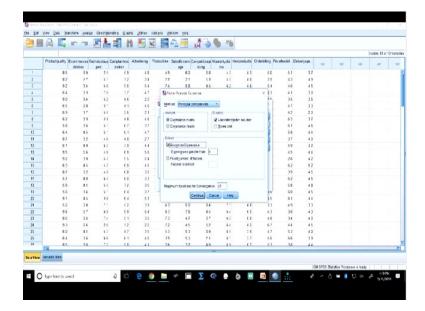
Marketing Research and Analysis -II (Application Oriented) Prof. Jogendra Kumar Nayak Department of Management Studies Indian Institute of Technology - Roorkee

Lecture – 53 Exploratory Factor Analysis in SPSS


Welcome everyone to the class of marketing research and analysis. So in the last lecture, we had started with factor analysis, especially the exploratory factor analysis. So we had understood that factor analysis is a technique which is used for data reduction or summarization, correct. So why it is used? And it is also called as an interdependence technique. Because there is no dependent or independent variable in that as such.

So we say it is an interdependence technique, okay. And I also mentioned that the heart of factor analysis is correlation. That means we try to find out the correlation among the variables and the stronger the correlations are within a construct, it is better, okay. Or within a factor, it is better, right. So we assume that all the items or all the variables within the factor are strongly correlated, okay.

So we understood that in the last lecture that we first will, suppose we have a data set. Then we try to find out what are the different kinds of factors that are emerging. So that is based on several factors. For example, several ways you can select factors. One of them was on the basis of the variance explained.

That means we said if a study is explaining sufficient amount of variance, then we can select the right number of size of factors, okay. What does it mean? For example, as I said in the last lecture that your variance explanation should be at least 60%, right. So let me show you on the data set. It is better if I show you because then you will realize it better. So, okay, so this was the data set.

(Refer Slide Time: 02:10)

So we had if you remember several variables, product, quality, peak hours, activity, technical, support. So these are different variables a company is interested to see how they are influencing, right, the customers. So we went for a dimension reduction or a factor analysis. And this is the exploratory factor and we took all the variables, okay. So we will take all the variables in here, okay.

So now in descriptives, we had learnt that we have to find out for the KMO and Bartlett Test. What is the KMO? The KMO is a measure of sampling adequacy and the Bartlett Test says it should be significant. That means if it is significant, that the null hypothesis says that there is no correlation among the variables is rejected and we will say that at least there is some correlation among the variables which is an important assumption of the factor analysis.

So we did this, right. We said, we can extract on the basis of eigenvalue and fixed number of factors. So eigenvalue we said if you remember across the factor, how do the variables explain in a particular factor, the contribution of the different variables in a particular factor. So we take the loading square, the sum of the squared loadings across the particular factor and that value is called the eigenvalue.

So eigenvalue should be greater than 1, right. Or we could also use the fixed number of factors in which we said how do you determine the fixed number of factors. The fixed number of factors

could be determined on the basis of past knowledge or sometimes we can do it on basis of the amount of variance explained.

So let me show you, for example, or if you remember, if the amount of variance explained is sufficiently high. Let us say, you have 13 variables in this case and you have got, let us say, 4 or 5 factors. These 5 factors explained about 85%. Then you can say well, since it is explaining quite a good amount of variance, what I can do is, I can increase a little further.

So if I, in certain cases, in such cases, the variance explained is minimum should be 60%, right, in the social sense, right. So if it is 70% or 80%, you have a better chance. You can still reduce the number of factors. That means suppose 6 factors were explaining 85%, now I do not want 6 factors to take. I want only 4 factors from my theoretical understanding.

Then I will take 4 factors, that will reduce my variance explained, there is no doubt about it, right. So as the number of factors will reduce, so the amount of variance will also reduce. But if 4 factors now will explain, let us say, 70% of the study, of the variance in the study, then it is good enough, okay. So that is how you find the number of factors, okay.

			× 1	= 11			2 🛄)	4 @ (Concerning of the second								Vable \$3 c	
		-											10 1				10000 100	(13 Yahit
	Productionality	Econtriercea divises	perf.	Dalien -	Adventing	"DOUCTIPH SA	ADR CONTRACT		na here	291.0	s Comment	Pricellende	Deneryspe	w	VM	10	-107	- 19
	85		25	6.8	4.8	49	60	58	47.	4	3 6	6 5	1 37					
2		2 21	51	12	34	19	31	5.8	5.5	4	1 3	5 4:	49					
3	97	2 34	5.6	6.6	6.4	7.4	5.8	1.5	6.2	4	6 6	4 44	0 45					
4	6 2	1 33	7.0	3.7	4.7	4 T	45	3.8	7.0	1	6 4	3 4	1 30					
8	90	3.4	5.2	4.6	2.2	60		2.4	6.1			4 3t	6 35					
6	65	28	3 '	4.1	4.0	Caracter (🖅 🔮 feau	trayse Options		×			7 33					
1	6 5	1, 1,	5.0	2.6	21							43	2 20					
8	62	11	19	4.8	4.6		Musing				Desceptions.	6	37					
9	58	3 36	5.1	67	37			ude cases listes			Eduction.	6	45					
13	6.0	4.5	5.1	6.1	4.7			tudi cases parv Nace with mean	20		Rotation	51	8 44					
11	87	32	4.6	4.8	2.7		0.76	ALC: NO. INC.		_ 1	[cama	3	40					
12	61	4.9	6.3	2.8	4.4		Config	and Display Form		- 1	Options	- 41	9 32					
13	9 5	5 56	4.6	6.1	6.0			ted by size				41	6 64					
18	92		57	1.5	24			press small car	Scients.			21						
15	63	3 46	4.7	6.9	4.5		100,000	Atracial a value		- 1		6.						
15	87		4.0	El	3.2			Shindra wana	town B	-		31						
1/	57		6.7	6.0	3.3		6	ninue Carce	HAR			63						
13	55		5.5	3.2	3.5		-		-			51						
19	51		5.	6.4	37	- 37	3.0		24									
20	91		3.6	6.4	63	53	71	3.4	5.0	(
21	52		7.1	5.2	3.9	43	5.0	34	7.1	4								
22	9.6		6.8	E.9	6.4	83	78	4.5	6.4	£								
23	8.6		74	6.1	3.5	73	47	3.*	6.7	ŧ								
28	93		2.6	1.2	2.2	12	45	52	8.4	4								
25	61		6.5	4.7	35	5.3	63	5.0	6.5	1								
25	64		6.6	6.1	4.0	3.8	53	7.1	£ *	1								
37	9.0	10	72	0	41	7.6	17	18	6.2	- 6	7 6	1 1/	14	-		-		-

(Refer Slide Time: 05:08)

Now I also explained about rotation, if you remember. And I said why do we rotate, if you remember? Sometimes to get a simple structure, we get a simple structure, we want to rotate the

variables so that the variables are placed in such a manner that they are not loaded too much into one factor and very much less on to the other. But they are more or less equitably distributed, okay.

So the most popular is the, among the orthogonal rotation is the varimax rotation. Now what is orthogonal and what is the oblique rotation? So I explained that orthogonal rotation is a rotation in which we say that the factors are at 90 degree to each other. That means what? If something is at 90 degree, mathematically you can understand that they would never meet. So they are not correlated, right. Uncorrelated.

But on the other condition, other hand, if you have a, let us say, oblique rotation, so it is not 90 degree. But the problem, the problem is that although in real life, in social life, hardly you find a relationship which is uncorrelated or not correlated. But the other side is when you take an oblique rotation which is more favorably saying that there is some correlation, but it is very difficult to analyze mathematically.

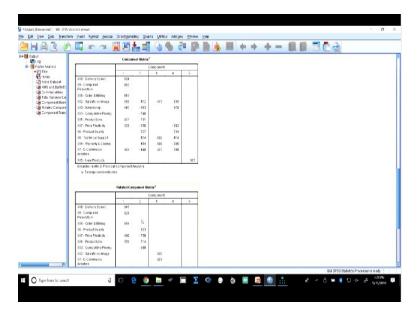
It is a very complex process. Because the number of correlations that can occur will be very high. So in fact even the softwares are not developed to such an extent which can explain it properly. So most of the time what we do is, we consider and also theoretically, there is a logic that we fear of 2 factors, these 2 factors would be separate as much as possible.

So to believe that, we say well they are in a orthogonal rotation, will take an orthogonal rotation. That means they are not related. And taking that we take the varimax rotation, right. I said if you remember, you should sort by size and suppress the small coefficients. Now when you suppress the small coefficients, what do you mean?

I mean that the factor loadings which I would take should be at least 0.3 that is 30%, right. Because if it is, factor loading is what? The correlation between the variable and the factor, okay. So if it is 0.3 or 30%, that means the R square is at least 10%, right. So we take that as a magic number or a cut-off value, right. And we will say run, okay.

(Refer Slide Time: 07:39)

		# 15 * =		ê 🖗			T - 1			10	And .	
	Factor Analysis											
н Ахайха с Ган	Detailatil Crivers	AE F CellADesitor	MOCT Jacuary	2019\01. 0.	E. Favekildi	12'efe.per						
N/NS N/SV9 Dataset												
MO and BarNets	P349 -	and Bartlett's Tes:										
Convenues altitles Fata: Voncence Exe	Kalaan Mayan Cikin Mear u			D,								
Corporant Maria	Bartist's Test of Spheric P	Applic: Cti-Square	046 06 3 16									
Rotate 3 Computer Component Team		5id	200									
Longerait train		~										
	Carrow	attes										
		res firston	1									
	35 Product Gut By	1000 834	1									
	XT-E-Commerce Activities	1.000 798										
	X9-Technical Support	1.000 893										
	X9- Complaint Reseivation	1.000 892										
	XID- Advertising	1.000 575										
	X11 - ProductUne	1.000 882										
	X12- Salasfe or Imaga X13- Computitive Printing	1.000 831										
	X12- Contrarte & Citizen	1 000 \$33										
	X15 Dow Predails	1.000 178										
	XIS- Crow Eliting	1.006 .773										
	x12 - Proje Fleightigh	1.000 892										
	X12 - Phile Heading X18 - Celvin Street	1000 325										
2	Exaction Wethod Principal		-									
2			Tata V	atinco Esplained								
		intelEigenvalues	Estrac	tion Suma of Squa	indi.ostings	Retation Se	ans of Square	siceserje	7			
	Component Telef	Richarance Camul	ative %. Tetal	P6-0133 sander	Company N	Tetal N	stourance	Correlative	6			
10	1 850	27.439	27 4 88 3.66	2 22.438	21.436	3.105	24.012	2411	2			


Now let us see the output. So KMO is good, is above 0.5. This is significant.

(Refer Slide Time: 07:45)

Yow Dati Jeanston	a inset femal dealer			na Laman	5 A40.945	WYON	File	_		1		-				
	🛄 Ir al 🖡		* =	6	96	- 1P			+	۰.	÷	8.0	1 T	10		
tput .	XIII - Product Line	471	731							_						_
Factor Asalysis	X17 Phile Feixering	528	3.50		392											
+ if T Fite	X8 Product Os alth		527		534											
- 40fas	X0 - Technical Support		874	680	814											
And English Callson	x14 · Warterly & Crains x7 · E-Commerce		154	423	- 366											
(a) KMO and Burlotts (a) Communities	Acidics	451	- 845	47.1	355											
La Fafa Variance Lig	315-New Produits					923										
Qi Dompenant Math Qi Nolah J Compone Qi Dompenant Tram	Extraction Wathout Philocolati a. Secondoniente extraction		Anahdia.													
		Related Cor	round Na	frix*												
				centioners												
	XID- Celtury Szest	945	2)	4	5										
	X9 - Compliant Receivers	928														
1	X15- Cede: 6 Billing	.886	200													
	X6 - Product Outlity		823													
	X12 - Price Flexibility	.480	- 758													
	XIII - ProductLine	-98	714													
	X12-Compatitive Pacang		- 588													
	x12: Saresfelle brage			900												
	x7-E-Commerce Activities			875												
	x10 Advertising			123												
	X0- Technical Supecial				235											
	XIA - Wanzely & Claima				332											
	x15-hewPrickits			5 11 15		981										
	Erzatten kettod Prinopale			1000	and the second											
	Relation Mathed Version with a Rotation converged in 5		A APPROX STATE		e clici k Burn											
	a realized twee parts of	in the second														
		t Transform														
	Component 1	2)	1	5									GV 1	 	_

Now coming to our, and I had explained you about the role of communality also, right. So now look at the rotated component matrix. So if you look at this matrix, slightly let us go up.

(Refer Slide Time: 07:58)

So if you look at this matrix, it looks little more complicated. There are lot of cross loadings. That means 1 variable is loading on to several factors. Factor 1, factor 2, factor 3, factor 4, factor 5. But if you look at this now, when we have rotated, now they are quite neat. The variables are loaded into 1 and only 1 factor. Only in few cases, there is a cross loading. For example, in this case if you see, there were 3 cross loadings or sometimes, this case is even 4.

But here if you see when we had done maximum there is a cross loading of 2 in to 2 factors which is not very, okay, it is fine, right. So what we do in here, now you see, you have got a factor. So factor 1, factor 2, factor 3, factor 4, factor 5, right. So all these 5 factors, now suppose you see, now I have got a 0.987 but it is a single variable, right.

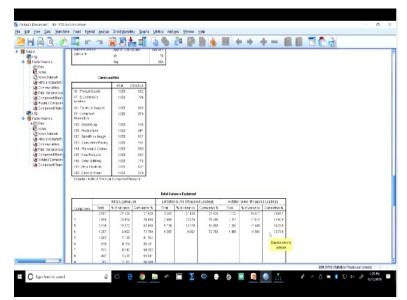
(Refer Slide Time: 08:54)

2		10 11	1			¥ 🔛	4	Di	0	6 46													
																					sbie 1	3 e' 13 V	lari
	Production ality	Econmerces I divites	fechnical sup perf.	Camplaintras extien	Advertising	Productive	Salada co	eim Campetà icing		Navartyda I	irwproducts	Oderbiling	Priceflexibil	Daive	ryspe .			vir	10		ver		
1	85	39	23	ES	4.8	- 41		60	58		43	6	5 5	1.	37								
7	82	21	51	12	34	71	9	31	5.8	5.5	41	3	5 4	3	49								
3	92	34	5.6	6.6	6.4	7.4	1	6.8	4.6	6.2	4.5	6	4 4	0	45								
4	61	3.8	7.0	3.7	4.7	201	Actual Nonivol	a forence				×i	3 4	1	30								
8	90	3.4	5.2	4.6	2.2								4 3	6	35								
6	65	2.8	3 !	4.1	4.6	6 Br	e-os Pane	IDAL DALLOAD	195				4	3	33								
1	6.9	11	50	2.6	21	(An	NUTR.		10	0.apity		- 1	4	2	2.0								
8	62	13	3.9		4.6	1 .	Carelator	n atto		Lantatest	actor selution		6	3	37								
9	5.8	16	5.1	6.7	37	0	Evyariance	reach.		Sores bled			6	1	4.5								
13	64	4.5	5.1	E.1	4.7							- 1	5	8	44								
11	87	3.2	4.6	4.8	2.7		had .						3	1	4.0								
12	61	4.9	6.3	2.9	4.4	0	Based on 8					1	4	9	32								
13	95		6.6	6.1	6.0			es gaester tha	1				4	6	4.6								
18	92	19	5.7	1.5	24			He' Iffactors	-	_			2	6	42								
15	63		4.7	6.9	4.5		Factors to	0.010	4				6		52								
15	87	3.2	4.0	- E8	3.2								3	9	45								
17	57		6.7	6.0	3.3	- YL						_	6		45								
13	5.9		5.5	3.2	3.5	Ma	omum terat	I one for Conve	er;en:	e: 25			5	8	4.8				_	_		_	_
13	5.6		51	6.4	3.7			Centrus	l n	rcel Hield	13	2	6		172	Д						×	
53	91		3.6	64	63				_	_	-	1			- ¢	÷						^	
28	52		7.	5.5	39	43		5.0	34	71	46												
22	9.5		6.8	E.9	6.4	8.		78	4.5	6.1	€.5				1 3	2 3	1		6		8	9 (0
23	85		7.4	£ 1	35	73		47	3.4	61	EI												r.
28	93		2.6	1.2	27	73		45	52	8.4	4.2												
25	6.0		6.5	4.7	35	53		63	10	6.5	2.4					1 1	%						
25	61		6.6	6.1	4.0	31		63	11	£ 1	17												
"	8.5	10	7.2	a	41	76	K	17	18	63	62	6	1 1	8								3	
DataWarw	Variable View																					1	

So if I want, I can run this in a slightly different way. What I can do is, I can go to analyze, dimension reduction again, and now this time, you see since I had, let us go back to the output. Look at the amount of variance explained here.

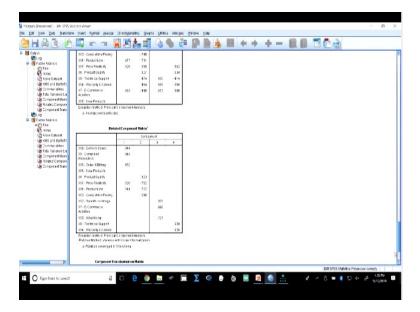
(Refer Slide Time: 09:05)

1 🖻 🔮 쒿) 🛄 In 📶	💥 🖄 📥 🗄		. 🤃 🛛		. + +	+++	- 8.8	1 🖬 💽 🚖	
4 50 50 Status a 50 Status a 50 Status 50 Status	a Perpendinta Orde /PRINT ENITEAL E /PERMAT SORT BLA	ty-Bity Scone co rolling Friedin an ExtMaction For 20(1) DEFATE(21) E0(1) DEFATE(21) E4(3) X	sibility Del Atlon		et Complaintee	olution Advert	ining Froda	ttin Salesto	ronimage Competitizegrining	¥ar:antyt]a¥a
	Factor Analysis									
	(bitsret]) civves	ent of cellingeets	planos secue	ey 2019/04. 2.	K. Payekhi51-	21482.004				
	Karser Mayer O kin Maas									
	Ganteria Teator Spheric de	App or: CH-Square ct Seg	048.083 10 000							
		rattes								
	Control									
		rital Exterto								
	X8 - Product Oala Hy X7 - E Commune Activities	rital Exhants 1.000 E8 1.000 73	4							
	X6 - Product Quality X7 - El Commerce	1.000 .83	4							
	X6 - Preduct Quality X7 - El Commissio Activities X8 - Technical Support X9 - Compliant	1.000 RJ 1.000 73	4 8 3							
	X6 - Product Quality X7 - El Commerce Activities X8 - Technical Support	1.000 81 1.000 74 1.000 83 1.000 83	4 8 3 2							
	36 - Predad Osalih X7 - E-Commisse Actidies 38 - Technical Support 39 - Compilent Resettion	1.000 81 1.000 74 1.000 83 1.000 83	4 8 2 5							
	36- Product Osailth XT- 5- Commission Activities 38- Technical Support 39- Compile at Reservation X1D- Administra	1.000 83 1.000 73 1.000 83 1.000 83 1.000 83	4 8 2 5 2							
	X6-Preduct Quality X7-D-Commission Acceleta X8-Technical Support X9-Compiled Reset/Born X1D-Advertision X1D-Advertision	1.000 81 1.000 72 1.000 85 1.000 85 1.000 85 1.000 85 1.000 85 1.000 85	4 8 3 2 5 2 1							


Now the amount of variance explained in this case is about 81% which is sufficiently high.

(Refer Slide Time: 09:09)

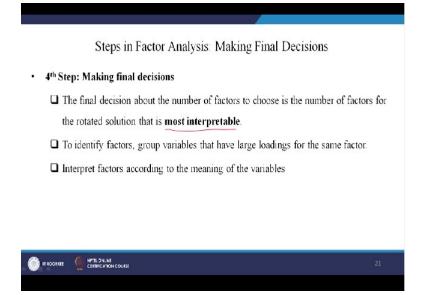
13 M 12	1000					Sun Taxon					400.400	-	
1 2 2	1 III. III.	2			0	(† 🗗			H. H. H	* -	U. D	104	
	Falses Marrie	C k - Mara	ue of Sampling 4	damu/r	569								
Chi Alahisis	BartaTo Teal		A++ 0. C1-1		18 26 2								
1Fite	Spherick		a		18								
Nove Dataset			Sig		000								
KIND AND BORNEL													
Communiaitilies Fatal Vanance Exp		Correct	rattes										
Component Name				012104									
Notate 3 Company Component Trans	X6-Philipping		1.000	634									
Lot per alle le arte	XT-E-Comm Activities	erce	1.000	.738									
	X8-Technica	Support.	1 000	693									
	39-Compisit Research	it.	1.000	.892									
	XID-Advertis	22	1 000	575									
	XII: Product	Line	1.000	642									
	X12- Salaste	ce Image	1.000	831									
	X12-Compet	itina Paicing	1 006	592									
1	X14 W3 Y07		1.000	. 828									
	YIS- New Pri		1.000	171									
	X16 - Crise: 8		1 000	773									
	X12 Proje Fa		1.000	692									
	XIB-Dehnry		1.000	\$25									
	EXTRACTOR FOR	nod Phres	al Camponent A	karyn k									
					taava	lance Explained							
			nts Egima	185	Estudio	n Surve of Squar	ed Loodings	fictato:	Sums of Equar	111130115	1		
	Component	1chil		Carrolates &	Total	% of Variance		Total	% photosarce				
	12000000	3507	27.433	27.439	3.967	27.459	21,458	3.105	24.112	3411			
	2	2,950	23 959	58.458	2.990	23 659	50.490	: 301	17.748	(1.05			
	P	1718	19.173	61 568	1738	13.378	61 804	2.362	17.999	19.25			
	*	1.207	2902	73.169	1.257	9.502	72.786	1.951	14.395	13.52			
	5	1005	7.733	61.502	1.005	7.323	BH 500	1 121	7911	91.50	2		
1	4	615 6/1	1753	\$8.56									
			1742	58.407	·			-	Talmara .				Statution Processor is reach


So instead of 5 factors, if I make it 1 factor, will it matter or will it make some difference. Let us see? So I will now extract only 4 factors. So what I am doing is, I am taking 4 factors. And I will run this again, okay.

(Refer Slide Time: 09:31)

Okay, fine, everything remains the same. So now you see my variance has reduced from 81% to 73.7, 74, almost 74%, right. Has there been any change in the communalities? You see one of the communality has become very poor, new products, let us say, let us see that, okay.

(Refer Slide Time: 09:50)



And let us look at the rotated matrix now. So if you look at the rotated matrix, right. So the rotated, you see the new products is not visible. Because it is now less than 0.3. So it is much, it has a very low communality. It is not explaining to the factors. So it is automatically not visible to you. It is less than 0.3 that means, right, the loading which you have taken, putting those values into the SPSS.

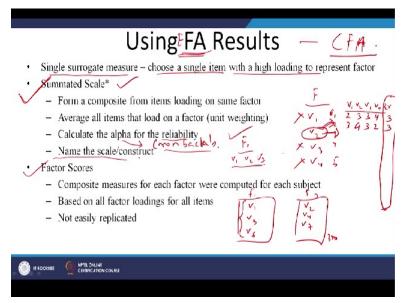
Now look at it. Now we have got 4 factors. Are these 4 factors now explaining slightly better with 74% of the variance. If yes, then you should choose this model instead of the other one, right. So this is what, I am not forcing you to, asking you to do anything. I am just giving you an option. So you had 81% with 5 factors, but 1 factor was explaining only, there was only 1 variable in that.

So instead of having 1 variable, what we did is, we tried to see whether if we reduce it to 4 factors, will the variance decrease too much. If it is not too much and it is sufficiently explaining, then why not do it. And in this case, it happened, right. So after the analysis is done, now let us move to the PPT.

(Refer Slide Time: 10:58)

So the final decisions, how do you make? The final decision about the number of factors to choose is the number of factors for the rotated solution that is most interpretable. So you can, either you take it from the, through the eigenvalue or the extracted number of factors, that is up to you. To identify the factors, group the variables that have largest loadings for the same factor. So we understood there also.

Interpret the factors according to the meaning of the variables. Now let us go back to the output file, right. So the output is here. Now let us see. Is there any relationship? That is what your job is now. So let us see, there are certain variables loading into factor 1. So what are they. Delivery speed, complaint resolution, order and billing, new products. New products is almost gone. So product quality.


Product quality is also not here. Why? It is in the second factor, right. Price flexibility, product line. So now you have to see whether there is any relationship among the variables which are loaded into factor 1. Similarly what is the relationship that is among the variables loaded into the factor 2. What is the relationship for example to the factor 3. Sales force image, E-commerce activities, advertising.

So most important is something linked to the promotional image, something, right. And this is, for example, if you see technical support and warranty and claims, more into the service part,

okay. So now you have to find the name. You have to suggest a name to the factor, okay. That is your job. So interpret the factors according to the meaning of the variables.

So as you saw the variables, you have now understood that there is some relationship among these variables. And on basis of this relationship, you have to give a name to this factor, okay. So now after you have understood this, now let us see what you can do with the factor analysis results, the exploratory factor.

(Refer Slide Time: 12:50)

We are talking about the exploratory factor analysis. Generally factor analysis when you say the word factor analysis, you mean the exploratory factor analysis. Because there is another type of factor analysis which is separately done, I mean, which is called as the confirmatory factor analysis which you will be doing later on, okay. Now once you have done with this exercise, then there are some options in your hand. What?

First of all, you can select a single surrogate measure. Now what does it mean? Choose a single item with a high loading to represent the factor. Now suppose in that factor, let us say, in the factor, there are 4 variables, right. So 1 of the variables you see let us say v_2 has a very high loading with this factor, right. So you can select this particular variable to represent this factor, that is also a, that is a possibility, right.

But it has own limitations, sometimes, why it has limitations? Because it is not good to say that this factor should only be representing, this variable should only be representing this factor and we should, we will completely overlook these 3. That is not a right way. That is, to me at least personally I think. The second way is that you create a summated scale. Now what is a summated scale?

Now the values, for example, v_1 , v_2 , v_3 , v_4 . There are 4 variables. Now these are the respondent 1, 2, 3, 4, 5. Let us say you have 300 respondents, okay. So the scores given by each respondent, whatever score they give, let us say, right, the values. So let us say, any value they give, let us say, 2, respondent 1 has given to v_2 as 3, 3, right. Then let us say 4, suppose. Then you create a new column which is, let us say, summated v, right.

Give a name or something and then, what is the average of this? 3+3+4+2=12, 12/4 is 3, right. Similarly for respondent 2. Suppose 3 4 3 2. Again it is 3. So you can find out, right. So take this, take finally this column and use it later on. We can use it. So what it says? form a composite from items loading on the same factor. That is what we did. Average all items that load on to the factor.

Calculate the alpha for the reliability, okay. Now this I have, I will have to explain you. What is this alpha and reliability, right? So we use a term called Cronbach's alpha. So it is an inter item, Cronbach's alpha, right. It is an inter item correlation. That means what is the correlationship among the variables within a certain factor, right. So we assume that within a certain factor, let us say, this is a factor 1.

So assume it is a house. It is a particular residence or house. So we can say that the members, let us say v_1 , v_3 , v_6 , right. And here v_2 , v_4 , v_7 , let us say. So we can say that the members within this house or this factor, they should be having strong correlationship, right. Similarly, the variables within this factor, they should be strongly correlated among themselves. But should they be related to each other? No.

That is why most of the time you say that we need an orthogonal rotation because we feel that

the factors are uncorrelated to each other, okay. So but there has to be a strong correlation. So this strong correlation if that is there, then that means what? We will be measuring what we are intending to measure, right. That means the value of what we want to measure that will be more or less repeatedly becoming the same.

That means it will be repeating the same result again and again. So most of the variance will be explained. So here we, in this condition, when we say this, right, so we find this a reliability. So reliability, how to measure, we will see. So that is a, as I said the Cronbach's alpha has to be measured, okay. So now you name the scale or construct. Now let me show you how to do the, let us say, measure, right.

(Refer Slide Time: 17:09)

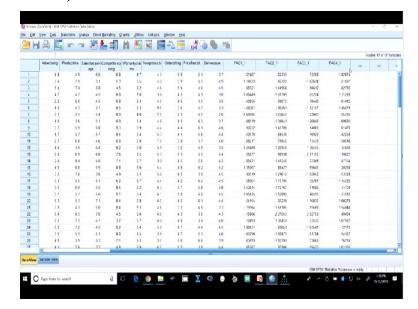
		10.01	81 a i	1 H	*	- 4	1	40	6 *6									
	Protectra alts	Economica Te	choicalman Car	nelaitine At	National Prote	tire Sal	aderein Car	in net blocked We	anant cla bie	markets C	debilies	Privatura	Deliveryane		1	1.00	Vable: \$3 p	(12)
		divities		rader			ige	icing	109		,			494	VBF	104	-14	
	85	3.9	2.5	6.8	48	45	6.0	58	47.	4.3	51	1 a	51 37					
2	82	27	5.1	12	34	79	31	5.8	\$.5	4.0	31	6 ÷	13 49					
3	92	34	5.6	6.6	5.4	() Friel	A VALUES S	tatistics .			× 5.0		10 45					
4	61	3.8	2.0	3.7	4.7						4.3		1 30					
6	90	3.4	5.2	4.6	2 60	Descrip			Inter-Bern				36 35					
6	65	2.8	3 '	4.1	4	DIN (CONVIX			1	17 33					
1	6.9		5.0	2.6	100	1			Counting	xile .	(in)		12 20					
8	62	11	19	11	4 1 12	0.943	e filen selen	4			_ [53 37					
9	58		5.1	6.7	3 8 15	Summa	(ie)		ANOWTER	14			51 45					
13	64		5.1	E.1	4 🖉 KT								58 44					
11	87	3.2	4.6	4.8	2 8 K13				Ofwa			37 40						
12	61	4.9	6.3	2.8	4 P K14		WDFC13		Ofreena	A CREATE AND A			19 32					
13	95	56	6.6	6.3	6 / KTE		waters		O Cectran				16 44					
15	12	19	5.7	1.5	2 🖉 K 16	Lea			6 cuits	ca-signare	-1		26 42					
15	63	4.5	4.7	6.9	4 your	E Hoe	ing's T-square		C fighter	st of additively			52 52					
15	87	3.2	4.0	CI.	3		fass corveisão	r coefficient					39 45					
17	57	4.0	6.2	6.0	3 Board ID		Two-War	they P	Tes 000		1.00		52 45					
13	5.9	4.1	5.5	3.2	3						2221		58 48					
19.	55	3.4	5.1	6.4	3	Ere	adence adenva	1 85 %	annañs (50 45					
20	91		3.6	6.4	6.1		(Car	titue Care	al Help		4 5		51 dit					
21	52		7.1	5.2	39		-				3.7		19					
22	9.5		6.8	£.9	6.4	83	7.8	4.5	6.4	£.5	4.3		30 43					
23	85	3.6	24	£ 1	3.5	73	47	3.8	8.7	6.0	4.8		34 40					
28	93		2.6	1.2	2.2	12	45	5.2	8.4	4.2	6.7		4 45					
25	60		5.0	4.7	35	53	63	10	6.5	2.8	6.7		53 d.D					
25	61		6.6	6.1	4.0	3.8	5.0	71	£ !	3.5	5.6		56 39					
38	85	1.0	7.2	1	41	7.6	17	18	6.4	6.2	51		16				-	-

So take one of this. For example, 12, 17 and 10. Let us remember this, okay. So we go to this file. So how do you measure reliability? Go to scale, reliability, right. So 12, we will take 12. Then it was I think 17, okay and 10, okay. So now we want to see the alpha. So you can see there are several things out here. So we do not want to do anything. You can even check. Suppose you have large number of variables, 7 or 8 variables.

And because of some variables, let us say the entire reliability is coming down. So you can even use this, scale if item deleted. So what it will do is, it will reduce, it will deduct those variables which are contributing to the poor reliability of the study, okay. So that is a very nice thing. But I do not want anything at this moment. I just want to see the alpha.

(Refer Slide Time: 18:09)

日间区之) 🖾 ビン 🦉 新聞 🖓 🌒 🦊 🖓 🗎 📥 🗮 + + + - 🗰 🖩 🗃 🕐	<u>a</u>
Output Cutput	Composer Transformation Marine	
Factier Asalysis	Composed 1 2 3 8	
C Tay	104 00 476 101 104 00 476 101	
12 NOVE Dataset	2 401 775 447 47	
WE KNO and BARNETS	8 A14 301 510 (4)	
Communities	4 - 209 802 552 500	
🖓 Fata Variance La	Extraction Nethod Principal Component Analysis	
Gi Compensat Barn - Gi Rotate : Compens	Retation Ministry Venimos with Kuster Normalization	
La Component Trans		
100	RESTARTOITY	
Factor Asalysis	/WAENALdS-Selesforceimage Priceflexibility Advertising	
C fite	(STALE) "ALL VARIABLES" ALL	
US Artive Dataset	/HODELFALHAA	
CAN HAND AT IT BORNETS		
B Communitation	🕈 Reliab lity	
Tata Variance Cit		
Component Maria	(DetaSet)) CriVeerait F CulliDeektop14000 January 201910r. C. R. Payek1031-525eEc.mc+	
Component Trans		
Log	Scale: ALL VARIABLES	
+E) Fas	SCHE: ALL VARABLES	
- C victas		
Un Artive Dataset	CaseProcessing Summary	
B 😸 BGRD ALL VAR A		
Casa Praces	Catest Veld 100 1011	
- Gil Residente Sto	Evident* 0 8	
	Total (CD 102.3	
	a Liatwas da Man basic on al	
	Notables in the procedure	
	14	
	Pletadelity Statistics	
	Constaure	
	Alifea Stat Bres	
	678 3	


Now you see, the Cronbach's alpha in this case, the number of items and the Cronbach's alpha is saying 0.67. So 0.67 is as, earlier it has been said that this reliability value should be 0.7 or more. But researchers like for example, if you go to Anderson's multivariate analysis. In his book, he has said if it is even above 0.6, then it is fine. Because in social science, the reliability measures do not, are not, will not be as high as you find in basic science, right, like engineering and medicine.

So in this case, we will try to see whether it is sufficiently above 0.6 or around 0.6 or not, okay. So this is the second method and this is the, one of the most preferred method now a days. The third method is also good but this is a preferred method, right. So now remember the third method is the factor score method. Now factor scores I had shown you I think that if you go back.

(Refer Slide Time: 19:05)

	and the second		and the			i 🖷 🗛											Vable \$3 p	17 House h
	Protocire all	Formation	Tactoicalmus C	annelaistean A	Andrica	Productive Salad	Provin Farme	atten Mar	ant dis bleamen	teres (C)	darbilizen Pri	atachi De	Garage		1		1200.130	Ta raises
		divites	per	radara					na					war	VBI	VIN	-10	- 19
	8	5 39	2.5	£B	4.8	-19	6.0	5.8	4.7	4.3	6.0	51	37					
2			5.1	12	34	79	31	5.8	\$5	4.0	3.9	4.3	4.9					
3	9		5.6	6.6	6.4	7.4	5.8	1.5	6.2	4.6	64	4.0	45					
4	6		7.0	3.7	4.7	47	45	3.8	7.0	1.6	43	41	3.0					
6	9		5.2	4.6	2.2	1 Carnet Gar	15	2.0			**	36	35					
6	6		1.	4.1	4.0	Career a sta					1	47	33					
1	6		5.0	2.6	21		(a factor)	Analysic farms	Sceres X	Detto	10000 L	47	2.0					
1	6		3.9	4.8	4.6				2964 - 2048			6.3	37					
9	5		5.	6.7	37			as variables			cton.	61	45					
12	6		5.1	E.1	4.7		419	945		Rot	stipe	5.8	44					
11	8		4.6	4.8	27			Begression		- fc	inta.	37	40					
12	6		6.3	2.3	4.4	1		Bartlet		Cel	om .	49	32					
13	9		6.6	6.1	6.0	-	9	Andersce-Rub	én -			46	64					
18			57	5.5	24		TI David	a man and	-			56	42					
15	6		47	63	4.5	-	_			1	-	62	62					
15	8		4.0	63	3.8	-	Card	Caroli	Harts			39	45					
1/	5		6.2	£0 1.2	33		04 P	ante Terrent	Cancel Heg	5		62	45					
13			55		35	4	and an other division of the local divisione		· · · · ·	-		58	4.8					
19	5		36	6.6	37	37	21	14	5.5	11	35	60	45					
22	5		7.	6.2	3.6	53	50	34	7.0	67	33	49	33					
21	9		6.8	6.9	6.4	83	78	4.5		6.5	43	30	43					
22	9		8.5 7.4	6.9	3.5	83	47	37	6.2	6.0	4.8	34	40					
23		3 24	2.6	1.2	22	12	45	52	8.1	4.2	6.7	44	45					
25	6		53	47	35	53	45	10	6.5	11	47	53	40					
25	6		66	6.1	4.0	19	53	7.5		17	56	66	39					
27			72		41	76	17	18	6.5	67	61	16	44					
	3																	•
ata Viene	Nanable Week																	

So you can do one thing. You go to the exploratory factor analysis here, right and see scores. So what you can do is, there is a method to locate this, you can save the scores, right, factor scores. **(Refer Slide Time: 19:17)**

So if you go back to the data set now again, you will find that 5 or 4, I do not know how many, as the number of factors, the same number will be the factor scores. So 4 columns have been inserted into the data set. So these 4 columns are nothing but called factor scores. They are the scores which are representing each factor. Now this factor scores, you can use it for your study in some other studies, may be in some regression or some other study where you want, insert it as an independent variable, right.

But also remember, the same thing could have been done had you taken the summated scale. So because in summated scale also there were 4 factors. So you only did, what you did was? You took the variables only linked to that particular factors. So let us say, factor 1, let us go back to the slide. So in this case, the difference between the summated and factor score is that, while calculating factor score, the software or using, is taking, considering all the variables, right, all the variables.

But in summated scale, the difference is, while calculating summated scale, we are using only those variables that are linked to that particular factor, that is the difference. So if you are using factor 1, let us say, v_1 , v_2 , v_3 are the 3 factors, then only these 3 will be considered. And v_4 , v_5 , v_6 , v_7 , v_8 , v_9 are not to be considered.

But while calculating the factor score, all the variables are considered to calculate the factor score, right. And obviously the weightage is more to the ones which are having highest connection with it. So these 2 methods but most of it, now it is, if you see, mostly the summated scale is used, right.

Valid	ity & Reliability
 Validity "The soundness of measuring what it is d 	or appropriateness of a test or instrument in lesigned to measure"
Reliability	$ \begin{array}{cccc} & (\text{Vincent 1999}) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
"the degree to which when applied in the so	h a test or measure produces the same scores ame circumstances" (Nelson 1997)
II ROORIXEE 🧕 NITEL DN.INI CENING ATION COURSE	23

(Refer Slide Time: 21:00)

Now coming to this concept of, we just spoke about validity and reliability. What is this validity? And what is reliability? So validity as it says, what does it mean? The soundness or appropriateness of a test or instrument in measuring what it is designed to measure, right. Who said? Vincent 1999. He says that whether an instrument is actually measuring what it is intended to measure or it is not measuring.

So if it is doing the work, then it is called a valid instrument, right. On the other hand, he says, there is another term which is important for any construct or factor which needs to be measured, is that. The degree to which a test or measure produces the same scores when applied in same or other, different other circumstances, right. Then we will say it is reliability. Suppose if you are going to measure your weight, for example.

So you measure your weight in 3 different instruments, right. For example, a weighing machine or 3 different types of weighing machines. Then if they are, if it is a weighing machine, then we will say it is a valid instrument, correct. But then suppose let us say, let us do one thing. If you go to weighing machine and check your weight first, first time. Then you again check your weight and you again check your weight.

And suppose, the deviation in the weights is not much. Let us say in first one you were, let us say, 80 kg. Second one, you were 79.5 kg. Third one, let us say, 79.8 kg. Then we can say it is more or less a reliable machine. But suppose you go to another machine and it gives you 80, let us say, then 78 and then 83. Then it is a not reliability machine. So that is what it says, right. So our measure, our construct, our scale or factors have to pass this test of validity and reliability, okay. Now this is the example you see.

(Refer Slide Time: 23:00)

Now target A, poor validity. So it should be hitting here, right. But it is hitting somewhere here. But it is a good reliability. Why? Because all the values are more or less giving the same result again and again. This case, poor validity, not hitting anywhere in the center and even reliability is not good. Because it is haphazard, right. Now look at this. This is a case of a good validity, right and also a good reliability, okay. So this is what we are understanding from the validity and reliability.

(Refer Slide Time: 23:30)

	Reporting
•	If you create a factor based scale, describe the process
•	Factor analytic study, report:
	- Theoretical rationale for EEA
	- Detailed description of subjects and items, including descriptive stats Voucaule
	- Correlation matrix
	 Methods used (PCA/FA, communality estimates, factor extraction,)
	- Criteria employed for number of factors and meaningful loadings
	Validity Souther > 0. (V. V. V.
	MPTL SVIJM CERTIFICATION COLISE

And I showed you how to find out the reliability, right. So when you talk about reliability, you can do it through a Cronbach's alpha which should be, the values should be above 0.6, so should be above 0.6. If it is above 0.6, we say it is decent enough, right. This also gets affected by the

sample size, okay. So the other thing is the validity. So now, for now, we will talk about, when I talk about validity, I will talk about face validity or content validity, face or content.

That means what? What we do here is, we try to take the opinion of experts and see whether the instrument that I am using, is this instrument good enough to find out what my objective of the study is. So to do that, we do a face validity. That means the instrument, we are checking the instrument through some experts and saying kindly check it for us and say whether I have used the right questions or the right instruments or not, right.

Then you have content validity, face validity. Then you have other validity, types of validity also. Nomological validity, discriminant validity, right, construct validity, convergent validity. So what is convergent validity? When the factors, as I said, factor 1 has got, let us say, v_1 , v_2 , v_3 . If the items, the correlation among this items is high, let us say above 0.7 or more, then we say it is a strong correlationship, right.

That means we will say that there is a convergent validity. So convergent validity is also measured through the correlation among the variables, okay. Now this is what I will continue with the reliability and validity in the next section also when I will get into confirmatory factor analysis, okay. Because there it is more deeply explained. Now how do you report. Finally you have written everything.

You have done a factor analysis. Now you have to report. How do you report? So if you create a factor based scale, describe like this. So the report is, what is the theoretical rationale for EFA. Why did you do EFA? Suppose you say well I did a study to understand the suppliers behavior. So to understand the suppliers behavior, I needed to do a factor analysis. I had asked several questions, there were several items in my study.

And when I had too large study, number of variables, the size of, the number of variables were very high, so I needed a exploratory factor analysis to squeeze it or to reduce it to a few meaningful factors. Then detail description of the subjects. So what is the questions you asked and what are the factors that were generated, you need to explain it very clearly, okay. Then also

include the descriptive statistics.

So the description, like the mean, the number of occurrence, the maximum value, minimum value, the standard deviation, also like that. Show the correlation matrix, why? It will tell you which variables are correlated with other and in which way, okay. Then you say what did the, what was the method you used? Was it the principal component analysis, was it a common factor analysis, right.

So I had already explained the principal component analysis and factor analysis. So and then you can also write the communality estimates and the factor extraction if it is required. You can omit this part, right. And what was the kind of rotation you had used to bring in some sanity into the study. Suppose your study was not behaving properly or it was not giving a good result. Then you should do a rotation.

Otherwise, you need not do a rotation. Suppose you found that most of the variables are rolled into only 1 factor, then we will do a factor rotation. So which type of factor rotation did you do? For example, a varimax, or equimax, promax, whatever. And what was the criteria employed for the number of factors. For example, as I said, so we will not take any loading less than 0.3, right. So that is a cut-off value.

So you have to mention that. And the meaningful loading. So any loading which was above 0.5 was only considered, right. So 0.5, 0.3, whatever it is, right. So saying all this, then you have to write it in your research report. So then finally you will say after doing all this, I got 3 or 4 factors and this factors explained; one thing is not given, the variance.

During here, how much variance in the study was explained through this factor analysis. That also you have to mention. When you do this, right, then I have already explained how to do the, conducting the factor analysis in SPSS. So need not go further. So when you write this, then your factor analysis, exploratory factor analysis is over.

So in the next lecture, what I will do is, I will continue with a new technique which is called the

confirmatory factor analysis, right. So confirmatory factor analysis is also a very important tool. Now it is being used largely in various researchers. So what does it mean and how it is done, I will explain in the next lecture. Thank you so much.