (minimization) is done with respect to the 

futures quantity. Note that Qs, , S,F are all given quantities and inputs to the 

model whereas the optimal Qf is the output.  

 

Now, h=Qf/Qs is the universal definition of hedge ratio in the context of futures. In 

the particular case, when we adopt a minimum variance hedge, this hedge ratio 

takes a corresponding optimal value (minimum variance hedge ratio) and that 

special value is given   ,min var S
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When we do the hedging with the specific objective of minimizing the variance of 

the hedged portfolio over the hedge ratio, we need to adopt this special hedge ratio 
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exposure in the futures market for the hedge accordingly.  



 

The following points need special mention in context of the above analysis: 

 

(i) The regression is with changes in prices and not prices themselves. 

(ii) The futures price changes are the independent variable and the spot price 

changes is the dependent variable. 

 

Thus, the hedge ratio is the regression coefficient of the regression of changes in 

spot prices with respect to changes in futures prices and not between prices 

themselves. F is the independent variable and S is the dependent variable. Hence, 

we are looking at a regression equation of the form 
,S FS F      . 

  

We have also not accounted for the integrality of the number of contracts so far. 

The lot size in futures market is standardized i.e. the number of units of underlying 

that are covered by one futures contract is standardized. One can trade only in an 

integral number of futures contracts and not in integral number of units of 

underlying. One futures contract constitutes the trading lot, trades have to be made 

in terms of the lot size, also known as the contract multiple. 

 

Perfect minimum variance hedge 

 

We have, for a minimum variance hedge    ,

f S

S F

s F

Q
h hedge ratio

Q


 




 



      so 

that:    
2

2 2 2 2 2 2 2

min
2 1S S

V s S s F s s S F s S

F F

Q Q Q Q Q
 

         
 

 
     

 

   
         

   
 

But, 2 0V   always so that  2

min
0V  at best whence 1    for a perfect hedge. Thus, 

the minimum variance that can possibly be achieved under any circumstances by hedging 

is zero and that can be achieved when there is perfect correlation or perfect anti-correlation 

between the changes in futures prices and the changes in spot prices. 

 

It is interesting to note that if the variance of a random variable is zero, then the random 

variation does not vary at all i.e. the random variable is simply a constant. If follows, 

therefore, that if the 1    hedge can be formulated whence  2

min
0V   i.e. the variance 

of the hedged portfolio is zero, the implication is that V does not fluctuate at all i.e. it 

remains constant.  

 

In view of the above, it is interesting to compare this situation with the scenario that we 

encountered in (ii) above. In (ii) above, we achieved a perfect futures hedge subject to the 

conditions that (i) the underlying was same as exposure (ii) hedge ratio was -1 and (iii) 

maturity of hedge and futures coincided. 

 



Here we have somewhat relaxed conditions for a perfect hedge viz that (i) the underlying 

be same as the exposure (ii) 1   . But here also we get a perfect hedge (zero variance) 

albeit through a different approach.    

 

For a perfect futures hedge, we must have: ρ= +1 or -1. If ρ= +1, the hedging position in 

the futures market will be opposite to the exposure and if ρ= -1, the hedging position will 

be same as the exposure.  

 

If ρ=+1, then hedge ratio Qf/Qs =h=-σS/σF. Hence, if ρ= +1, but if the variances of 

fluctuations of the hedged and hedging asset are not equal, we can still scale the quantity 

in the futures market to account for the difference in fluctuation variances between the 

exposed asset and the hedging asset. Thus, we can still design a perfect hedge. The same 

holds for ρ=-1.  

 

To reiterate, by scaling the quantity of the futures hedge, we can still create a perfect hedge 

if ||=1, notwithstanding that S F i.e. even if the variance of the changes in spot prices 

and the futures prices are different provided that they are perfectly correlated. 

 

Let us try to understand the difference between the two approaches (ii) & (iii) insofar as 

they relate to the perfect hedge. In (ii), the premise on which the hedge was instituted was 

the convergence between the spot and futures prices at futures maturity. The futures 

maturity was ensured to align with the hedge period. Thus, at the end of hedge period, the 

futures and spot prices converged i.e. SN=FN.  Now, the risk in the exposure arises due to 

the randomness of the spot price at hedge maturity i.e. SN. But because SN coincides with 

FN, a position consisting of long cash+short futures or vice versa would no longer be 

random at t=N i.e. at hedge maturity.  Thus, this approach simply focused at countering 

spot price randomness by futures price randomness at a given point in time (hedge lifting, 

t=N) because at that point in time, the two prices converged so whatever value the spot 

price took, futures price also took the same value. This was done by creating opposite 

positions via the hedge.  

 

However, in the current approach, we are setting  2 0V   i.e. the variance of the hedged 

portfolio as zero. This implies that the change in hedged portfolio’s value over the hedged 

period V is constant.  This is being achieved by using a hedge with ||=1. Perfect (anti) 

correlation implies that the two variables are always in phase with proportional amplitudes 

so that if we construct a portfolio with opposite positions with appropriate quantities to 

account for the difference in amplitudes, then the net result will be mutual annulment in all 

cases. Whatever value one variable takes, the other variable will take a value with the same 

ratio so that because of opposite positions and appropriate quantities the net result will be 

zero. Let us illustrate this with an example.  Consider the following data: 

 

F S 

2 3 

3 4.50 

4 6 



5 7.50 

  

Clearly the correlation between F and S is +1. Suppose we construct a portfolio 

consisting of 150 units cover in the futures market (short hedge) and 100 units of our cash 

asset (long). Suppose, now, that the change in the spot price over the hedge period turns 

out to be -1 unit, then the loss on cash asset is -100. The loss per unit in the futures market 

is -1/1.5 so that the gain on the futures position of 150 units is -150*(-1/1.5)=+100 whence 

the change in value of the hedge is zero. Thus, in this approach a statistical formulation is 

adopted for the perfect hedge. The vital caveat here is that the actual change in futures price 

may not be exactly as dictated by the statistical relationship of =1. =1 is a statistical 

relationship that is obtained from analysis of historical data. Nevertheless, future price 

evolution does contain a random element, both in the context of spot prices and futures 

prices. Thus, the issue whether the futures & spot prices will maintain the historical 

alignment figuratively represented by =1, is not mandatory. They are, of course, 

“expected” to follow this relationship i.e. “on the average” with a large number of 

observations, the futures and spot prices would tend to align towards =1, but not 

necessarily for each observation.   

 

From the practical perspective, we need to understand that the approach (ii) is more rigid 

but is more efficacious in the sense that if we implement that strategy the perfect hedge is 

a definite outcome and we know the hedge maturity and futures maturity at t=0 so that (at 

least theoretically) we can achieve matching. However, the second approach may seem 

easier and more practicable but the problem is that it is a statistical approach. It premises 

on ||=1. The correlation would have been obtained on the basis of historical data but that 

does not, of itself, guarantee that the future evolution of prices will exactly follow the ||=1 

mandate, the only thing we can say is that on the average ||=1 will hold, not that every 

future pair of price changes S,F will necessarily follow the same proportionality. If this 

were so, the randomness would have been completely eliminated. Hence, this approach 

may not invariably yield a perfect hedge. It is not mandatory. This is a statistical 

relationship not an absolute one.   

 

For ρ having some other value e.g. 0.80, we have Qf/Qs =h=0.80σs/σf. In such a situation, 

we find that since only 80% of the fluctuations are inter se correlated, only 80% of the risk 

of the exposure (0.80σs) is covered by the hedge. Accordingly, the hedging quantity is 

calculated with reference to this 80%. If the correlation is 80% or 0.80, only 80% of the 

standard deviation of the changes in spot prices is being used for working out the hedge 

position in the futures market. In other words, we are only trying to hedge 80% of the 

fluctuations of the exposed asset because we know only 80 percent are correlated with the 

futures prices. 

 

The remaining 20% being unrelated to the hedging instrument continues to subsist in the 

overall hedged position. This is the reason that in such cases, the hedge is not perfect. Qf is 

also calculated with reference to the 80% correlation because any further increase in Qf 

will not enhance optimality.  In fact, it will overshoot optimality. 

 



So, the best we can do is to have an optimal hedge with respect to this 80% value of the 

changes in prices of the exposed asset. The remaining 20% will continue to be random or 

not be annulled by the hedge. The remaining 20% of the price fluctuations will not be 

covered by the hedge and will continue to be unattended. 

 

The 20% of the risk is not hedge-able with this particular futures because there is no 

correlation between the prices of the cash asset and this particular hedging instrument to 

that extent. If there is 80% correlation, then 80% of the variation of the exposure prices 

will be hedge-able and the remaining 20% will remain unhedged if one uses that particular 

hedging instrument.  

 

There is another very important caveat here, partially alluded to above. When we talk about 

hedging; we are talking about the future. We are talking about annulling the “future” price 

fluctuations of the exposure by taking an appropriate position in the futures market. The 

entire hedging process is forward looking, forward oriented.  

 

Therefore, the inputs that go into the determination of the hedge ratio should ideally be 

forward-looking inputs. In other words, , S, F, the three inputs that contribute to the 

calculation of the hedge ratio should, ideally, be forward looking. However, this is 

practically not possible and these statistical parameters are invariably premised on past 

data. Therefore, the underlying presumption is the past events; the past history is going to 

replicate itself in future.  

 

To what extent this is likely to hold or not is a question which the hedger must assess when 

he takes up this hedging exercise. The hedger must use the past data after due analysis as 

to whether it is going to be relevant for the future. For example, the environmental 

conditions may have changed since when the data making the data outdated. So, if there is 

a material change in the environment, then cognizance has to be taken of the change and 

therefore, necessary adjustments to historical data need to be incorporated to take account 

of the changes in environment. Past patterns may not be replicated in the future; as a result 

of this the data being used for hedging computations may not be representative of the future 

course of events. 

 

 

 

  



Appendix 
 

Variance of a linear combination fo random variables 

 

Let X, Y be two random variables on the real line with means X, Y, variances X
2, Y

2  

and , be some real numbers. Let Z=X+Y. We need to find the variance of Z. We have: 
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