Business Statistics Prof. M. K. Barua Department of Management Studies Indian Institute of Technology – Roorkee

Lecture – 59 Multiple Regression

Hello friends. I welcome you all in this session. As you are aware in previous session, we were discussing about multiple linear regression and we have seen how to work out a question having more than one independent variables. Today, will see some more examples on multiple regression including one of the variables, one of the independent variables as categorical variable.

(Refer Slide Time: 00:59)

 Repor variab 	ts the proportion of total variation in Y explained les taken together	by all X
r ²	$\frac{SSR}{SST} = \frac{\text{regression}}{\text{total sum of squares}}$	ares
/		

So let us look at what is r squares coefficient of determination similar to simple linear regression. So there itself we have seen that it is regression sum of square to total sum of square. So same formula will apply in case of multiple regression as well. So this is how you can calculate r square value for a given question.

(Refer Slide Time: 01:21)

1							
Regression S Multiple R & Square Mujusted R Square istandard Error Diservations MNOVA Regression Residual	itatistics 0.72213 0.52148 0.44172 47.46341 15 df 2 12	555 29460.027 27033.306	SSR = 2 SST = 5 MS 14730.013 2252.776	29460.0 56493.3 F 6.53861	.52148 enificance F 0.01201)	52.1% of the variation m pie sales is explained by the variation in price and advertising
Fotal	14	56493.333				/	
	Coefficients 2	Standard Error	t Stat	P-value 1	ower 95%	Upper 95%	IN I
ntercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404	[1]
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392	11
Advertising	74.13096	25.96732	2.85478	0.01449 🥖	17.55303	130.70888	1

In fact, if you look at the same example which we worked out in previous session when the dependent variable was sales, the independent variables were price and the second independent variable was advertising expenditure right. So this is the output of multiple regression question. So r square is 52.148% right. This can be seen our here in this part of the table. It has got 3 parts in this table. First part, second is ANOVA table and this is third part right and this is nothing but the P value of F right.

Whether the overall significant model is where the overall model is significant or not and these are P values of individual independent variables. So these two are also significant independent variables and these two independent variables explain 52.1% variation in dependent variable.

(Refer Slide Time: 02:31)

This output from Minitab for the same question will get the same information, this r square, this P value, you have got r square here, standard error 57.46 and so on right. So this is the output from Minitab.

(Refer Slide Time: 02:50)

(Sales (units sold)	Advertising (number of ads)	Price (\$)		1 1 4	ph var
	33	3	125		ast	
	61	6	115	12	7:	
	70	10	140			
	82	13	130			
	17	9	145			
	24	6	140			
(a) Calculate ti and price.(b) If advertisi	the least-squar $\sum Y = b_0 n + \sum X_1 Y = b_0 \sum \sum X_2 Y = b_0 \sum x_1 X =$	es equation to p $\frac{1}{100}$ $b_1 \sum x_1 + b_2 \sum x_2$ $(x_1 + b_1 \sum x_1^2 + b_2 \sum x_2)$ $(x_2 + b_1 \sum x_2 + b_2 \sum x_3)$	redict sales from	u advertising u predict? .		

So let us look at one more example on multiple regression. So Sam Spade owner and general manager of Campus Stationary Store is concerned about the sales behaviour of compact cassette tape recorder sold at the store. He realizes that there are many factors that might help explain sales but believe that advertising and price are more important ones compared to other factors right.

So she has collected following data right, so number of units sold, advertising expenditure and price. So she wants to know is there any relationship between dependent and these two independent variables. So calculate least square equation to predict the sales from advertising and price right. If advertising expenditure is 7 dollars and price is 132 dollars, what would be the sales?

So as I have told you that you can work out this question because this is a question y is $= a_0$ let us say $b_1x_1+b_2x_2$ right. So this is one unknown variable, second and third right so 3 unknown variables, you have got 3 equations right; first, second and third. So you can solve these equations and you can get a0, b1, b2 right.

```
(Refer Slide Time: 04:25)
```


So this is how you would be getting it, so a is=219, b1 is the intercept of first independent variable is the coefficient not intercept, this is intercept, this is coefficient of second one right which is price right. So if you increase price, sales will come down by this much amount and if you increase advertising expenditure, sales will increase by this much percentage right and this much value not percentage.

So when advertising expenditure is 7, just look at this. Yeah when advertising is 7 and price is 132, 7 and 132 this would be in fact I think this is 63.8 is what we have written here 63.8, no it is not 63 it is 6.38, so this equation is let me rewrite this one. It is 219+6.38*7+ not plus this is minus 1.67*132. So you will get this value as 44 right. So this is 6.38 right, just you can make this correction.

(Refer Slide Time: 06:07)

Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value	
Regression 2 2792.4 1396.2 5.38 0.102	
C2 1 2223.0 2223.0 8.57 0.061	
C3 1 1546.2 1546.2 5.96 0.092	
Error 3 778.4 259.5	
Total 5 3570.8	
S R=sq R=sq(adj) R=sq(pred) 16.1081 78.208 63.678 42.308 Coefficients Term Coef SE Coef T-Value P-Value Constant 219.2 86.2 2.54 0.085 C2 6.38 2.18 2.93 0.061 1.15 C3 -1.671 0.684 -2.44 0.092 1.15 Regression Equation C1 = 219.2 + 6.38 C2 1.671 C3	
	6

Now this is the output from Minitab software for this question. So r square is 78.2 it means the variance in dependent variable which is being explained by two independent variables is 78.20%. This is your constant value or intercept, coefficient of first independent variable and coefficient of second independent variable right, so this is price and this is advertising expenditure. So this is your regression equation okay.

So let us work out this question using Minitab. So this is the question we have got. Let us solve this question using Minitab.

(Refer Slide Time: 06:57)

So first of all you need to write the dependent variable, sales, advertisement and price is 33, 61, 70, 82, 17 so just 6 is the sample size so advertising expenditure is 36, 10, 13, 9 and 6. Then, you need to enter price as well 125, 115 150, 130, 155 and 140. So will go to stat, regression, fit regression model, so response is sales right, so this is your dependent variable and these two are continuous predicted variables or independent variables.

So we click at okay so this is what the answer you are getting right. So if you look at this these are ANOVA table, P value 0.09 and 0.06. So these two are significant at let us say 10% significance level. If you look at r square value this is 78.20 that's what I told you and this is your regression equation. So if you want to calculate sales for a given price and for advertisement expenditure you can easily calculate okay. So this is how you can solve a question on multiple regression using Minitab right.

(Refer Slide Time: 08:58)

in a	1-week period w	with the food sur	oplement. T	he following information
is th	e result of a stud Piglet Number	y of eight piglet x ₁ Initial Weight (pounds)	s: X ₂ Initial Age (weeks)	Weight DV
	1	39	8	7
	2	52	6	6
	3	49	7	8
	4	46	12	10
	5	61	9	9
	6	35	6	5
	7	25	7	3
	8	55	4	4
(a)	Calculate the le	ast-squares equ	ation that b	est describes these thr

So let us look at one more example on this. A developer of food for pigs would like to determine what relationship exists among the age of a pig when it starts receiving a newly developed food supplement. The initial weight of the pig and the amount of weight it gains. So the weight it gains in a week period with the food supplement right. The following information is available right.

So weight of the pig, initial age and initial weight, so this is your dependent variable and these two are independent variables. So first of all you need to calculate the least square equation and then what would be the weight right, weight if the age is let us say 9 weeks and the initial weight was 48 pounds.

(Refer Slide Time: 10:07)

Regression Analysis: y versus x1(initial wt), x2(initial age) Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 2 37.009 18.5046 18.54 0.005 x1 1 10.520 10.5202 10.54 0.023 x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.004 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87					
Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 2 37.009 18.5046 18.54 0.005 x1 1 10.520 10.520 10.54 0.023 x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq (adj) R-sq (pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x4 + 0.807 x9 = 7.87 WINCOME	Regression Analysis:	: y versus x1(initi	al wt), x2	(initial age)	
Source DF Adj SS Adj MS F-Value P-Value Regression 2 37.009 18.5046 18.54 0.005 x1 1 10.520 10.5202 10.54 0.023 x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Conf SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87	Analysis of Varian	ce			
Regression 2 37.009 18.5046 18.54 0.005 x1 1 10.520 10.5202 10.54 0.023 x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 11 + 0.807 \times 2$ $y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$	Source DF Ad	jSS AdjMS	F-Value	P-Value	
x1 1 10.520 10.5202 10.54 0.023 x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 1 + 0.807 \times 2$ $y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$	Regression 2 37	.009 18.5046	18.54	0.005	
x2 1 25.929 25.9294 25.98 0.004 Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 1.00 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x1 + 0.807 x 9 = 7.87 y = -4.19 + 0.1048 x1 + 0.807 x 9 = 7.87	×1 1 10	.520 10.5202	10.54	0.023	
Error 5 4.991 0.9981 Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87	х2 1 25	.929 25.9294	25.98	0.004	
Total 7 42.000 Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant C-4.19 1.89 -2.22 0.077 al 0.1048 0.0323 3.25 0.023 al 0.1048 0.0323 3.25 0.004 al 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 x4 + 0.807 x 9 = 7.87	Error 5 4	.991 0.9981			
Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Constant 1.89 -2.22 0.077 2.1 0.1048 0.0323 3.25 0.023 2.2 0.807 0.158 5.10 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 1 + 0.807 \times 2$ $Y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$	Total 7 42	.000			
Model Summary S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 1 + 0.807 \times 2$ $y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$					
S R-sq R-sq(adj) R-sq(pred) 0.999073 88.12% 83.36% 65.83% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 * 48 + 0.807 * 9 = 7.87 W MIC NUMB	Model Summary				
$\begin{array}{c} 0.999073 & 88.12 \$ & 83.36 \$ & 65.83 \$ \\ \hline \\ Coefficients \\ Term & Coef & SE & Coef & T-Value & P-Value & VIF \\ Constant & -4.19 & 1.89 & -2.22 & 0.077 \\ x_1 & 0.1048 & 0.0323 & 3.25 & 0.023 \\ x_2 & 0.807 & 0.158 & 5.10 & 0.004 \\ x_2 & 0.807 & 0.158 & 5.10 & 0.004 \\ x_1 & 0.1048 & x_1 + 0.807 & x_2 \\ y & = -4.19 + 0.1048 & x_1 + 0.807 & x_2 \\ y & = -4.19 + 0.1048 & x_4 + 0.807 & x_9 \\ \hline \\ & \hline \\ \\ & \hline \\ & \hline \\ & \hline \\ & \hline \\ \\ & \hline \\ \\ & \hline \\ & \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\$	S R-sq 1	R-sq(adj) R-so	(pred)		
Coefficients Term Conf SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 1.00 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = (4.19) + 0.1048 * 48 + 0.807 * 9 = (7.87) y = -4.19 + 0.1048 * 48 + 0.807 * 9 = (7.87)	0.999073 88.12%	83.36%	65.83%		
Coefficients Term Conf SE Coef T-Value P-Value VIF Constant $-4, 19$ 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 1 + 0.807 \times 2$ $Y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$ $y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$					
Term Coef SE Coef T-Value P-Value VIF Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 * 48 + 0.807 * 9 (7.87) (0.004 1.00 (0.004 1.00 (0.00	Coefficients				
Constant -4.19 1.89 -2.22 0.077 x1 0.1048 0.0323 3.25 0.023 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation $y = -4.19 + 0.1048 \times 1 + 0.807 \times 2$ $y = -4.19 + 0.1048 \times 48 + 0.807 \times 9 = 7.87$	Term Coef	SE Coef T-Valu	ae P-Val	ue VIF	
x1 0.1048 0.0323 3.25 0.023 1.00 x2 0.807 0.158 5.10 0.004 1.00 Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 Y = (4.19) + 0.1048 x48 + 0.807 * 9 = (7.87) Tricowar Counter (Counter	Constant -4.19	1.89 -2.2	2 0.0	77	
$\begin{array}{c} x.2 \\ \text{Regression Equation} \\ y = -4.19 + 0.1048 x1 + 0.807 x2 \\ \textbf{Y} = -4.19 + 0.1048 x48 + 0.807 \times 9 = 7.87 \\ \hline {} \text{ arcount} \\ \hline \text{ arcount} \\ \hline \text{ arcount} \\ \hline \text{ arcount} \\ \hline \end{matrix}$	x1 0.1048	0.0323 3.2	5 0.0	23 1.00	
Regression Equation y = -4.19 + 0.1048 x1 + 0.807 x2 Y = (4.19+(0.1048 * 48) + 0.807 * 9 = 7.87 minowatt from the third the the third the the third the	x2 0.807	0.158 5.1	.0 0.0	04 1.00	
y = -4.19 + 0.1048 x1 + 0.807 x2 y = -4.19 + 0.1048 * 48 + 0.807 * 9 = 7.87 TROOKER CHINCKION COULD APPLICATION COULD CHINCKION COULD CHINCKION COULD S	Regression Equation	n			
Y = (4.19)+ (0.1048 * 48)+ 0.807 * 9 = (7.87)	v = -4.19 + 0.1048	x1 + 0.807 x2	~	~	
	$\dot{Y} = -4.19 + 0.1048$	* 48 + 0.807 *	9 = 7.8	7)	

So when you solve this question using Minitab this would be the output you would be getting. So if you look at this at 5% significance level, both are important right. If you look at this coefficients right just see this so this -4.19 is your intercept, coefficient of X1 which is 0.1048, coefficient of X2 independent variable which is initial age right okay. So finally at 48 pounds an initial age of 9 and 48 pounds which is initial weight, the weight gain would be 7.87 pounds right.

(Refer Slide Time: 11:17)

																			-	σ	X
Ve Edit Data Cal	s gat gapt	a Egitor Jools	Window Holp	Assistant																	
00400	9000	* # M IS 00	<u>n 150 (</u>	0011) ti 📓 🗆	01016	1至計上	ミアス	2												
1	3/47+1	¥ #	- X	9,111	0011	96															
Session																			1		
B B-1	ng Rengta Statistics	dji P-sqipre 369 65.0	d) 19																		
vefficients																					
orm onetant mitialweight mitial age	Coef 8 -4.15 0.1048 0.807	E Conf 7-Val 1.89 -2. 0.0323 3. 0.158 5.	us P-Wals 22 0.07 25 0.00 10 0.00	e VIF 7 (3 1.03 (4 1.00																	
egression Equ	tion	048 Initialum	iaht + 0.5	03 initi																	
					at 391																
_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	,
Worksheet 1 ***												_									18
	C2	63 _ 64	G	C6	0	C8	C9	C10	C11	C12	C13	C14	-C15	C16	612	C18	C19	C20	(21	C22	
 Ul g Initialuminht 	side and an	alabiasia												6.4	CIII.	C.W					
Initialweight	initial age w	eightgain 2													cu	C.W	en/			- Cit	
Initialweight	initial age w	eightgain ?													Ch	C.W	cir.			- cii	
1 1 52 1 52 1 49	initial age wi 8 6 7	eightgain 7 6 8													c.r	C.W	cu.		ct.	- Chi	
Initialweight I 39 I 52 I 49 I 46	initial age wi 8 6 7 12	cightgain 7 6 8 10													ch.	ciu			ct.	u	
Cl g Initialweight 1 39 2 52 1 49 1 46 1 61	initial age w 8 6 7 12 9	cightgain 7 6 8 10 2													Ch.	City.	cir				
rivitialweight 1 39 2 52 1 49 4 46 5 61 6 35	iritial age w 8 6 7 12 9 6	eightgain 7 6 8 10 7 5													Ch.	City.	cir				
Li G Initialweight 39 2 52 3 49 4 46 5 61 6 35 7 25	nitial age w 8 6 7 12 9 6 7	eightgain 7 6 8 10 7 5 3													Ch.	City.				un	
Initialweight 1 39 2 52 3 49 4 46 5 61 3 35 7 25 k 55	nitial age wi 8 6 7 12 9 6 7 4	eightgain 7 6 8 10 7 5 3 4													ch.	ch	cir			un	
Initialweight 1 39 2 52 3 49 4 46 5 61 6 35 7 25 8 55 8 55	nitial age w 8 6 7 12 9 6 7 4	eightigain 7 6 8 10 9 5 3 3 4													ch.	ch	city and the second sec			un	
Initialsocial 1 29 2 52 3 49 4 46 5 61 6 35 7 25 8 55 9 10	nitial age w 8 6 7 12 9 6 7 4	eightigain 7 6 8 10 9 5 3 3 4													ch.	ch				un	
Initialweight 1 39 2 52 3 49 4 46 5 61 6 35 7 25 8 55 9 10 11 11	10115al age w 8 6 7 12 9 6 7 4	eightigain 2 6 8 10 9 5 3 4													ch.	CH CH					5
Initialweight 1 39 2 52 3 49 4 46 5 61 5 61 6 35 9 55 9 55 9 10 11 11	nitisal age un 8 6 7 12 9 6 7 4	eightipann 7 6 8 70 9 5 5 3 4													CII	CH CH					2
Cr Cr Inritialweight 39 2 52 3 49 4 46 5 61 6 35 7 25 8 555 9 10 11 11	1715al age w 8 6 7 12 9 6 7 4	eightgan 2 6 8 70 9 5 3 4													CII CII	CIB					3
Initialweight 1 39 2 52 3 49 4 46 5 61 6 35 7 25 8 9 10 11	17115al age w 8 6 7 12 9 6 7 4 8 8 7 4 8 8 8 9 8 9 9 6 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8	eightigan 7 6 8 10 9 5 3 3 4													CII CII	CIB				Editable	

So you can work out this example again using Minitab, so you will have to enter data for dependent and independent variables. So first of all your dependent variable which is let it be initial weight for independent variable not a problem, initial age and then weight gain right. Now just go for entering data for initial weights which is 39, 52, 49, 46, 61, 35, 25 and finally 55. So initial age 8, 6, 7, 12, 6, 7 and 4 so initial age in terms of weeks right.

And the weight gain which is the dependent variable in terms pounds. So will go to stat, regression, regression, fit regression model, so here c3 is the yeah this is your response variable or dependent variable while c1 and c2 are independent variables, so click okay so you will get the same answer right. In fact, in slide I have taken this output only right. So just see this is your regression line.

This -4.19+0.10 initial weight +0.807 initial age right. So you can work out questions on multiple regression using Minitab.

(Refer Slide Time: 13:20)

So far we have checked the goodness of model by looking at r square value. Now you may have a situation where there are two models, both have got different sample size and both of them have got different number of independent variables and the situation like this you need to compare you need to use adjusted r square for comparison purpose. So there is something called adjusted r square.

Now what happens to the r square value whenever you add an independent variable the r square value increases. So let us say r square is 90% with two independent variables, if you add one more independent variable r square will go up. If you add one more, r square will again go up. So the characteristics of r square is that it always increases with addition of an independent variable irrespective whether that independent variable is really adding to dependent variable or not.

So that is the drawback of r square, r square does not taken into account sample size, it does not take into account an independent variables as well right. So there is one more measure for looking goodness of fit of the model is adjusted r square. So whenever we add an independent variable what happens, is that we lose one degree of freedom and the moment you lose one degree of freedom and the value of r square will increase.

So you need to have a balance whether you are losing a degree of freedom and the variable which you are adding, is it really significant one? So there has to be a balance between these two. So you need to always ask a question did the new variable add enough explanatory power to offset the loss of one degree of freedom right.

(Refer Slide Time: 15:45)

So there is something called adjusted r square which is adjusted for two things, sample size as well as for number of independent variables and it will always be, its value will always be smaller than so now r square will always be greater than adjusted r square right. So in other words it always be smaller than r square. So this is how you can calculate adjusted r square for a given question.

So n is sample size, k is number of independent variables. So what adjusted r square is the moment you add an independent variable if it is a significant one if it is really helping the dependent variable then only the adjusted r square will increase, otherwise it will not increase. So in penalizes the excessive use of unimportant independent variables. It will always be smaller than r square and it is useful for comparing different models.

(Refer Slide Time: 16:49)

		,			C)
Regression S	tatistics	2	4470		C. A	1
Multiple R	0.72213	$\Gamma_{adi}^2 = .4$	41/2			
R Square	0.52148					
Adjusted R Square	0.44172	/ 44.2% of t	he variation	in pie sales	s is explained	
Standard Error	47.46341	by the vari	ation in pric	e and adver	tising, taking	
Observations	15	into accou	nt the sam	ple size and	I number of	
		independen	t variables			
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.4640
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.3739
Advertising	74,13096	25,96732	2.85478	0.01449	17,55303	130,7088

So this is the adjusted r square value for a question which we solved in previous class on multiple regression. So r square was 52.148% but the adjusted r square was 44.2% so now onwards do not look at r square value in any regression model, always look at adjusted r square because it gives you a better picture of the model. So we will say that 44.2% of variance in data is explained by independent variables namely the price and advertising expenditure right. So this is how you can find out adjusted r square.

(Refer Slide Time: 17:35)

Now this is output form Minitab same value and same interpretation right. So here you are getting r square and adjusted r square which is always smaller than r square.

(Refer Slide Time: 17:54)

F Test for Overall Significance
• Test statistic: $F_{STAT} = \underbrace{\frac{MSR}{MSE}}_{mSE} = \underbrace{\frac{SSR}{k}}_{n-k-1}$
where F_{STAT} has numerator d.f. = k and denominator d.f. = $(n - k - 1)$

Now let us test the model for overall significance. So whether the entire model is significant or not, though we have seen the P value of F right, so that will give you whether the model is significant or not. So F statistics is this or ratio of these two.

(Refer Slide Time: 18:19)

It is regression sum of square to error sum of square right. F statistics is 6.53 in this question and this is what is P value for our test. So will say that the model is significant at 95% significance level right.

(Refer Slide Time: 18:39)

F Test for Overall Significance In Minitab
The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising
$F_{STAT} = \frac{MSR}{MSE} = \frac{14730.0}{2252.8} = 6.5386$
Analysis of Variance Source DF SS MS Regression 2 29460 14730 6.54 0.02 Residual Error 12 27033 2253 Total 14 56493
With 2 and 12 degrees of freedom P-value for the F Test On MITLONING COMPUTE COMPUTE COMPUTE

Of course, you will have to find out this output from Minitab, same values for F and for P as well and this is P value right 0.012.

(Refer Slide Time: 18:53)

So here for testing overall significance of multiple regression model you are framing a null hypothesis that both these coefficients are equal and they are 0. Beta 1 and beta 2 are 0 and alternative is that they are not 0. So calculated F statistics is this, the table value at appropriate degrees of freedom at 2 numerator and 12 denominator. So you will calculate F value like this and your table value is 3.885 so will reject the null hypothesis.

You will reject the null hypothesis it means these coefficients are not same, so there is evidence that at least one independent variable affects dependent variable Y. Now let us look at something called dummy variables. So far we have taken cases wherein the independent variables were metric in nature. Now let us take an example where dummy variable is a nonmetric.

(Refer Slide Time: 20:07)

So nonmetric variables are you can think of again several examples, let us say male, female, group 1, group 2, heavy coffee drinker, medium coffee drinker right, 0, 1 right, married, bachelor is not it, male, female and so on. So you can have different categorical variables and you can have different levels as well right but when I say whether a person is married or bachelor just two levels of a categorical variable right.

So it assumes the slopes associated with numerical independent variables do not change with value of categorical variable right.

(Refer Slide Time: 20:55)

So let us look at this example, so will take the example which we have already solved but here in this question this second independent variable is categorical in nature. So Y is sales, X1 is price of the product and X2 is a day of the week, now it may be a holiday or it may be a working day. So will say X2 is a categorical variable with two levels, is not it? So holiday, X2 if it is 1, if it is 0 it was no holiday right so working day.

So you can find out what is the effect of holiday or a working day on sales for a given value of for a given price.

(Refer Slide Time: 21:49)

So Y hat is=b0+b1 X1+b2 is=1 it means it is a holiday. We are saying X2 is=1 means it is a holiday so you can rewrite this equation like this. So this is the slope for X1 and this is slope for X2 right. Similarly, when it is not a holiday, it means now b2 is this is 0, X2 is=0 and you can rewrite this like this. So when it is a holiday, this is the slope right, this is the slope b0+b2. If it is not a holiday then this is the slope b0. So this is how you can write equations for a categorical independent variable.

(Refer Slide Time: 22:43)

So for this question we are just looking at the output, we are not looking at input data. So will say that the sales is=300 - 30*price + 15*second independent variable which is X2 right. Now as we know that X2 is=0 and X2=1, 1 and 0 right, so when I say X2 is=1 it means it is a holiday right. So if it is a holiday then the sales will increase by 15 units. Otherwise, if it is 0 then this entire term will become 0 when you put 0 over here.

So b2 is 15 on an average sales where 15 pies greater than in weeks with a holiday. So if there is a holiday in a week, then the sales will increase by 15 units, otherwise it will not increase by 15 units. So this is how you can take an example having independent variable which is a categorical one right. So let us look at one more question.

(Refer Slide Time: 24:21)

This is a question on multiple regression, you have got dependent variable and you have got independent variables right. So the question goes like this let us say there is a building and whenever there is some repair work is to be done in the building, you just call repair crew members and get the work done right get the repairing done. So you have got two types of information available with you.

So month since last service and repair time, so we know that if the maintenance is frequently happening then repair time would be less. If the time between two different two maintenance is more then definitely repair time would be higher right. So we want to know is there any relationship between the repair time and month since last service. So let us say month since last service is 2 months, repair time was 2.9 hours.

Months since last service when from previous service to next service if the duration is 6 months, then this is the repair time. When you put this 8 months, then this is the repair time. So we want to know is there any relationship between these two right. So this is your independent variable X1 right, this second independent variable is this X2 which is categorical in nature which is nonmetric in nature.

And we know that the repair time is also depends on whether the repair type is an electrical type or mechanical type, is not it? So we will have two levels for this particular independent variable. So first we will solve this question as just simple linear regression model with one dependent variable and one independent variable right.

(Refer Slide Time: 26:41)

Regression	Statistic	s								
Multiple R	0.73087	4	1							
R Square	0.53417	7	N/							
Adjusted F	0.47594	9	×							
Standard E	0.78102	2								
Observatic	1/	0								
ANOVA		_								
	df	_	SS	MS	F	gnificance	F			
Regressio		1.1	5.596033	5.596033	9.173887	0.016338				
Residual		8 /	4.879967	0.609996						
Total		9	10.476							
					2					-
C	oefficien	itsai	ndard Err	t Stat	P-value	Lower 95%	Upper 95%	60wer 95.0%	pper 95.0	%
Intercept (2.14727	3 1	0.604977	3.549344	0.007517	0.752193	3.542353	0.752193	3.542353	<u>`</u>
Cinco	\sim	1								1
Ince										1
Service	0 20412	2	0 100412	2 028842	0.016336	0.072592	0.535691	0.072592	0.535691	
Service 1	0.30413	9	J. 100412	3.020042	0.010330	0.072002	0.000000	0.072002	0.555665	4
18	Y = 2.	14+	0.30 (Mor	nths since l:	ast service)	- 2	a	.u		
			1	1	-	4	2 51	2		
		-					- : l	Z		

Let us solve this question. So when you solve this question, this is your adjusted r square. Now onwards do not look at r square value right, so adjusted r square is 47.59% and the intercept is this one. This is intercept and this is coefficient of independent variable months since last service right. So question is Y is=2.14+0.30 months since last service, so let us say if months since last service is 10, so just write 10 over here this will become 3, so Y value would be 2.44 is not it?

No, this is 3 right, so this would be 5.14 right, so that will be the value of Y. Now let us work out this example using Minitab and let us see whether you are getting this output or not right. (**Refer Slide Time: 27:48**)

Semion 781022 53.428 refficients rem motiont notice since last as grossion Equation	47.591 aerive C	Coef 2.147 0.304	31.34 f SE Co 1 0.1 f 0.1	.364 0.625 0.100	7-Va1 3. 3.	Lus 9-93 .55 0. .03 0.	mlue 93 .008 .016 1.0	17														- 0
781022 53.428 efficients rm instant inthe since last an genesion Equation	47.591 serive C	Coef 2.147 0.704	91.34 f SE G 1 0.6 4 0.1	.364 Coef 0.825 0.100	7-Val 3. 3.	lue 9-96 .55 0. .03 0.	wlue V3 .008 .016 1.0	17														
efficients inn instant inthe since last as gression Equation	aerive (Coef 2.147 0.304	f SE Ci 1 0.6 4 0.1	Coef 0,625 0,100	7-Val 3. 3.	lue 9-76 .55 0. .03 0.	mlue V3 .008 .016 1.0	18														
efficients inn instant inthe since last as greenion Equation	aerive (Coef 2.147 0.304	f SE G 1 0.0 4 0.1	Coef 0.625 0.100	7-Val 3. 3.	lne 9-95 .55 0. .01 0.	wlue 93 .008 .016 1.0	18														
ern Instant Inthe since last as greesion Equation	serive (Coef 2.147 0.304	f SE Co 1 0.0 4 0.1	Coef 0.635 0.100	7-941 3. 3.	Lue 9-90 .55 0. .03 0.	wlue 93 .008 .016 1.0	17														
greenion Equation	serive (0.304	4 0.1	0.100	3.	.03 0.	.016 1.0	10														
greenion Equation																						
greenion Equation																						
	100																					
an 4 <mark>2.147 × 0.30</mark> 4	Nosthe	the eife	rce last	aat oo	erive																	
-				_																	_	
					C4	C5	C6	07	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C28	C21
C1	, C	α	а																			
Cl Months since last ser	o C serive tir	C2 time	а																			
C1 Months since last ser	e C serive tir 2	C2 a time 2.9	а	0																		
Cl Months since last ser	o C serive tir 2 6	C2 8 time 2.9 3.0	а	0																		
C1 C1 Months since last ser	e C serive tr 2 6 8	C2 ************************************	а																			
C1 Months since last ser	e C serive tr 2 6 8 3	C2 ************************************	а																			
C1 Months since last ser	e C serive tir 2 6 3 2	C2 ************************************	а																			
C1 Months since last ser	6 Serive tir 2 6 3 2 7 2	C2 ************************************	а																			
Cl Months since last sec	0 C serive tr 2 6 8 3 2 7 9 8	C2 ************************************	G																			
Ct Months since last se	6 C 501W2 Tr 2 6 8 3 2 7 9 8 4	C2 10 time 2.9 3.0 4.8 1.8 2.9 4.9 4.2 4.8 4.4	9																			
C1 Months since list se	0 C Sorive 12 6 8 3 2 7 9 8 4 6	C2 10 time 2.9 3.0 4.8 1.8 2.9 4.9 4.2 4.8 4.4 4.5	3																			
Ct Months since last se	6 C Sentre 11r 2 6 3 2 7 7 7 9 8 4 6	C2 10 time 2.9 3.0 4.8 1.8 2.9 4.9 4.2 4.8 4.4 4.5	3																			

So let us look at Minitab software and try to solve this question. So we just deleted the output of previous question right. So months since last service it is okay no need to write everything. This is the repair time yeah time okay. So months since last service you just enter data, it was 2, 6, 8, 3, 2, 7, 9, 8, 4 so 10 data points. Then, 2.9 the repairing time, for the time being we are not writing type of maintenance work right.

We will take into account second independent variable as well, so this is how you should enter data for dependent and independent variable. Just go to stat, regression, fit regression model, so time is response, repair time is response and months since last service is continuous predictor variable right, so just click okay. So this is 2.14 and 0.30 right. This is what I told you which was there in this slide right, 2.14 and 0.30 right.

(Refer Slide Time: 29:44)

																					_
Session																					
E Fred R	- estadii - R	autored																			-
781022 53.428	47.599	11.10																			
officients																					
1.00	Cie 2.14	f ar co	of 7-Va	Lue 2-75	alue VI	r															
othe since last s	erive 0.30	0.1	20 3	.03	.010 1.0	10															
	1																				
gression Equation																					
me = 2.147 + 0.30	4 Months al	nce last	Netive																		
Notlaheel 1 ***																			(- (6	1
Rotaheel 1 ***	. (2)	а	64	G	6	σ	C8	(9	C10	C11	C12	613	C14	C15	C16	¢17	C18	C19	628	- (c)	
C1 Months since last se	c C2	3	6 C4	65	C6	σ	C8	(9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C30	0 (0 C21	
Rodsheel 1 *** C1 Months since last se	o C2 orive time 2 2.5	а	. C4	65	C6	σ	C8	(9	C10	C11	C12	C13	C14	C15	C16	¢17	C18	C19	C30	ca Ca	
Rossherel 1 *** C1 Months since last so	c2 enve time 2 25 6 30	а	c4	G	C6	σ	C8	G	C10	C11	C12	C13	C14	C15	C16	¢17	C18	C19	CO	0 () (21	
C1 Months since last se	c C2 enve time 2 25 6 30 8 4.8	0	c 4	65	C6	σ	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	ca () (21	
Rodobel 1 *** C1 Months since last so	c2 erive time 2 25 6 30 8 48 3 1.8	а	c 4	63	C6	σ	C8	(9	C10	C11	C12	C13	C14	CIS	C16	¢17	C18	C19	C28	c21	
Rossheri 1 *** C1 Months since least se	c C2 prive time 2 25 6 30 8 48 3 18 2 25	а	c 4	G	C6	σ	C8	G	C10	C11	C12	CIS	C14	CIS	C16	¢17	C18	C19	C20	ca l (
Rotateri 1 *** C1 Months since leat se	c C2 prive time 2 25 6 30 8 48 3 18 2 25 7 45	, (3	. (4	G	C6	σ	C8	0	C10	C11	C12	C13	C14	C15	C16	¢17	C18	C19	C20	C21	
Rocksheed *** Cl Month's since last se	c C2 stive time 2 25 6 30 8 48 3 18 2 25 7 45 9 42	. G	. 64	G	C6	σ	C8	9	C10	C11	C12	C13	C14	CIS	C16	c17	C18	C19	C20	c21	
Rotshert 1 *** C1 Months since lest se	c C2 stive time 2 25 6 30 8 48 3 18 2 25 7 45 9 42 8 40	, CJ	. (4	CS	6	σ	CB	G	C10	C11	C12	C13	C14	CIS	C16	c17	C18	C19	C20	c21	
Rotatel 1 *** C1 Months since least se	C2 stive time 2 2.25 6 3.6 3 1.6 2 2.5 7 4.5 9 4.2 8 4.6 4 4.6	а	. (4	G	C6	σ	C8	(9	C10	C11	C12	C13	C14	C15	C16	c17	C16	C19	C30	c21	5
Rotated 1 ***	c2 enve time 2 25 6 3.0 3 1.8 2 2.5 7 4.5 9 4.2 4 4.4 6 4.5	а	c 4	G	C6	σ	C8	(9	C10	C11	C12	C13	C14	C15	C16	CI)	C16	C19	C30	C21	B
Rotabert 1 ===	C2 offwe time 2 23 6 35 8 4.8 2 25 7 45 9 42 8 4.8 4 4.4 6 4.5	. 3	C4	G	C6	σ	CB	(9	C10	C11	C12	C13	C14	C15	C16	¢17	C18	C19	C30	0 [() (21	
Rocksheel 1 *** C1 Months since last se	C2 site time 2 2.5 6 3.6 3 1.8 2 2.5 7 4.5 9 4.2 8 4.6	. (3	. (4	G	C6	σ	CB	(9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C38	0 C	1
Rotated 1 ***	c2 c2 enve time 2 2.25 6 3.0 8 4.8 2 2.55 7 4.5 9 4.2 4 4.4 6 4.5	а	. (1	G	C6	σ	CB	(9	C10	C11	C12	C13	C14	CIS	C16	c17	C16	C19	C39	C21	

Let us look at whether the model is significant. In fact, we can look at P value of the F okay. So if you look at the ANOVA table anyway you just look at the P value of independent variable let us look at this. So this is your independent variable, months since last service. So this is less than 0.05 so will say that this is quite a significant independent variable right. So for the time being, let me stop here.

In the next class, we will consider the second independent variable which is categorical in nature. Thank you very much.