Marketing Research and Analysis - II Prof. Jogendra Kumar Nayak Department of Management Studies Indian Institute of Technology Roorkee

Lecture –56 Confirmatory Factor Analysis in SPSS-III

Welcome everyone to the class of marketing analysis and researches. So in the last lecture we were discussing about confirmatory factor analysis. Confirmatory factor analysis is a technique where we understood which is based on a theory right. It is unlike the exploratory factor analysis where the statistics decides which factors or constructs to be developed. But in the Confirmatory factor analysis we are developing a model on basis of certain theory.

This theory might be maybe a scale developed earlier by somebody or you know some literature that we have studied or through some even sometimes you know some discussion with some experts in the field. So you have developed a model and you feel it should you know behave in a manner that you are thinking. So to test that we do a confirmatory factor analysis okay.

So in the last lecture while we ended we I had said suppose you have developed a model and now the model is not showing a very a fit model. So how to check that and how what should you do in that case so model diagnostics is the one which will be starting the discussion today.

(Refer Slide Time: 01:39)

SEM stages in testing measurement theory validation with CFA (continued,)

- Model diagnostics
 - CFA's goal is to see whether a given measurement model is valid.
 - It also suggest modification for either addressing unresolved problems or improving the model's test of measurement theory.
 - □ Some areas that can be used to identify problems with measures are :
 - □ Standardized residuals: Researcher can use the residual values to identify item pairs for which the specified measurement model does not accurately predict the observed covariance between those two items.

Generally, standardized residuals of less than 2.5 do not suggest any problem. Anything

CFA goal is to see whether it given measurement model is valid or not right. So that means you have made a model so we know this is a covariance structure so right. So we are trying to see and each one has got let us say at least 3 variables okay now were saying whether this model that we are drawn is a valid model or not. Now how do you know whether its a valid model or not to do that we have some cut off values right.

Which you will say as the indicis now this indices will help us in in finding out whether the model is a fit model or not. So we will see it also suggests modification for either addressing unresolved problems or improving the models test of measurement theory. So suppose you have while checking the fitting the says you found that the modern fitness is low right in such condition can you improve the model yes.

Now generally what people do they are when they you know when the model is not coming fit so they panic and they tried to do something which is you know unscientific. So you need not worry about I will simply help you to understand how scientifically you can improve the model okay. Some areas that can be used to identify problems with measures are for example standardized residuals.

So what are the standardized residuals I will explain researcher use the residual values right. Residuals this word you have already used in regression also when you were talking about the error types. Identify item pairs for which the specified measurement model does not accurately predict the observed covariance between these two items. So whenever let us see let us take this.

Generally, the standardized residuals of less than 2.5 do not suggest any problem right. But anything above 2.5 and specifically above 4 indicates serious problem and might lead to dropping of such variables that means what. When you have a model let us say, let us go to a model right so I had opened a model this is the model I had brought.

(Refer Slide Time: 03:43)

So suppose this is the model now I am saying there are four constructs 1 2 3 and 4 the first one is linked to experience so there are four you know indicators of experience, second is three indicators of happiness the 3rd one is having four indicators of trust and the 4th one is having four indicators of a word of mouth. So when we are, this is the CFA model is a covariance model here there is no definite relationship. Now what do you mean by definite relationship?

Where we say that something moves from, when there is a direction A moves to B so this is nondirectional correct so there are moving both sides the covariance so in such condition we will learn this and see whether the model is valid or not and then can be improved. But before that for some people who are extremely new to you know structural equation modelling and confirmative factor analysis. Then let me explain how to draw a model first of all right. So I have brought a blank model.

(Refer Slide Time: 04:41)

So you see what I am doing is suppose how to draw a construct. So there are several ways this is a construct right so this is how you draw a constructs this is the indicator right so let us say I have three indicators right I have three indicators linked to this so I say this is how I draw right. So this is how I draw right and each indicator will have an error term right so if indicator has an error term.

So this is you know indicator has got an error term. So suppose instead of that we can we do it a little differently yes we can do it. So this is how you draw it so in the same thing I have drawn it so easily this facility has been provided here. Now once you just click on it so that this icon is gone now you draw here now suppose this is the construct and the rest is something you want to right now whatever you want to write.

So I am writing trust okay trust so this is my construct right. Now what is a variable how do I bring the variables now to do that I will explain you just go to this file now remember you need to have your data file ready. Now the data file is the file which from where you collect import the data. Now the file name I am giving is let us say the CFA file right. So let me take it out open okay.

Now once I have done with it. I will go to view variables and data set and now there are trust. So trust 1 so I am pulling trust 1 here, I am pulling trust 2 here, I am pulling trust 3 here. Okay once

I have done now suppose you want to also do the same for this one let us say. This is let us say experience I am taking experience 1, experience 2, experience 3 okay and this one I will name it as experience okay so this is experience.

So let me draw it for you experience okay this is all I am writing. Now since this is a covariance structure so I will draw a covariance model right CFA is covariance. So now this is what now this if you see there are some unobserved, these are error terms they have to be given name so just go to this place name unobserved variables. So each error term has been given name correct now you can run it okay.

So this is how you draw the model so my interest is only to show you how to draw the model you want to make any changes to all those icons are there right so copy so you want to copy something you can copy for example I want to copy this and I want to paste it here right. So I want to or I want to just move something from this place to this place I can drag it here. So these are all the icons which the more you play.

You will realize more and more you will understand more and more okay. So I am stopping it with this okay. Now I will go to my model of interest now this one so already my data file is connected okay so what I am going to do I am going to first run this model and see whether this model is a valid model or not. Now how do I run now this icon you can see is what it says about running right.

So but one thing before you run you will need to go to the output file so this is a maximum likelihood you know condition now go to the output now I need certain for example there is residual elements now if you go back to this file what did it say I need these standardized residuals. Generally, people get confused of where do we find this okay so this is the residual moments right so you have done it.

Now I have run it already I think so let me leave it no issues. So okay so this is my output file okay now first let me check my model.

(Refer Slide Time: 08:48)

men Oxyot	
🛲 🖬 😖 🖬 🖞 🗛 🕹 🖓 🖉 🚽 🖓 🖉	
EAFILEFING onw	
 Analysis Services 	Model Fit Summary
Motes for failuap	
i Valoble Dermory	CMIN
Paterials Securally	
a Notes he Madel	Model NPAR CMIN DE R CMINIDE
Notes for Constructions	Definition of the state of the state
Modification Indexes	Denation model 36 260.871 84 .0.0 3.105
Moangator riletan	Saturated model 120 000 0
Parwise Pasameter Companyons	Independence model 15 1201.203 105 .000 11.440
Model F #	
Liviny	RMR. GFI
HVMR, QPI	
Baseine Companione	N IN BUR OF ICE DEF
Pressing way way way way waters	Model KMK OFI AGEL POFI
1 Mile	Default model 194 785 493 550
HMDEA.	Saturated model .000 1.000
16.	Independence model (9) 468 (9) 410
TOM	and have and the set of the set
HOELTER	Brook Commenter
thereafter lives	baseine compension
	Model NF1 RF1 D1 TL1 (S1
	Deltal rhot Delta2 rho2
	Default model 783 729 842 798 839
	Saturated model 1.000 1.000 1.000
	Indemediate model 000 000 000 000
	medicinence more and and 200
	Parsimony-Adjusted Meanarys
	Model PRATIO PNEL POEL
	Defect model 050 434 631
	Principal and 200 200 200
Concentration (Surraina mosci 000 000 000
	Independence model 1.000 .500 .500
	NCP
	Model NOR LOUIS 1840
	ALL
	Default model (76.871 (11.96) 229.403
A	Saturated model
	Independence midel 1098-203 918-181 1211-452
	FILE

Now before you understand you see the values and let me tell you there has there is a chi square value because this model is based on the chi-square technique so this chi square minimum by degree of freedom this value is should be around you know less than 3 preferably less than 3 and if it is more than 3 or 4 and especially more than 5 then it is the model is a weak model right. So the lower the chi squared by degree of freedom the better it is okay.

Now this GFI, AGFI, NFI, IFI, TLI right these are all different indices. So CFI so these indices if you if you go back to my slide I will show you.

(Refer Slide Time: 09:29)

Absolute fit indices:

- □ In absolute fit indices, each model is evaluated independently of other possible models.
- □ These indices directly measure how well specified model reproduces the observed or sample data.

Goodness of fit index (GFI):

- Goodness of fit was an early attempt to produce a fit statistic that was less sensitive to sample size.
- □ The possible range of GFI value is 0 to 1, with higher value indicating better fit.
- GFI value of 0.90 and above is considered good.

□ Adjusted goodness of fit index (AGFI):

- It accounts for the degree of freedom.
- □ AGFI value of 0.90 and above is considered good.

This in this indices this is an indices absolute fit indices right. So this absolute fit indices are for example goodness of fit indices right. Each model when you test a model at least from each indices you should take 1 right. So for example the goodness of fit indices this was an attempt to produce a fit statistic that was less sensitive to sample size. Now what is the normal person for somebody who is new you understand that higher the value.

The higher the better is a fit of the model so the cut off value has been kept has 0.9 so GFI is above 0.9 it is considered to be good right. The adjusted goodness of fit similarly this should also be 0.9 or above right close to 0.9. But remember do not ever worry because sometimes this 0.9 although it may be a very you know stringent it is a measure it is a cut off value but this might if you get something on 0.85 87 also you need not worry.

If your sample size is very large it is sensitive to sample size so if you get a slightly lesser you know fitness value, then also you should not worry. Because if you have a large value or sample size it will be very sensitive and this might come low right. So you need not bother about it but you have to check your sample size right.

(Refer Slide Time: 10:51)

Absolute fit indices (cont...):

- Chi square (χ^2) :
- It provides a statistical test of the difference in the covariance matrices such that $\chi^2 = (n-1)^* (S \sum_k)$ {where, S =observed sample covariance matrix; $\sum_k = \text{estimated covariance matrix; and n=sample size}}$
- We look for small χ^2 value (and corresponding large p-value) indicating no significant differences between observed and estimated covariance matrices.
- · It limitation is that it increases with the rise in sample size and observed variables.

· Degree of freedom (df):

- · Degree of freedom is the mathematical information available to estimate model parameters.
- In SEM, df= ½[(p)(p+1)]-k, where p is the total number of observed variables and k is the number of estimated parameteg.
- χ^2 /df < 3 is considered desirable.

Similarly, the chi-square this value right which tells about the difference between the estimated covariance matrix and the observed covariance matrix right. So this value also we are trying to

check the chi-square by degrees of freedom okay. So this should be preferably < 3 as I have mentioned here right.

(Refer Slide Time: 11:10)

Absolute fit indices (cont...)

☐ Root Mean Square Error of Approximation (RMSEA):

- It examines the differences between the actual and the predicted covariance i.e. residual or specifically the square root of the mean of the squared residuals.
- A value of **0.08** or less is desirable.
- $\exists RMSEA = \sqrt{(\chi^2/df 1)/(n-1)}$

Root Mean Square Residual (RMSR):

- It is the square root of the mean of the squared residuals.
- ☐ Lower value of RMSR is desirable.

□ Standardized Root Mean Residual (SRMR):

- ☐ It is the standardized value of RMSR.
- RMSR value of 0.08 or less is desirable.

RMSEA this is another indicis right, it examines the difference between the actual and the predicted covariance model right and the value of 0.08 or less is desirable. Okay you can go back to the formula check the slides later and read it slowly how did the formula develop. But let me at this point let me explain you its meaning. The root mean square residual is another such indices which is also has a cut off value of about let us say 0.05 okay. So if it is less than this it is better the model is fit right so these are different fit indices okay.

(Refer Slide Time: 11:52)

Incremental fit indices:

- Incremental fit indices evaluate how well the specified model fits the sample data relative to some alternate model that is treated as a baseline model.
 Baseline model is the null model that is based on the assumption the observed variables are uncorrelated.
 Normed fit indices (NFI):
- It is the difference in the χ^2 value for the proposed model and a null model divided by the χ^2 value for the null model.
- NFI value of 0.90 and above is considered good.
- Comparative fit index (CFI):
- It is an improved version of NFI.
- CFI is similar to NFI but penalize for sample size.
- CFI value of 0.90 and above is considered good.

□ Tucker Lewis index (TLI):

- It is conceptually similar to NFI, but it varies in that it is actually a comparison of the normed chi square values for the null and specified model, which to some degree take into account model complexity.
- □ Model with good fit have a TLI value that is close to 1, (preferably > 0.95)

NFI it is a difference in the chi square value of the proposed model and the null model the baseline model you must have you will see when you use Amos this is called a baseline model. This baseline model is a null model okay divided by the chi square value for the null model. And NFI also should be about 0.90. Similarly, the CFI is an improved version of the NFI right. But CFI similar to NFI but it penalizes for the sample size. The higher sample size more sensitive and it should be 0.9. So these are several Tucker Lewis index.

(Refer Slide Time: 12:24)

So these are some several you know fit indices okay so now let me show you what we have got. Now we were here in the Amos output now we said it should be < you know 0.3 correct. Now let us see can we make some improvements in the model now and you see a the NFI is 0.783 GFI is 0.785 CFI is 0.839. So generally if we see the cut off the models cut off values are low right now how do we improve. Now let us go to the estimates right.

(Refer Slide Time: 12:58)

Anno Capat	10															-	Ø	Х
© OFATE (FINAL arms & Analysis Servicey Next to Enup	Standardized R	enidaal Co	ariates	(Group a	uniter 1-1	Dvînlî m	del)											^
i Yapati Jamov Jasara Kata Mada Sasara Kata Mada Sasara Di Beteri Bendari Kata Sasara Teori Sasari Teori Sasari Teori Sasari Teori Sasari Teori Sasari Mana Sasari	wom4 wom3 braf4 braf4 braf3 braf1 braf1 braf1 braf1 braf1 braf2 braf1 braf2 braf1 braf2 braf1 braf4 br	wem4 .000 4.426 5.900 5.092 .091 1.031 664 -1.568 -1.127 514 .592 -1.016 -1.176 -1.092 -1.021	won3 000 4.918 5.257 - 050 - 221 052 - 052 - 052 - 182 5.182 5.185 - 087 - (811 - 837 - 831 - 837	99854 5.358 5900 2.326 048 007 692 2.866 048 301 172 677 076	9888 .000 .532 .161 .453 .2171 .352 .179 .344 .389 .440 .201	x000 -007 -028 -274 -398 -193 -1394 -1353 -635 -228 -668	000 -1.106 -1.041 -6.041 -2.262 -1.63 -356 -358 -566	800 .000 .001 1.362 .351 .312 .878 .765 .496	000 1876 1829 - 629 192 - 189 1.476 1.422	000 -128 -231 -354 -003 -003	.000 .004 .800 .184 .082 .21	.000 .291 .291 .275 .283 .137	EXP4 .000 .756 .294	000 .007	EXP2 .000 .015	EXP	3	
Gungenebul																		>

So there are two things scalar and Matrices now go to the matrices right now when you go to this you we want this standardized residual variances. Now let me drag it a bit now look at this you know this is a covariance matrix. Now if you see look at any value try to find out the highest value which is the one which is where the value is more than 4 and above right so 4 and above I think wom 4 right.

This one has a very large impact right the higher the values with the other when its the covariance values are very high. So 4.426, 5.092 similarly trust 3 also if you see its all about 5. So why not first start with this trust 3 so we go to the model trust 3 so we first start you know deleting this trust 3. So I am deleting trust 3 now one by one we will go and well run this model again you remember the chi square degree of freedom 3 point something. 1 or something was there I will run it again.

(Refer Slide Time: 14:08)

Water Oates		
3 84998 16813 -7 -0		
OWNER NO. arm	Model Til Surgeon	
 Anotypic services Notes for Grave 	Stour Pa Santary	
i Vatable Larmony	cam.	
Parameter Summary	CMIN	
a Notes for Media		h (100 00
k Estmoles	MORE NPAK CMIN DE	P CMINDE
Notestor Lanuphiloder	Default model 34 192.331 71	.000 2.709 h
Mninizator Hean	Saturated model 105 .000 0	N
R Panese PasanelerCongensers a ModelTe	Independence model 14 1132.550 91	.000 12.446
Contailon Time	RMR, GFI	
	Model RMR GFL AGEL	PGFI
	Default model 163 831 254	464
	Saturated and al. 000 1 200	1744
	Salande inder	100
	interprintence model 559 A70 519	405
	Dateline Comparisons	
	Model NPI RFI IFI	TLI CFI
	Defection and a first person	001 004
	Detaux modes	.871 884
	Saturated model 1.000 1.000	1.000
	Independence model 000 000 000	.000 000
	Parsimony-Adjusted Measures	
	Model PRATIO PNFI PCFI	
	Default model .780 .648 .689	
	Saturated model 000 000 000	
Group number 1	Independence model 1,000 000 000	
	NCP	
	Model NCP LO 90	HE90
	Defudrandel 121.331 \$1.051 1	166.418
Default model	Saturated and al 000 000	00
	Sanada mari 1000 000	107
	marpennence model 1041.550 936.280 11	173.201

- D

Now let us go to the output let us check the model fit now you will see there has been a significant change 2.709 and have the indices improved GFI 0.833, CFI 0.844 which is better than the earlier right. Now let us see is there any other variables similarly you know responsible for the downfall of this model weakness of the model. Yeah now let us go to this wom 4 right so we go to the model again.

And we will see if we can if we remove this wom4 what is the change right now we will run the model again okay. So has there been any improvement 2.7 now 2.2 so from 3.1 to 2.7 now 2.2 and look at the GFI, the AGFI, the you know CFI and if you can see there has been significant changes right now let us see can we can we you know is there any other such covariance you know the relationships which are you know keep making the model weak? So again let us go to the estimates and check finally the last for the last time.

(Refer Slide Time: 15:27)

144436F1 +2 +0	- 100 0 1 0													
 KATILETINI, Jewie Analysis Samhary Non-Kristerup 	Standardiard R	niful C	e ariance	(Group I	nuður 1	Defasit m	edel)							
4 Variable Sammony Remaining Common		wood	wis!4	uoni	oml	mst2	Inst	hppitess2	lappuess1	happness3	EXP4	EXPL	EXP2	EXP3
a Alpiesta Vedel	wind	.050												
+ Colmoko	tratil	4 919	000											
iii Scalas	wini	.123	885	.000										
Reptua Cavoranos	won?	372	1321	007	000									
Standardered Hastalad Coverants as	trol2	367	.(41	-061	-305	600								
Factor Score Weights	inst	568	.031	.054	.650	(0)	.010							
a Nodile plan lode co	hippiness?	.409	- 692	- 500	- 605	1234	1.812	.000						
Monitator Heavy	happonesst	+184	287	177	683	.580	1.73	1.134	.000					
# Panarse Pasanarler Companisation - Manistra	happiness	1.803	(4)	1.501	2258	4292	.617	.242	.006	.000				
diorution Tatle	EXP4	.266	303	908	162	.436	180	354	1,795	1.295	.000			
	EXP1	015	.1%	- 332	160	4.0,0		537	.178	.080	195	.0:0		
	EXP2	1.723	1675	552	.787	615	1.460	0.002	.075	(.)78	(295	0%	.000	
	(XP)	·43	-0%	398	1.003	344	1.006	· 053	245	+ 351	• 014	- 042	016	.000

There is trust 4 which is also you know above a 4 so we can play with this trust 4 right. So I am removing trust 4 okay so we will have only maybe two values of trust. Now finally we will run. (**Refer Slide Time: 15:46**)

○日本(1)日日 → 7	· 0	· 🗐 🗖 🗖) 🖾					
OFAFILEFINAL artist		terration of the local division of the local						
Anolysis Sammory			Model Fit Summary					
Notestar tareup			C385					
Parameter Summary			CAILS					
# Notes for Model			M-14	ADAD	(3)	ne ne		CARA DE
* Estmoles			MINE	NPAR	CM	as Di		CMIN/DP
 Model to competition Model to competition 			Default model	30	91.7	77 48	.010	1.912
Mninizator Heavy			Saturated model	78	.0	00 0)	
E Parwse Parameter Companyons			Independence model	12	1027.2	34 66	5 .050	15.564
< Rodel F #								
Execution Time			RMR, GFI					
			Model	RMR	GFI	AGEL	PGFI	
			Default model	.112	.501	839	.554	
			Saturated model	.000	1.000			
			Independence model	569	458	360	388	
			Baseline Comparisons					
				N71	RFI	III.	TU	071
			Model	Delta1	rhol	Delta2	rho2	C1
			Default model	911	877	955	917	954
			Saturated model	1.000		1.000	1891	1.600
			Inferendence model	000	0:0	000	000	000
			mochements more	300	1020	500	2000	1000
			Paralment-Adiasied Men					
			a many-support stra					
			Middl	PRATE	INF	I INTE		
			Defects and all	TRAIN	100	1 0.0		
			Denor model	.121	.05.	4 .691		
Gran cambra 1			Saturated model	.000	00	0 000	2	
second can be a second			Intependence model	1.000	.00	000. 0	2	
			1.28					
			NOP					
			M.L.	NUB	10		10.00	
			ARGIN	NCP	10	30	m 90	
Data Acceded			Delauit model	43.737	20.3	516	74.842	
DERMITOR			Saturated model	.020	5	000	000	
			Independence model	961.234	861.1	172 10	63.720	

So model fit so now it is 1.912 so there is a significant improvement the GFI values have become above 0.9 so which is good enough. Suppose now you want to check again is this some value variable which is still you know responsible now we can see it there is nothing above point 4 the cut off values are in fact 2.5 and above 2.5 and in between 2.5 to 4 it is then you may treat it if you do not treat it also no issues.

But above 4, you should surely treat it that is an item for deletion right now there is no such problem now still if you want to see make an improvement suppose this would have been the table and you see our model fit is there say I want this this would not have been 1.9 something like 3.9 or something or 2.9 then can I make some improvement and yes what do you do you go to the modification indices right.

And when you would go to the modification indices see within the same construct which are the items or which are the error terms which have a relationship you should never this is theoretically wrong to make draw a covariance between a construct and error you should not do it. Between two error terms and that to within the same construct you should first check for it. So 12.830 is it in the same construct.

Let us see e3 and e4 yes so these two there is the if we make a covariance it says that there will be an improvement in the model right. Okay now let us run it was 1.9 now let us see is there any improvement in the model.

Orne		- 6
09868 3 -7 -0 -		
FNAL on w		
old Semmory for Genera	Stool P II Summary	
bic Servicey	CMIN	
name Summary		
oko	Model NPAR CMIN DF P CMIN/DF	
the Group/Moder	Default model 31 78,483 47 .003 1.670	
calenindices	Saturated model 78 000 0	
se Pasander Companians	Independence model 12 1027.234 66 .000 15.564	
11		
Bah Tima	RMR, GFI	
	Model RMR GFI AGFI PGFI	
	Drfmit model 112 .917 .863 .553	
	Saturated model 000 1.30	
	Independence model 349 A58 360 338	
	Baselaar Comparisons	
	Model NFI RJ1 IFI TLL CEL	
	Delta1 rho1 Delta2 rho2	
	Default model 924 893 \$68 954 \$67	
	Saturated model 1.000 1.000 1.000	
	Independence model .000 000 000 000 000	
	Parsimony-Adjusted Measures	
	Model PRATIO PNEL PCEI	
	Defailt model .712 .658 .689	
	Saturated model 000 000 000	
nberl	Independence model 1.000 .000 .000	
	NCP	
	Model NCP 1.0.90 HI 90	
	Default model 31.483 10.947 59.903	
cóli	Saturated model .000 .000 .000	
	Independence model 961/214 861.172 1063.710	
	FMIN	

(Refer	Slide	Time:	17:22))
--------	-------	-------	--------	---

1.670 look at all the values right and this is an improvement so you can do further also you can again check for modification indices and see whether there is any you know any such relationship e2, e5, e3 so this is so fine right so this is not to be connected so e2, e5 is it within the same here no. So that means there is no more improvement possible in the model so we stop

here so now this is your final CFA model okay so as I said so this is this helps you to identify which items to indicators to delete okay.

(Refer Slide Time: 18:04)

SEM stages in testing measurement theory validation with CFA (continued...)

Modification index

- A modification index is calculated for every possible relationship that is not estimated in the model.
- □ Modification indices of approximately 4 or greater suggest that the fit could be improved significantly by freeing the corresponding path to be estimated.
- □ Making model change based solely on modification indices is not recommended.

Similarly, the modification index which I just did it and showed you is calculated for every possible relationship that is not estimated in the model and modification index of approximately 4 or greater suggests that the fit could be improved significantly by freeing the corresponding path to be estimated right. So making model change basically solely on modification indices is not recommended.

So you should not first try to see the residuals and after that you can go for the modification indices and I have given you some conditions like for example do not try to draw a relationship between error terms of 2 different constructs and do not do it too many things at one time right that means two error terms together at the same time do not do that go for one by one the highest which has the highest value.

So one by one and you should not also theoretical it is also wrong to you know connect a construct with error term because the software will do it but then theoretically that it is wrong actually you should not be interpreting that way so this is what we have understood. Now there is one more example I have brought for you to because after this once you are thorough with the

CFA then well get into this. After the measurement model is found to be fit we will get into the structural model okay.

(Refer Slide Time: 19:25)

CFA Illustration

Example

The data was gathered for ABC paper industries. The company deals in finished products made by papers. They employ around thousand workers in India. Like many other companies they are facing the problem of attracting and keeping productive employee.

The cost of replacing and retaining employees are high. ABC management wants to understand the factors contribute to employee retention. The company wants to test a measurement model made of factors that affect employees attitudes and behaviours about remaining with ABC.

So here this is a case which I have brought this is a case of ABC paper industries the company deals in finished products made by papers. They employ around thousand workers like many of the companies they are facing the problem attracting and keeping productive employee. The cost of replacing and retaining employee is high. ABC management wants to understand the factors which contribute to employee retention.

So it wants to test a measurement model made of factors made of factors that affect the employee's attitudes and behaviours about staying with the company.

(Refer Slide Time: 19:58)

CFA Illustration

Stage-1 (Defining individual constructs)

- With the general research question defined, the researcher now selects the specific factors that represent the theoretical framework to be tested and will be included in the analysis.
- The consulting team of ABC and the management agreed on using 5 factors for evaluation based on published research and preliminary interviews conducted with the employee.

Job Satisfaction (JS) reactions resulting from one's an appraisal of one's job situation. Organizational Commitment (OC) The extent to which an employee feel part of ABC. Staying Intentions (SI) The extent to which an employee wants to continue working with ABC. Environmental Perceptions (EP) Belief of an employee about day to day, physical working condition at ABC. Attitude toward Co-workers (AC) attitude of an employee toward the coworkers with whom he/she interacts on regular basis.

So first we will define the individual constructs so let us do that with the general research question defined, the researcher now selects the specific factors that represents the theoretical framework to be tested and will be included right. So what are the constructs now they have seen job satisfaction, organizational commitment, staying intention and environmental perceptions attitude towards co-workers.

These are some of the variables or the constructs that would be a part of this study, job satisfaction reactions resulting from once an appraisal of one's job situation. Commitment that is an extent to which an employee feels part of the company. Staying intention an extent to which an employee wants to continue working with ABC. See remember in the measurement model we are not saying anything is dependent or independent.

It is just a covariance model every there is no direction as such right. So these are the five constructs we are having. So job satisfaction JS, organizational commitment OC, staying intention SI, and Environmental perceptions EP right that means belief of an employee about day to day physical working condition right and attitude towards co-worker AC.

(Refer Slide Time: 21:13)

	JS1 - All things considered, I teel very satisfied when I think about my job. OC1 - My work at HBAT gives me a sense of accomplishment.
Stage-1 (Defining individual constructs) For the item in the factors a pretest was performed in which 3 independent judges matched may proposed items to the constructs. Providing further confidence that the scale contained face validity data from 100 ABC employees from the proposed was gathered and an EFA was performed, the EFA results proposed a job, satisfaction, scale	 OC2 - I am willing to put in a great deal of effort beyond that normally expected to help HBAT be successful. EP1 - I am very comfortable with my physical work environment at HBAT. OC3 - I have a sense of loyalty to HBAT. OC4 - I am proud to tell others I work for HBAT. EP2 - The place I work in is designed to help me do my job better. EP3 - There aire few obstructions to make me less productive in my workplace. AC1 - How happy are you with the work of your coworkers? EP4 - What term best describes your work environment at HBAT? JS2 - When you think about your job, how satisfied do you feel? JS3 - How satisfied are you with your current job with HBAT? AC2 - How do you feel about your coworkers? SII I am not actively searching for another job. US4 - How satisfied are you with HBAT as an employer? SI2 - I seldom look at the job listings on monster.com.
containing 19 items.	JS5 - Please indicate your satisfaction with your currrent job with HBAT by placing a percentage in the blank.
	AC3 - How often do you do things with your coworkers on your days off?
	SI3 - I have no interest in searching for a job in the next year.
	AC4 - Generally, how similar are your coworkers to you?
	SI4 - How likely is it that you will be working at HBAT one year from today?

Each you see each constructs has several indicators so job satisfaction has JS1, JS2, JS3 right there are right you can check from here you can read all this right.

(Refer Slide Time: 21:28)

CFA Illustration

Stage- 2 (Developing the overall measurement model)

With the constructs specified the researcher must specify the measurement model to be tested. A visual diagram depicting the measurement model is shown **in the next slide**. Without a reason to think, the constructs are independent and all the constructs are allowed to correlate with all other constructs. All measured items are allowed to load on only one construct each.

So then we do the develop the measurement model so with the constructs specified, the researcher must specify the measurement model to be tested right okay.

(Refer Slide Time: 21:36)

So this is the measurement model okay so job satisfaction, organizational commitment, staying intention attitude towards co-workers, environmental perceptions and you will see they are all correlated right. So we have a theoretical understanding how they are correlated okay so this is all you can see the correlation right its a covariance structure and each of the indicators are connected with the and you can see these are reflective constructs right.

So that means the latent construct is explaining the variables okay and each variable what does it mean suppose SI 1 what does it mean you can check here.

(Refer Slide Time: 22:10)

Now let us run this we have this file in fact with us so we have this right so I already connected to the data. Now you try to understand first what we do we will take we have already run so it is already there now let us run the model right I hope you can draw the model at the moment by using this icons okay.

(Refer Slide Time: 22:32)

Mark T Pit Sonnaary Mark T Pit Sonnaary Yeeks Leaving Yeeks Leaving Passes (serving) CMIN Mark Mark San San San San San San San San San San							
Nature long CMIN CMIN DF P CMINNUP Participations Model NPAR CMIN DF P CMINNUP Service long Submarine long DS 224.835 179 0.02 1.323 Submarine long Submarine long 231 1.000 0 <t< td=""><td>a anni Analisia Sammary</td><td>Model Fit Summary</td><td></td><td></td><td></td><td></td><td></td></t<>	a anni Analisia Sammary	Model Fit Summary					
• Instruction CMIX • Instruction Model NPAR CMIX DF P CMIX DF • Instruction Statistication Model NPAR CMIX DF P CMIX DF • Instruction Statistication Model NPAR CMIX DF P CMIX DF • Instruction Statistication Defailmodel 231 0.00 0 1.22 • Instruction Statistication 21 440.948 210 0.00 2.1.42 • Independence model 21 440.948 20 0.00 2.1.42 • Independence model AMR CMIX H 9.13 7.35 Statistication • Constant Insue Model CMIX H 9.13 7.35 Statistication • Defail Insueld 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Notes for Group						
Sector Mark Model NPAR CMIN DF P CMIN DF Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Model SPAR CMIN DF P CMIN DF Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Model Sector Mark Sector Mark Sector Mark Sector Mark Sector Mark Model RDR FI Model Sector Mark Sector Mark Sector Mark Model RDR FI Model RDR FI Sector Mark Model RDR RDR RDR FI Sector Mark Sector Mark Model RDR RDR RDR RDR Sector Mark Sector Mark Sector Mark Sector Mark	Parameter Serman	CMIN					
Standard Model PVM CMIN Difference PC CMINDS Model Definitionability 2235.893 179 02 1.23 Stanzakow Definitionability 233.893 179 02 1.23 Stanzakow Definitionability 233.893 179 02 1.23 Stanzakow Definitionability 231 0.00 0 1.121 Model 208 GFI AGER PGE 00 0 1.111 Model 208 GFI AGER 00 0 1.000 0 1.111 Model 208 GFI AGER 00 1.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	a Notes for Wedel		N D S D	273 M			01.010.000
Manuality Status Default model S2 25.883 19.90.2 1.23 Sound Status Status Made Status Status Made Status Made	Estructor	Molei	NPAR	CMIN	0		CMINDP
+ Same Transie Congutive Same Transie Congutive Independence model 2.1 1.0 0.0 0 0 0 0 1.147 Example Constraint Two X KNR, GFI KNR, GFI Model 2.0 0.00 2.1.147 Model RDR, GFI Model RDR, GFI Model D.01 2.00 0.00 2.1.147 Model RDR, GFI Model RDR, GFI Model D.01 2.00 0.00 2.1.147 Model RDR, GFI Model RDR, GFI Model D.01 2.00 0.00 1.00.00 Independence model 2.99 J.11 Model D.01 2.07 J.11 Model D.01 T.11 CFI D.01 T.11 CFI D.00 1.00 0	Mountaion market	Default model	52	236.893	108	.002	1.323
Integrative model 11 448:943 200 000 11.141 Basilian Tays RUB, GPI RUB, GPI Berlin model 412 918 913 735 Basilian Tays Model RUB, GPI Berlin model 412 918 913 735 535 536 536 277 311 Berlin Tays 1440:942 277 311 14 142 918 913 735 535 536 536 936 924 277 311 14 142 942 277 311 14 142 942 277 311 14 14 142 942 277 311 14<	Panwee Patameter Comparisons	Saturated model	231	.000			
Model PRATE AGE GET AGET PGET Model PGR GET AGET PGET PGET Definitionedia 412 918 913 735 Stanzio duolel 000 1000 Independence model 239 342 273 311 GET Definitionedia 101 111 C11	Charles I de	Independence model	21	4440.943	210	000. (21.147
Model RARE GFI AGFI PGFI Dirikini model 412 948 933 735 53 Stanzio daudel 000 1.000 1.000 1.000 1.000 1.000 Independence model 2.359 .342 2.72 .311 53 Bascian Companion Bascian Companion Default model 0.01 2.01 0.01	and some the transformation of the source of	RMR, GFI					
Definitioned 412 946 943 735 Strazind undel 0.00 1.000 1.000 1.000 Independence model 2.359 342 2.27 311 Bendine Googgerine Model N1 811 101 Th1 CFI Default model 312 737 35 366 Statistic Cargorition 1.000 1.000 1.000 1.000 Default model 1.000 1.000 0.00 0.00 0.00 Paritares of model 1.000 0.00 0.00 0.00 0.00 Model PRATID 2.521 PCFI Default model 352 A07 341 Statistic model 0.00 0.00 0.00 0.00 0.00 0.00 0.00 VCP Model NCP 10.90 101.924 324 325 101.924 324 325 101.924 324 325 327 311 324 324 <t< td=""><td></td><td>Model</td><td>RMR</td><td>GFI A</td><td>GFI</td><td>PGFI</td><td></td></t<>		Model	RMR	GFI A	GFI	PGFI	
Smrand model 000 1.000 Independence model 2.59 3.42 2.77 3.11 Bestiter Congertion Model Deliah rhoh Deliah Thill 711 Defiah model 9.07 9.07 9.08 9.83 9.86 Defiah model 9.07 9.07 9.06 9.83 9.86 Defiah model 9.07 9.07 9.06 9.83 9.86 Defiah model 9.07 9.07 9.06 9.00 0.00		Default model	.412	.946	933	.735	
Independence model 2.359 3.42 2.73 3.11 Baseline Comparison Model NIT 821 0.11 1.01 C/31 Definit model 0.27 3.93 0.66 0.00 0.00 0.00 0.00 0.00 Definit model 1.00 1.500 1.600 1.600 1.600 0.00 0		Saturated model	.000	1.000			
Backlar Cargorison Model NI RI DI TUJ CII Defailmodel DI TUJ CII Bodialmodel DI TUJ CII Defailmodel DI DI DI TUJ CII Bodialmodel DI DI TUJ CII Bodialmodel DI DI <tddi< td=""> DI DI</tddi<>		Independence model	2.359	.)42	277	311	
Model NI 1 81 00 1 010 10 000 000 000 031 000 000 000 000 036 Definit model 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 </td <td></td> <td>Baseline Comparisons</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Baseline Comparisons					
Defail model 917 937 938 938 986 Statutated model 1000 1.000 1.000 1.000 1.000 0.00 Independent model 000 000 000 000 000 000 Paritary disposition Model PRATIO PNST PCST PCST Model PRATIO PNST PCST PCST PCST PCST Statutated model 600 600 000 000 000 000 VCP Model NCP 10.99 101.924 109.24 Model NCP 10.99 101.924 109.24 Model NCP 10.99 101.924 109.24		Model	NFI	RFI	01	ш	CFI
Detail model 3/12 3/12 3/12 3/12 3/16 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 600 .600 600 .600 600 .60		0 C L 11	Denar	mot D	2019	1004	
Minima in model 1.000 1.000 1.000 Independence model 0.00		Detault model	.917	937	.986	984	.986
Independence model 0.00 <td></td> <td>Salurated model</td> <td>1.000</td> <td></td> <td>1.000</td> <td></td> <td>1.000</td>		Salurated model	1.000		1.000		1.000
Model PPATID PSRI PCRI Model PPATID PSRI PCRI Default model 8.52 3.01 8.41 Stransform Andel 0.00 0.00 0.00 Iudependence andel 1.000 0.00 0.00 NCP NCP 10.95 111.92 Model Stransformal 55.898 21.925 101.924 Midatemetic Dordinal model 55.898 21.925 101.924		independence model	.090	.000	,000	.020	,000
Model PRATIO PNET PCET Default model 8.52 .60 .60 Stransformedel 0.00 .000 .000 tudppendence model 1.000 .000 .000 NCP Model NCP 1.0390 .111.90 Industriant Stransformedel .57.893 .129.93 .019.24 Industriant Stransformedel .000 .000 .000		Parsimony-Adjusted Mea	8 8 773				
Default model 852 807 841 Stransformeder 000 000 000 000 Independence model 1.000 .000 .000 .000 KCP Model NCP LO 90 HI 90 Default model 53.893 21.995 101.924 Stransformed D00 000 000		Model	PRATIO	PNFI	PCFI		
Summand model 0.00		Default model	.852	.807	.841		
Independence model 1.000 0.00 NCP Model NCP 10.09 HI 90 Model NCP 10.09 HI 90 Defaultmodel 53.893 21.993 101.924 Statement readel 0.00 0.00 0.00		Saturated model	.000	.000	.000		
NCP Model NCP L0.90 H1.90 Defail/model \$3.888 21.2958 101.924 Stransforded \$3.889 21.958 101.924	icop number I	Independence model	1.000	.000	.000		
Model NCP L0.90 H1.90 Defail/model \$3.898 21.2958 101.924 Statustic		NCP					
Defailtmadel 57.893 21.938 101.924 stutiene		Model	NC	P LO	90	HI 90	
Watrobi Starsted code 000 -000		Default model	\$7.89	8 21.5	158	101.924	
	Maitrodel	Saturated model	.00	0 0	000	- 000	

Now first let us check the model fit the model is because there is already we have tested and tried and tested already this model is coming every clear and very robust model look at the you know CMIN by degrees of freedom the chi square by degrees of freedom it is 1.323 right and look at the GFI the goodness of fit indices this is what you need to report correct when you write your you know paper research paper.

You need to write the chi-square by degrees of freedom was this much the GFI value the AGFI value you can take one from each right so and the RMR should be <0.5 as I had said and baseline you can say out of NFI, RFI, IFI, CFI you may take one or two of these. So all are above 0.9, right so once we have done now there is no need for improvement but the model is by default we are saying the model is an improved model.

That means we have we can say the model is a is a strong model okay that means what does it mean that difference between the observed and the estimated model is very lucky right. Now suppose you would have needed some improvement to check then what would have you would have done go to the estimates right now this is an important.

(Refer Slide Time: 23:52)

Ball 22 Ma 67 3 - 7 - 0 - 1710 18 18 1 12						
antes Anolysis Sammory	Estimates (Group or	ather 1 - Del	balt mode	(b)		
Mare for Group Karlebi Sammory Samman Garee au	Scalar Estimates (G	ronp namber	1 · Deba	li mođel)		
Male v for Worder Editorial	Maximum Likelihoo	6 Estimates				
in Section in Mathematic	Regression Weights	(Group nut	iðer 1 - D	efantt mod	el)	
Modicasin Indexe Miningalon Phyling Function Environment Companying		Estinate	S.E.	C.R.	Р	Label
Model Fit	JSI < JS	1.000				
Execution Time	182 18	1.032	-0.76	13.658	***	por_1
	JS4 < JS	.910	.070	12.944		por_2
	185 - 18	15.183	1.133	13 396	***	por_3
	J83 < J8	.902	.072	12.502		por_4
	ACS Con ACO	1.000	063	10.704		
	AC1 ACa	0.124	0.003	10.204	***	por_s
	ACT ON ACT	1.105	050	18 617		par_0
	SE Con AC	1.000	.0.19	18.0		bus".
	\$11 S AC	.932	048	19.540		nor 8
	\$14 < AC	1.087	.052	20.989	***	per 9
	\$13 AC	.992	.058	17.068		per 10
	EP4 < EP	1.000				
	EP3 < EP	.894	.055	16.263	***	per 11
	EP2 < EP	1.152	.067	17.295	***	per_12
	EP1 < EP	1.114	.077	14.485	***	par_13
	OC4 <···· OC	1.000				
	OC1 OC	.857	.072	11.957	***	por_14
	OC2 <… OC	1.126	.059	19.124		por_15
sp number 1	ocs oc	.671	.049	13 822	***	par_16
	Standardized Regres	ston Weight	: (Group	nuber 1	Defau	H model)
		Estimate				
	781 < 78	.741				
aut model	J82 J8	,748				~
	Not 35	.705				_0_
Mai	J85 J8	,381				
	183 75	.680				
	Sea> year	S 70				

Now you can although this is less important but this is important for us this side. Now is this is there any insignificant thing any insignificant relationship no. If there would have been insignificant relationship, then we would have deleted. Now let me let me go back to the earlier the one slide which I had drawn okay now let us run this okay.

(Refer Slide Time: 24:21)

tine Origin	-								
CARLETING AND A CONTRACTOR AND A CONTRACT AND A CON									
 Analysis Semimory Notes for General 	Estimates (Gro	ah m	ab	er 1 - Defaal	(Internet)				
 Vanishis Servicey Parameter Summary 	Scalar Estimate	n (Gi	roug	i namber 1 -	Default o	andel)			
is places for Model	Maximum Liks	lihoo	415	illaster					
ii) Schart ii) Matrices Notes the Constraints (Regression Wet	ighte	(G	rnep namba	r I - Delia	ili model)			
e Modification Indices				Estimate	8.E.	C.R.	P	Label	
Minimization Planary R Strain a Parameter Companies of	EXP3 <		1	1.000					
s Modelf #	EXP2 4		i.	.968	.029	33.201		TOP 1	
Executed Time	EXPL <		i.	.900	040	22.599	***	per 2	
	EXP4 4		1	.706	060	11.843		per 3	
	happiness3 <	C = = =	2	1.000					
	happiness1 <		2	1.044	154	6.769	***	per_4	
	happiness2 <	C = = =	2	.746	.116	6.408		pie_5	
	trustl		3	1.000					
	trust2 <	C	3	1.817	.754	2.410	.016	pie_6	
	wom2 <		4	1.000					
	woml <	C	4	6.112	8.913	.686	.493	pir_7	
	won3 <		4	.263	.156	1.684	.092	per_14	
	Standardized R	egree	100	Weights: (S	Group nur	nber 1 - De	funit no	del)	
				Estimate					
	EXP3 <		1	.983					
	EXP2 <		i.	.967					
	EXPl <		1	.905					
	EXP4 <		1	.721					
Group number 1	happiness3 <		2	.697					
	happiness1 <	G+++	2	.819					
	happiness2 <		2	.660					
	trustl <		3	.597					
	trust2 <		3	1.118					
	wom2 <	Leve .	4	.306					
Default model	woral <		4	1.824					
	wend :		4	.073				0	

So go to the estimates now you can see some of them is okay. We have already done it otherwise maybe the ones which you deleted that we deleted there we deleted some residual errors would

have also shown here maybe they would have been insignificant at this you know this place it would have for example you see the relationship between wom1 right and the 4th construct wom1 and 4 right. So 4 and wom1 this is still coming in significant that means if you delete it.

Now look at the model fit first go to the output right now look at the model fit so 1.67 and whatever you are getting now if I deleted now this is a good thing suddenly we got it struck my mind. So I think wom1 0.493 wom 1 right. So let us remove this so suppose I remove this right and now let me run the model again now you will see now go to the model fit must have improved.

(Refer Slide Time: 25:24)

Arres Oxyst	
ង្គាមទេសតាត -7 -0 - 📷🗖	🖬 🕽 🖾
Of MFILEFINAL anim * Analysis Semmary Ministry Gran	Model Fit Summary
R Variable Services Placement Summary	CMIN
a Notes for Model + Catmoles	Model NPAR CMIN DF P CMIN/DF
A Contraction Process	Saturated model 66 .000 0
Executen Time	Independence model 11 952-482 55 000 17.318
	RMR, GFI
	Model RMR GFI AGFI PGFI
	Saturated model .000 1.000
	Independence model 609 .453 .343 .377
	Dascine Comparises
	Model NFI RFI IFI TLI CEI
	Delta1 rho1 Delta2 rho2 Cr1
	Saturated model 1.000 1.000 1.000
	Independence model
	Parsinanty Adjusted Measures
	Model PRATIO PNFI PCFI
	Saturated model .000 .000 .000
	Independence model 1.000 .000 .000
	XCP
Group number 1	Medel NCP LO 90 HI 90
	Saturated medel .000 .000 .000
	Independence model \$97.482 801.100 1001.280
	FMIN
Default model	Model FMIN F0 1/0/90 HI 90
	Saturated model .000 .000 .000 .000
167525	Independence model 6.852 6.457 5.763 7. Pause

Okay the problem here is one what has happened this is good that this problem has come to you. Now everywhere there is a parameter the fixed and every parameter has to be explained right so there is one more way I can show you where you can see whether you know some of the indicators are fitting or not. So as I explained you can run the model go to the estimates right so in the estimates first you look for the model fit and normally so it is how it has there.

(Refer Slide Time: 25:53)

Analysis Sammory	Estimates (Group number 1 - Default model)
None for Simp Variable Deremony	Scalar Estimates (Group number 1 - Debalt model)
Patanaw Sumary Notes for Wedel	Maximum Likelihood Estimates
Modes/for Group/Model Modes/for Group/Model Modes/for Invities	Regression Weights: (Group number 1 - Default model)
Minimization History Panwese Penemeter Companisation	Ectionie SE CB P Label
Nodell'in Concerning Lines	EXPl cm 1 1000
Execution firms	EVD? See 1 958 629 13129 866 nor 1
	EXP1 cm 1 904 039 21072 ¹¹¹ par 2
	EXP4 (
	huminess3 stor 2 1.000
	happiness1 < 2 1.041 .154 6.766 *** nur 4
	happiness2 < 2 .744 .116 6.408 *** par 5
	trust] < 3 1.000
	trust2 < 3 2.224 1.300 1.711 .087 par.6
	won2 < 4 1.000
	word < 4 1.972 .685 2.880 .004 par 7
	trust3 < 3048 .138344 .731 par 14
	trialit < 3
	wond < 4 .274 .169 1.618 .106 par_16
	won4 < 4 .437 .171 2.554 .6.1 par_17
	Standardized Regression Weights: (Group number 1 - Definit model)
	Estimate
	EXP3 < 1
Seep number 1	EXP2 < 1 .966
	EXP1 < 1 .909
	EXP4 < 1 .732
	happiness3 < 2 .698
	happiness1 2
	happiness2 < 2
Delaut model	trust1 < 3 .539
	want = 3 1.237
	won2 5 4 540
	word c. 1 1017

Now go to the estimates now I said if you remember that the estimates need to be significant right but here this is very interesting what is the what is the if you see this one trust the construct 3 with the trust 4 right this is a 0.952 right. So 0.95 this is not significant right so we have a cut off value of let us say 0.01 so it is much above it so that means with this null hypothesis cannot be rejected which says that there is no relationship that is to be cannot be rejected okay.

So now so when you find this what you can do is go to this and drop this model trust 3 I think it was trust 3 right so what we will do is trust 3 you can delete it from here and keeping other things the same you can re-run the model right. So this is also a good way to understand how to improve your model now let us see the estimates there are a few for example trust 4 is also there so you can check now this data every data set is different.

So when you do this so you can understand where to how to improve so I said through the estimates you can go and check for significance. I also explain to you how through the residuals you can go for you know something which is above 4 or something and try to delete those variables and if there is no problem in that still the model is not improving then you can also see for modification indices right.

So these are the 3 things that you can check to improve your model if suppose still it does not going correct improving then do not worry then you have to go back to the field and check your data again right so now coming to the slide so we were here.

(Refer Slide Time: 27:39)

So as I was working on this you know job satisfaction this is okay so this file we were working so I think yes this is the one so we had run this and we were checking is you know model first so the model was fit everything was good. So this model says okay now this is everything is good right.

(Refer Slide Time: 27:58)

Now estimates let us look at the estimates now although it is not a directional study like a structural equation modelling or measured as structural model. In the measurement model we are not worried but still this helps us to identify whether any of this you know indicators are giving a poor result to the entire model. So had it been a not significant case then it is an item for deletion as I had just shown to you.

But here in this case there is no such problem that means now if you go back to the model that is how you do this right so you have drawn all these things.

(Refer Slide Time: 28:35)

And now the model has been drawn and these things you can check later on how to take the values into here and finally we will come to the scores right.

(Refer Slide Time: 28:48)

CFA Illustration

CFA Illustration	CMIN					
	Model	NPAR	C	MIN	DF	P CMIN/DF
Stage, 4 (Assessing Measurement Model validity)	Definit model Saturated model	52	236	\$93 000	179 .0 0	02 1.323
Stage 4 (Assessing measurement model valuaty)	Independence model	21	4440	943 :	10 .0	21.147
To check the Overall Fit click on the model fit.	RMR, GFI					
CMIN/DE score if less than 2 is considered very good. CEL	Model	RMR	GFI	AGF	PGF	
CMIN/DI SCOLE II ICSS than 2 is considered very good. CI I	Default model	.412	.948	.933	.735	
is the most widely is used index a value of over 9 is	Saturated model Indonesiance model	.000	1.000	211	- 11	
considered very good. RMSEA value should be less than	Baseline Comparisons					
.05. GFI should be greater than.90.	Model	NFI Deltal	RFI rhol	Delta.	rho2	CFI
	Default model	.947	.937	.986	.984	.986
The CEA results shows that the ABC measurement model	Saturated model Independence model	000	000	- 000	000	000
The erritesting shows that the ride inclusivement model	mary manufacture and an					
provides a reasonably good model fit, and is suitable for	RMSEA					
further examination of the model results	Model	RM	SEA	10 90	HI 90	PCLOSE
ruther examination of the model results.	Default model		.028	.018	.038	1.000
	Independence mod	rl I	225	219	230	000

Okay this is how the model will look like you see 1.323 and the GFI so here this is how you write to check the overall fit click on the model thus a chi square degree of freedom is <2 it is considered very good CFI is over 0.9 RMSEA is <0.5 GFI should be greater than 0.90 so this result shows that the ABC measurement model provides a reasonably good model fit and is suitable for further examination of the model results.

So this is only one part that measurement model says that the model is good and it is can be tested in the further relationship as in the structural model okay. Construct validity, to assess the construct validity we will examine the convergent discriminant and nomological validity.

(Refer Slide Time: 29:34)

Stage- 4 (Assessing Measurement Model validity)	Standardized Regression Weights: (Group number 1 - Delautt model)	
Construct Validity to assess the construct validity we will	11 Estimate	
	JS1 < JS .741	ar,
examine the convergent, discriminant and nomological	JS2 < JS .748	
	JS4 < JS .705	a
validity.	JS5 < JS .731	
	JS3 < JS .680	ik
Convergent Validity CFA provides enough information to evaluate	ite AC3 < ACo .837	
A REAL AND A REAL AND A REAL AND A	AC2 < ACo .820	We
convergent validity. In Amos output click on estimates and then s	ee AC1 < ACo .822	
standardised rearession weights. Taken together the results sunno	rt AC4 < ACo .815	
sumurused regression weights. Taken togetter the results suppo	SI2 < AC .864	5
the convergent validity of the model. Although 3 loadings fall	SI1 < AC .811	/
	SI4 < AC .852	
below .7, the P value for all the estimates were significant. The A	VE SI3 < AC	
score for each of the construct (IS= 51 OC= 56 SI= 66 ED= 6	EP4 < EP .823	
score for each of the construct (3551, OC50, 5100, EF0	10, EP3 < EP .768	
AC= .68) i.e. more than 0.5.In addition the model fits really well.	EP2 < EP .811	
	EP1 < EP	1
So at this point all the items should be retained.	OC4 < OC .837	2
	OC1 < OC .583	
	OC2 < OC .885	
terført Skip bade	OC3 < OC	0607cm/

So convergent validity as I have already explained right let us see here. In Amos output click on the estimates and then see the standardized regression weights. Taken together the results support the convergent validity right. Although 3 loadings fall below 0.7 so there are you see point they should be within 0.7 at least it should be above 0.5 so nothing is below 0.5 here right there just everything is more than 0.5.

In addition, the model fits really well because the chi-square by degrees of database is 1.323 right now how will you check for discriminant validity.

(Refer Slide Time: 30:15)

Stage- 4 (Assessing Measurement Model validity)

Discriminant validity The conservative approach for establishing discriminant validity compares the AVE estimates for each factor with the squared interconstruct correlations associated with that factor. The AVE score should be greater than corresponding interconstruct squared correlation. In our example the AVE score was greater for each factor. Therefore, there are no problems with the discriminant validity.
Nomological Validity This validity concept is based on EFA. This concept advocates that the constructs are expected to positively correlated with each other. The results of our prediction support the pomological validity for our model

The conservative approach for establishing discriminant validity compares the AVE estimates which I had shown you in the diagonal it should be the AVE scores if you take the constructs C1, C2 so C1, C2, C3 and you take the AVE loadings right. So this loading AVE scores should be more than the square of the correlation among the among the loadings right. So the AVE scores should be greater than the corresponding interconstruct squared correlation. In our example the AVE score was greater for each factor therefore there are no problems okay.

(Refer Slide Time: 30:54)

Summary

Four stage of CFA has completed. The chi square is significant above the .01 level. Both the CFA and RMSEA appear quite good. Overall, the fit stats suggest that the estimated model reproduces the sample covariance matrix reasonably well. Further evidence suggest a good construct validity. Thus, ABC paper mills can be fairly confident at this point that measures behave as they should in terms of the unidimensionality of the five measures and in the way the construct relate to other measures.

So this is how finally you write the CFA has completed the chi-square is significant above the 0.01 level. Both the CFA and RMSEA appear quite good because of the you have to show the values right. Overall the fit stats suggest that the estimated model reproduces the sample covariance matrix reasonably well. This is the most important finding further evidence suggest a good construct validity.

Thus ABC paper mills can be fairly confident at this point that the measures behave as they should in terms of the unidimensionality of the five measures, five measures are the five constructs. And in a way the construct relate to each other but here you have not said which construct affects the other in which way because no direction has been provided right. So only we say that the model is a valid model and the constructs relate to each other.

So this is all you do in the CFA correct so in the next lecture, I will explain to you once within taking same example how to explain the relationship or a provide a direction and check whether there is a relationship exists and if it exists how does it exist okay. So this is all for the day do we have. Thank you so much.