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Welcome to the course Business Analytics and Data Mining Modeling Using R – Part 2, so in
previous lecture we started our discussion on cluster analysis, so let’s do a small review of what
we discussed so far.



So we talked about cluster analysis and you know the usefulness of this particular technique,
the  applications,  the  scenario,  we  also  talked  about  the  main  idea  we  discussed  that  to
characterize the clusters in ways that could be useful for the, for generating some insides, so
that being the main idea. 

So then we also discussed this particular dataset, breakfast cereals and we did small exercise in
R studio as well, then we talked about two types of clustering algorithm, hierarchical methods
and non-hierarchical methods. We understood when these methods could be useful then within
hierarchical methods we talked about agglomerative methods and divisive methods.



We also  touched  upon  non-hierarchical  methods  and  through  an  exercise  in  R  studio  we
understood the main, how these methods cluster analysis method are typically implemented, we
understood that distances between observations, so those become the major part of you know
all cluster analysis algorithms.

So we also started our discussion on the types of distances that we need to compute, in cluster
analysis distances between two observations being the first one, and the distance between two 



clusters being the another one, so let’s start from this point, so we talked about how distance
matrix can be also be conceptualize or thought of as the dissimilarity measures, so many of the
you know popular similarity measures can be used because they can easily be converted into
dissimilarity measures, and therefore can be used as distance matrix. So the kind of matrix that
we are going to use as distance you know to measure distance for our cluster analysis would be
the directly based on you know distance kind of formulas or would be based on similarity
formulas.

So we started our discussion with this you know two observation,  we can think about two
observation, first one observation I having coordinate as XI1, XI2 up to XIP, then observation J



having coordinates XJ1, XJ2, up to XJP where P is the number of variables to be measured. So
P is acting to you know what we use to you know have in our supervise learning techniques, the
number of predictors, so the P essentially is the same, however we don’t have any you know
dependent  variable  as  such  in  unsupervised  learning  methods.  So  we  denote,  we  use  this
notation DIJ to indicate the distance between two observations.
We also talked about some common properties that has to be you know satisfied for a metric to
be  defined as  to  be  accepted  as  distance  metric,  so these  properties  are  nonnegative,  self-
proximity, symmetry and triangle inequality, so these properties as we discuss in the previous
lecture have to be satisfied.

Then  these  are  some  of  the  popular  metrics,  Euclidean  distance  metric,  correlation  based
similarity, statistical distance, Manhattan distance, maximum coordinate distance, so these are
some of the matrix that we are going to cover in today’s this particular lectures, this particular
lecture we also, we’ll also start our discussion on you know few metrics about categorical data,
so  let’s start  with  the  Euclidean distance,  so  we were  able  to  discuss  to  some extent  this
particular  metric  in  previous  lecture as well,  so Euclidean distance as we know this is  the
formula, this being the most a popular distance metric formula as we can see in the slide, this is
as we talked about this is very scale dependent formula, so any particular variable which is
having or carrying larger scale will obviously dominate the distance competition, will obviously
dominate the distance value, therefore we need to you know overcome this particular issue, so
one solution is to normalize or standardize the, you know standardize all continuous variable,
right, so when we talked about standardize and latest computing statistic code and which is
nothing but you know subtracting the actual value by mean value and dividing by standard
deviation. So in that fashion we can bring all the numerical variables into similar kind of a
scale.



We did a small exercise in R studio for this as well, so let’s discuss some other metrics, so what
are the other distance metrics for numerical data? So first before we start with them few more
points, selection of distance metric why we need? So you know some people might think that
we have Euclidean distance metric why not use it all the time, so there are few reasons for this
why sometimes we might require to use some other metrics, so few points have been noted
here, so selection of distance metrics plays an major role in cluster analysis, typically you know
which particular metric is going to be suitable for which kind of problem, which kind of data
set and situation you know for that you know domain knowledge becomes important part, so
depending on the domain knowledge different distance metrics might be suitable for clustering
task as such, so variables being used in this analysis they’re entered relationships, types of these
variables  whether  the  variables  are  numerical  in  nature or  categorical  in  nature,  you know
whether they are ordinary, nominal or numerical, so whether the out large, whether they are any
out large and the data set, so all these things have to be kept in mind, have to be analyzed while
deciding which particular distance metric to be used for clustering task.
Clustering you know we also have to think about you know sometime whether the clustering is
to be done using a small number of dominant variables or multiple variables are to be used, so
this kind of scenario will also decide, will also play a role in terms of what distance metric we
would like to use. 



So let’s move forward, so some of the scenarios that we talked about, some of the reasons that
we talked about we’ll be able to understand them better after these few points, so these few
points are related to Euclidean distance and how it might not be the preferred metric in some
scenarios, so what are these scenarios? So when we want clusters to be created, mainly using
some dominant variables and limit the influence of other variables, so this one scenario where
Euclidean distance metric might not be useful, because we would have to do unequal weighting
and instead of normalization, so for you know Euclidean distance metric to remove it’s scale
you know dependency we normalize,  however  so that  you know essentially weighting you
know kind of equal weighting kind of scenario in Euclidean distance metric, however in some
situations,  Because we would like to you know account for some dominant variables a  bit
higher  than  some  other  you  know, other  variables,  so  in  that,  in  those  situation  unequal
weighting you know becomes important, so therefore Euclidean distance metric might not be
the preferred distance metric, because after normalization it would not be able to you know do
that.
The other scenario is when variables are strongly correlated, so as we know that, as we this
particular aspect we have discussed in our previous course as well, so Euclidean distance metric
cannot account for correlation you know between variables, so there is another metric called
statistical distance metric or Mahalanobis you know distance which we have discussed in the
previous course as well, so this metric is a better choice in comparison to Euclidean distance
metric, because it can account for the correlations between variables. So we’ll see how this
particular metric is going to be useful in such situations. 
In other scenario where Euclidean distance metric might not be preferred is, when outliers are
present and removal of these points is not desired, so as we can understand that Euclidean
distance metric if  the outliers are  present then they can significantly influence the distance
computations,  and  if  we  you  know for  some reasons  because  those  points  might  be  very
important for the analysis as such, analysis as a whole so therefore we might not be interested in
deleting or removing those points, so therefore Euclidean distance metric in such a situation



might not be a preferred choice. So we can use you know because, we can use some other
distance metric which are robust to these kind of situations, outliers, presence of outliers, so
Manhattan distance is one which could be used, so what is Manhattan distance? We’ll discuss
that, that in the, this particular lecture itself.
So  we  talked  about  these  few situation,  so  when  we  are  trying  to  account  for  you  know
dominant variables, we are looking to give them more weightage and then other situation being
when we are looking to incorporate the high correlation between variables, and the another
situation being the presence of outliers, so these are some of the situations where Euclidean
distance metrics might not remain the preferred choice. 
So now let’s start our discussion of these some other metrics which could be useful in you know
different scenarios, so let’s start our discussion with this metric, correlation with similarity, so
we all understand the correlation coefficient, so this particular metric is actually based on that,
so distance metrics measure dissimilarity, so we can also think about as I have talked about
while discussion on cluster analysis that distance metrics just like you know similarity measures
can be used to convert, can we convert it to measure dissimilarity and therefore can be you
know  used  as  distance  metrics  similarity,  distance  metrics  can  also  be  used  to  measure
dissimilarity.

So similarity measures can be converted to measure dissimilarity and therefore can be read it as
distance metrics, so when we think about the correlation coefficient, right, the formula is in this
particular slide as you can see how you know correlation coefficient is computed, so when we
think  about  the  correlation  coefficient  it  is  essentially  computing  similarity  between  two
variables, and the square of this correlation coefficient can be used as a similarity metric and
this kind of formulation which we can see in the last point in the slide, DIJ is 1-RIJ square, so
the square of this correlation coefficient now this is being converted into a dissimilarity metric
and therefore can be used as a distance metric. So if we look at this particular you know metric
so essentially we are trying to measure this similarity between variables and that similarity is
being you know converted into dissimilarity, and therefore being used as a distance metric, so
this is one metric that can be used to compute distances.



The  second  one,  the  more  important,  one  of  the  more  important  metrics  is  this  one,  the
statistical distance, so also called Mahalanobis distance, so this particular metric you know, can
account for correlation between variables, in the sense the contribution of highly correlated
variables  can  be  lowered  in  comparison to  the  variables  which  are  uncorrelated  or  mildly
correlated, so this particular formula as you can see in the slide DIJ square root of you know
this XI – XIJ transpose and S inverse, where S is the covariance matrix for vector XI and XJ,
and then under square root itself the multiplication where XI – XJ, so you can see S inverse
this, is the inverse matrix of S, so this is nothing, in a sense we can think about as S-1 as the P
dimensional extension to division.
Then  this  particular  donation,  apostrophe  donation  denotes  a  transpose  operation,  so  this
formula is the statistical, this is how we can compute this statistical distance, and as you can see
because the formula itself is accounting for, because of the presence of covariance matrix is, in
a way accounting for the correlation among variables, and as I talked about contribution for
highly  correlated  variable  is  lower,  in  comparison  to  the  same  of  uncorrelated  of  mildly
correlated variables.



Then  there  are  few  more  matrix  which  can  be  used,  for  example  Manhattan  distance,  so
Manhattan distance this is also similar to a city block distances that are used, so this distance
metric uses absolute differences instead of a square differences between coordinates, as you can
see in the formula itself, so DIJ is being defined as summation of M 1 to P, and then absolute
difference between XIM and XJM, so absolute of XIM – XJM, so here instead of looking,
instead of incorporating the square differences in other formula, in other formulas that we have
discussed so far, typically we are you know using the square differences, in this case Manhattan
distance it is using the absolute differences between coordinates.



If you go back there was one important point where we said that Manhattan distance could be
useful,  let’s go back to  the point  and discuss that  particular  aspect,  presence of  you know
presence of outliers, so when outliers are present we said that more robust distance metrics such
as Manhattan distance could be used, so now you can see why this was mentioned, because the
other  metric,  for  example  Euclidean  distance  metric  itself  is  squared  differences  between
coordinates of there in the formula, however if we look at the Manhattan distance which is the
absolute you know difference between coordinates is taken there, so if the outliers are present
the squareddifferences  will  actually lead to you know more you know variation,  and more
influence being accounted, and more influence of outliers being accounted, but if we use the
Manhattan distance because it is just using the absolute difference between coordinates so the
contribution of outliers is a bit lower, so comparatively Manhattan distance is going to be more
robust to presence of outliers, because there influence would be moderated.

So let’s go back and, so there is one more metric that could be used to compute distances for
numerical data, so this is called maximum coordinate distance, so this particular distance metric
is again going to use the absolute difference but this is you know just between the coordinates
which are the farthest, so if we look at the you know other distance metric there more often
they’re not using summation, you know so the different you know coordinates we are taking
differences or absolute differences or squared differences, and then we are summating all those
values and using the final value as the distance you know, final distance value between two
observations. However if we look at this particular metric maximum coordinate distance, we
are  just  you  know  identifying  you  know  two  particular  coordinates  which  are  farthest  in
comparison to other pairs of points, other pair of coordinates, so the same is reflected in the
formula  you  can  see  DIJ  =  maximum of  M,  1  to  P and  then  we  are  taking  the  absolute
difference XIM – XJM, so we are just looking to you know, looking to identify the coordinates
which  have  the  maximum deviation,  so  that  this  particular  difference  is  being  taken  as  a
distance, so that is why the name is also resting the same, maximum coordinate distance, so
sometimes you know this particular distance metric can also be useful, so we’ll see that, we’ll
see that while our discussion of cluster analysis in coming lectures as well.



Now all  these  metrics  that  we have discussed so far  they involve  you know, they involve
numerical  data  so  typically  all  these  metrics  that  we  have  discussed  maximum coordinate
distance, Manhattan distance, statistical distance, you know correlation dissimilarity and the
Euclidean distance all of these metrics there for numerical data, so what if you know, so what if
the categorical data is present, so we would still like to perform the task of clustering even in
the presence of categorical data, so are there any metrics which could be used for distance
computation, because if you think about distance typically it is you know concept that we you
know naturally associate with the numerical data, but you know distance can it be, can this
concept can be extended to categorical data, can we do some sort of quantification and use that
you know, use the same for our cluster analysis to perform a task of clustering. 
So yes, there are metrics which could be used for categorical data, so we are going to discuss
few of them, so if we look at the distance metrics for categorical data they are mainly based on
similarity  measures  which  makes  sense  also  because  the  distance  computation  as  such  is,
because that is typically applicable for numerical data as we talked about, and we’ll not make
sense for categorical data, so essentially what we are looking for when we say distance metrics
for categorical data we are essentially trying to measure the similarity or dissimilarity, so we
can always talk about the you know similarity between you know two observations based on
the attributes that they have for a particular categorical variable. So two observations might
have the same, might have the same attribute for a categorical variable, for example if we are
talking about the you know status where the particular you know particular record, particular
customer is, the customer is a student or employed or retired, so in that case two observations,
two of the customers might be having the same attribute, they both might be student, they both
might be employed, or they both might be retired, or they might be different, one might be
student, one might be employed or the other one might be retired, so we can always look at the
similarity, so if both are student then we can take that as an evidence of similarity, if you know
both are different, one is a student then other one is employed we can take that as evidence of
dissimilarity.
And now you quantify this information and use this in a, you know, distance you know, like as
a distance value for our cluster analysis. So the main idea is you know similar to this what I just
discussed, so mainly based on similarity measures. 



So now you know extend this thought to our you know P dimension, so suppose all P variables
are dummies, so right now we are only thinking about the categorical variables, so you know
the variables that we have in our final you know tabular format, right, so as we have discussed
in our previous course that if the categorical variables are having more than two categories we
can always create dummy variables and you know then those dummy variables are then used
for you know formal analysis, right, so similarly we can think about all our P variables to be
dummy variables  and they are  having ones  and  zeros  indicating  presence  or  absence  of  a
particular category or attribute.

So as you can see here we have a small table here which has, which we are going to use to
understand this particular concept, so we have record I and record J, and both these record, both



these observations have you know, we have you know P variables and this particular table 0 and
1, and 0 and 1 as you can see is indicating the number of variables, so for example record I0,
and record J0 so A is there, this A is actually you know indicating the number of attributes
which are present, which are absent for both the observation I and J, 0 denoting the absence,
and 1 denoting the presence,  and these numbers are actually denoting the number of those
attributes which are present or absent.
So in this case since 0 is denoting the absence for record I and record J, A number of attributes
are absent you know for you know both these records, so the same thing is mentioned here in
this slide, A is the number of attributes which are absent for both the observations I and J, if we
look at the another you know value here in this table D, so D is the one indicating presence, so
D essentially is indicating the number of attributes which are present in both the records I and J,
both the observations, so this is what we have mentioned here, D is the number of attributes
which are present for both the observations I and J.
Now there are going to be certain attributes which you know might be present for 1 and absent
for the other one, right, so you can see here C, C is the number of attributes which are present
for record I, which is against to 1 in record I, but against 0 in record J so we can see that C
denotes the number of attributes which are present for observation I, but absent for observation
J.
Similarly B is the number of you know attributes which are present in, present for observation J
but absent for observation I, so these numbers tell us some story so if we look at this particular
value D, so D indicating the number of attributes which are present in both the observation
there by telling us you know giving us some sort of evidence of similarity, so D is essentially
standing for the similarity between two observations, these two observation I and J. If we look
at A which is again indicating the absence of something, so if we are okay with this idea that if
something is absent, something is absent between two observation and taking it as a you know,
you know taking it as a you know similarity between two observation this value A can also be
accounted for. 



However if we look at the B and C, so these two numbers you know definitely indicate the
dissimilarity between these two observations I and J. So if we look at this information this
particular information that we have just understood can be used to quantify the similarity and
dissimilarity, so let’s look at the metrics that actually can do this for us, so there are two metrics
that we are going to talk about, one is the matching coefficient, the another one is Jaquard’s
coefficient, so if we look at the matching coefficient the value is, the way we define it is A + D
divided by P, where P is the you know total number of attributes, so it is the summation of A +
B + C + D, so if we look at the, we focus on the numerator part, so in the numerator we have A
+ D, so indicating the number of attributes which are absent for both the observations, and D
indicating the number of attributes which are present for both the observation, so both A and D
you know presence of number of attributes and absence of a number of attributes we are taking
that  as  a  you  know similarity  and  we  are  you  know using  that  in  the  this  numerator  of,
numerator part of this particular coefficient, matching coefficient, and then dividing it by total
number  of  attributes,  so  this,  it  gives  us  a  ratio  which  we are  taking as  a  you  know this
proportion in a way indicating the similarity between these two observations.
However some people might argue that absence of something, if something is absent you know
in both  the  observation  that  would  hardly indicate  the  similarity between two observation,
rather  it  is  you know at  some uncertainty you know between two observation  in  terms  of
similarity or dissimilarity, so there is another coefficient which doesn’t take the number of you
know this value of A into account, so Jaquard’s coefficient you can see in the numerator part
and the denominator part, and both the parts the value of A has been taken off, so A is has been
ignored because absence of you know particular attribute in both the observation is not being
taken you know, as you know similarity or dissimilarity, it is being considered you know we are
uncertain about it whether you know these you know attributes which are absent whether they
would have indicate you know some similarity or dissimilarity, so A has been taken out of this
formula so in the numerator we are just left with D, so D indicating the number of attributes
which are present in both the observations, and in the you know denominator we have just B +
C + D and therefore we get a particular ratio, a particular value, a particular ratio value which
will indicate the similarity between two observation. If the same point is summation here in the
slide also that Jaquard’s coefficient ignores absence of variables and so you can see further that
since presence of an attribute in both the observations can be taken as evidence of similarity,
however same cannot be said about absence of an attribute you know since you know it acts, it
brings uncertainty so therefore you know the value A has been ignored.
So you know with this we’ll like to you know end this session here, and in the next session
we’ll start our discussion of this distance metrics for both numerical and categorical data, so
we’re more likely to encounter scenarios where in our data set both kind of variables, numerical
and categorical both kind of variables are present, so how do we go about you know doing our,
you know, task of clustering, so for that we need some similarity metric or you know distance
metric  which  can  incorporate,  which  can  be  used  for  both  kind  of  data  numerical  and
categorical data, so there is this one metric Gower’s metric similarity metric, so we’ll discuss
about this one in the next lecture. Thank you.
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