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Welcome to the course Business Analytics and Data Mining Modeling Using R — Part 2, so in
previous lecturewe started our discussion on Regression Based Forecasting Methods, so therein
we talked about the importance of modeling trend and seasonality, we started our discussion
with trend, we talked about three specific trend shape linear trend, exponential trend,
polynomial trend, we also did an exercise in R studio environment where we were able to
model the linear trend and exponential trend.
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Regression-Based Forecasting Methods

* Polynomial Trend
— Specifically, quadratic relationship can be modeled as below:

Y. =Bo+ it + Pat’+ €

+ Additional predictor: t? to capture the quadratic relationship
+ This mode fits a multiple linear regression of no. of riders on two predictors (time
index and square of it)

* Open RStudio
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Now in this particular lecture we’ll start with the third type that is polynomial trend, so let’s
discuss this, and then we’ll go back to R studio environment and we’ll model this, so if we look
at the polynomial trend so specifically we’ll focus on the quadratic trend, quadratic relationship
if it is there it can be modeled as below, so the equation we can have a look so YT and on the
RHS side we have beta 0 + beta 1T + beta 2T square + epsilon, so we can see now we have two
you know, two predictors here T and square of T and so these two predictors so our you know if
we talk about the specific data set that we are using bicycle ridership, so Y being the number of
riders, so now number of riders is going to be the decreased on these two variables T and square
of T, where T is the time index.

So the additional predictors, additional predictor that we have T square which is essentially to
capture the quadratic relationship, so when we use this quadratic term T square essentially what
we are expecting is that series is following a U shaped trend, so if we remember the plot of the
original series then that kind of trend that was visible there, it look more like a U shape trend
instead of linear or you know exponential trend, so this model particularly fits a multiple linear
regression of number of riders on two predictors as we discussed, time index and square of it,
so we’ll go back to the R studio model, R studio environment and let’s try and build this
polynomial trend rather quadratic trend, so first we’ll compute the new predictor that is T
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square, so we call this TSQ here, so now we are multiplying these two value T and we had
already computed time index, so now we are going to multiply it with its own value and we’ll

get the T square, so let’s run this.

Now we are going to append this new variable into the existing data frame that we have, so let’s
have a look at first 6 observations, now we can see here we have the T square has been added,
so in the quadratic modeling that we are going to perform, we’ll have T and T square and riders
is also there, so we are going to regress this riders on these two predictors T and TSQ.
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we’ll create these two partition training and testing, you can see we’re using the same numbers

of observation that we had used for earlier models.




o . ‘. = hudding v b pogject iNone) =

ERR TR F ey =R LI o [ Irvironeent  Histary  Cannactians —

Soaxie cn e “ & - =+ Run e d SOUicE = o = imipnit Dalasst - ' List -

O OALA. T AT MOULES LA0E, OO0 LES L LGS .

P T Giohal Erssronment =

69 mmetric(dftestlifiders, modtestlos, ©{"2SE”, "RMIET, "ME" dfvesnd 12 obs. of 5 wariables

'-'jl:: N dftrain 147 abs. of 31 variables

7 # playnoemia &Rt

TE o otsq-(Fulldfic Fulldfit dfrraind 147 obs. of 4 variables

73 fulldf=cbind(fulldf, tsq) dfrraind 147 obs. of 5 variables

.'_-l- head (fulldf) Ful 1df 159 abs. of 5 variables

s _ . i Ciee ik an

76 dftraind-Fulldf[1 147,]

PT O dfrest2=ful 1af (145 159, ] Fla | Bote | Puckagul | Hilp | Vi =l

: A reeem D iapan - @ 'l e .

79 mod2-Imimiders-tetsq. dftraip2l, -cil, 4300
80 summary{mod2
1

&
sz Fin
. .
Console  Termsinal - 1
@ 200 J llf |

i Tea frdere ¢ toguicers taq g oMt 'H (M WH
1 2004-D1-01 3710 1 B.218787 1 o [ |0 || ‘ |
2 2004-02-01 3626 2 B,10588% 4 ! i '
3 2004-03-01 3975 3 8287780 9 400 [
1 2004-D4-01 3815 4 B.24G696 16 R S B N
5 2004-D5-01 3976 5 B.2BB032 2% g © m o~ % W
B 2004-06-01 3868 & B, 260453 16 5 %= =2 = = = S
» dftrainzeful1dF[1:147 ] T R A T T 1
» dftest2=ful1df[148:158,]

Now if we look at the model equations, so the formula says riders versus T + TSQ, so now in
this quadratic model we are regression riders on these two variables, and the dataset, data frame
is also appropriately specified, so let’s build this model that has been build, let’s have a look at
the results. So if we look at the result here we can see T and T square and we can see both seem
to be significant here, so distance model is also significant so if we are able to remember the
linear trend and exponential trend that modeling that we had done in the previous lectures they
were also found to be significant, this one which is the quadratic model is also found to be
significant. Now we’ll compare how the performance, we’ll compare the performance of this
particular model with previous models as well.
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So first let’s score the test set, so you can see model object mod 2 and the test partition, so we’ll
score this off, now let’s compute the matrix numbers, so we can see here these are the numbers



for you know training partition, so RMSE value comes out to be 149, so ME value is quite
close to 0, let’s compute this matrix for test partition, so you can see the value is now 136, so it
seems that the model is performing well on validation partition, rather the model seems to
performing a better and validation partition in comparison to what we had, you know its
performance on training partition, so if you remember the two other models, candidate models
that we had run in previous lecture, the linear trend and the exponential both had RMSE value
of more than 200 on you know test set, however if we look at this particular model the RMSE
value has come down to 136 which is even a smaller than its you know RMSE value on training
set, so it seems that not just this quadratic model is significant, it is also adequately capturing
the time series pattern.
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So we’ll confirm this, so let’s plot actual series using training set, so again just like previous
model we’ll create this you know time series, you know well subset this time series object, and
then let’s plot this, so this is the plot, this is for you know training, you know training set, now
we’ll just you know add the fitted model that we have just you know estimated, so first we’ll
extract the time index format and then we’ll use the pointsfunction and the fitted values are
going to be plotted, so now we can see here, let’s zoom into this plot, so we can see now these
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U shaped curve has been fitted this quadratic curve has been fitted on the time series and we
can see, it seems to be adequately capturing the shape of you know trend that is there in the
time series, and which actually also got reflected in the results on test partition, so let’s have a

look at the residual series, so we’ll plot this one.
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Now if you look at the you know residual series, now we can see here you know just remember
our modeling for linear trend, the residual series plot actually you know was carrying for, was
carrying the U shaped trend along with it, now in this residual plot we don’t see any trend here,
so that has been adequately captured by the model itself, and it seems that only the seasonality
is you know left over in this residual plot because till now we have not modeled seasonality

component.
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Regression-Based Forecasting Methods

* Polynomial Trend
— Specifically, quadratic relationship can be modeled as below:

Y, =fFo+ Bt + foti+ €

* Additional predictor: t* to capture the quadratic relationship

= This mode fits a multiple linear regression of no. of riders on two predictors (time
index and square of it)

* QOpen RStudio

So let’s go back to our discussion, so three types of trends shapes till now we have been able to
model, linear trend, exponential trend and polynomial trend, and we saw that how you know,
even though the linear trend and the exponential trend were found to be significant but there
was you know significant gap in terms of performance on a test partition, test set and when we
looked at the polynomial you know trend the quadratic trend, the performance improved on the
test set and the shape of trend you know that was present in the time series, original time series
that was adequately captured, and the same could be confirmed, the same was confirmed by the

residual series Rlot.

Regression-Based Forecasting Methods

* Fitting other types of trend shapes
— Can be done if it can be expressed in a mathematical form
— From modeling perspective

+ Shapeshould be applicable for the entire series as well as
= Should be global

* Future observations that are to be forecasted
— Selecting an overly complex shape seem to be fitting the training data
+ (Canlead to overfitting

* Poor performance on validation set
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So let’s move further, so till now we talked about these three types of you know trend shape, so
is it possible to fit other types of trend shapes? So yes, that can be done, but certain points that
we need to discuss here, so fitting other types of trend shapes so it can be done if this particular
trend shape that we want to fit, it can be expressed in a mathematical form just like the linear
trend you know we had a mathematical form the equation that could be used to you know
model it into using multiple linear regression and then for the exponential trend also and for the
polynomial that is quadratic trend that we had used, so if we want to fit any other type of trends
shape and if it can be expressed in the mathematical form definitely it can be fitted, however
from modeling prospective we need to take care of certain things, for example the shape that we
want to fit it should be applicable for the entire series as well as future observations that are to
be forecasted, because the main idea is to be able to forecast future you know values, so
therefore the shape that we are you know, that we don’t plan to fit for the series it should be
applicable for the entire series and also the future observation that we want to forecast, only
then the model is going to perform well, so you can also see one small point is also mentioned
here, it should be global, so like we’ll like to refer back to earlier discuss and when we talked
about that if we plan the statistical method, the model driven approach where we you know are
using regression based kind of methods, so there the kind of trend that is there, the kind of
patterns that are available they should be you know global in nature, so that the model is able to
perform well on the, not just on the points which are part of the training, but also on the points
where we want to you know in forecast future values.

So keeping these things in mind from the modeling prospective the trend shapes should be
applicable for the entire series and future observation, and the trend shape if it can be you know
presented in a mathematical form then definitely we can fit it using the approach that we have
discussed in previous and this lecture as well.

Another point related to this is that if we happen to select an overly complex shape which you
know, you know seem to be fitting the training data, so sometime you know we might think
about a shape which could be represented in a mathematical form and is also you know look to
be fitting to the you know training data points, but this can lead to over fitting because the you
know future points might not be following, might not be following this particular shape, so
therefore using an overly complex shape typically can lead to over fitting, and also poor
performance on validation set, because that shape though, even though it might be fitting the
training set observation quite well, but it might not be you know applicable for the validation
set points or even for future observations, so therefore we should avoid selecting an overly
complex, rather the more important point is we should look for you know any shape that we
want to fit, we should look whether it is going to be applicable globally for the time series, for
the period of time series under consideration.



Regression-Based Forecasting Methods

* Modeling the seasonality

— A seasonal pattern in a series means

* Observations for particular periods {seasons) have consistently higher or lower
values in comparison to other periods

— For example,

+ Day-of-week patterns, monthly patterns, quarterly patterns

— Seasonality could be of two types
+  Additive seasonality

= \alues are higher or lower by a certain amaunt for the particular seasons in comparison ta other
SEASQNs an an average level

= ¥is used as output vanable
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Let’s move forward, so till now the modeling that we have done was mainly about the trend
component, so seasonality patterns where not modeled, so now what we are going to do is we’ll
discuss this particular aspect modeling the seasonality, so let’s understand a few points about
this, so what is seasonality? So though we have discussed this in previous lectures as well, let’s
you know let’s discuss it again, a seasonal pattern in a series means observations for particular
periods or seasons have consistently higher or lower values in comparison to other periods, so
as we have talked about in previous lectures we are going to observe you know peak values
which are you know consistently higher in comparison to the average level values and you
know this appears you know repeatedly, so for certain periods the values are consistently
higher, every time that you know that period or season comes again, the values that are being
taken there, they are higher or lower you know consistently you know from the average level,
so observations for particular periods have consistently higher or lower values in comparison to
other periods then we can say that probably some sort of seasonality is present in the series, for
example day of week patterns, monthly patterns, quarterly patterns, so what we mean by you
know these examples is that you know if the seriesis weekly then you know for you know
particular days the values could be higher you know for example, for Sundays and you know
Saturdays the values could be higher in comparison to the you know, in comparison to the
working days, so this is what we mean.

Similarly for monthly patterns it could be like that for you know month of May and June which
are the summer months, the values could be higher in comparison to other months in the year.
Now the next one quarterly patterns, what we mean is for a particular quarter, for example let’s
say April, May, June, the values for that this particular quarter might be higher in comparison to
the other quarters, so this is, in this fashion the seasonality could be present in a particular
series.

Now seasonality could be of two types, the way those values are consistently higher or lower it
could be you know present in two ways, so let’s discuss this two types of seasonality, so first
one is additive seasonality, so what we mean by this is that values are higher or lower by a
certain amount for the particular seasons in comparison to the other seasons on an average



level, so it is the you know additional amount by which the values are either higher or lower, so
in comparison to other seasons, the seasons where we are saying the you know seasonality is
present, the values are higher or lower by a certain amount, so when this is the case we say that
the additive seasonality is present, so typically when we are modeling this kind of seasonality Y
is our output variable, in the other kind of seasonality which is the multiplicative seasonality,
the output variable will change to Y, so Y this is going to happen, let’s understand what
multiplicative seasonality is, so in multiplicative seasonality values are higher or lower by a
certain percentage for the particular seasons in comparison to other seasons on an average level,
so that you know particular seasons, particular periods where we are observing seasonality the
values of those seasons seem to be, seem to be higher or lower by a certain percentage, so
because of this the nature of you know, nature of the seasonality is going to be multiplicative,
so we can say higher by you know, by a factor of 1.2 or 1.1 or 1.05 or 1.3, so because of this
kind of you know this kind of variation due to seasonality we say this, we call this as
multiplicative seasonality, so in this case as we have seen, in case of exponential trend that we
had taken log of you know Y as the output variable, similarly because of the multiplicative
seasonality we’ll have to take you know log Y as the output variable to be able to use the

multiﬁle linear reﬁression model for ﬁttinﬁ this kind of seasonalit;.

Regression-Based Forecasting Methods

* Modeling the seasonality

— Seasonality could be of two types

* Multiplicative seasonality

= Values are higher or lower by a certain percentage for the particular seasons in comparison to other
SPAS0N% ON an Aerage level

= Log Y is used as output variable

* Modeling additive seasonality
— A new categorical variable is created

+ Torecord the season for each observation
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So what we are going to do next is we’ll take our Y cycle regressive example and we’ll model
additive seasonality where values for certain you know period, where we are expecting
seasonality, they are going to be either higher or lower by a certain amount.

So what are the steps that needs to be, that need to be taken to implement this, to implement this
additive seasonality, to model this additive seasonality, so first thing we need to create a new
categorical variable, so main idea about creating this categorical variable is to record the season
for each observation, so for each of the observation that is there in the time series, we would
like to record, we would like to note down the season for that observations that you know the
way we can name it, the way we can identify it, so once that is done so there are going to be a
number of seasons for the specified period of time series, so if you know there are N seasons,
so this categorical variable R is going to have M levels, so therefore we are going to, we will




have to create M-1 dummy variables and these dummy variables are then, can then be included
in the regression equation as predictors and that is how the seasonality can be modeled.
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So what we’ll do, we’ll go back to our R studio and we’ll try and model this seasonality into
our time series forecasting. So let’s load this library, so we are going to import this data set first,
bicycle ridership, so once this dataset is imported we’ll see that as I talked about, we’ll first
create a categorical variable to record this seasonality for each of the observation, so there seem
to be some problem here, so let’s stop this, this is small stop button as you can see in this
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particular you know console window, so we’ll try and stop this, because, okay so I'll try it
again, so let’s again, let’s load the library, let’s import the dataset, so you can see the dataset has
been imported we can see in the environment section 149 observation, 2 variables, so let’s run



this code as well, let’s have a look at the structure, same variables, this is the bicycle ridership
data you know set.

Now what we are going to do is we’ll create this new categorical variable seasonality, so you
can see in the next line of code I have season here, and I’'m calling this format function which
we have used in previous lectures as well, so month.year this particular variable now this is
going to be formatted using this particular function and we’ll just have the month, so we’ll
have, we’ll just have the month for each observation. Now if this is you know monthly you
know time series and what we are expecting is that the seasonality is month wise, if we
remember the you know time plot of the actual time series we saw there were you know few
ups and downs for few months, few months the ridership was significantly high in comparison
to other months, so the seasonality looked to be monthly and for the same reason you know in
the season variable, categorical variable we are going to record the month as season, so using
this function we would be able to capture the month for each observation, had this seasonably
reason a quarter you know for some certain quarters, the riders, number of riders would have
been significantly you know high in comparison to the other quarters, then we would have
captured the quarter you know here in this season variable.
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So we can have 12 months in a year, so total number of variables that we expect, total number
of levels that we expect in this, you know categorical variable are going to be 12, so let’s create
this variable, now we are going to append this in this our existing data frame, let’s have a look
at first 6 observation we can see here, the second column is riders that is number of riders for
each month and then we have season, so which is capturing the name of the month, so this is
because we are expecting the monthly seasonality, so for this reason we have captured the same
in this categorical variable.

Now as we have done earlier also, and the next step is going to be trimming of dataset, so let’s
create the training set which is the earlier period, first 147 observations and then the remaining
12 observation for the test set.
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Now if we look at the model, we are the LM function and you see that we are modeling
regression riders against season, so you can see we are not including time index here, we are
just trying to model only the seasonality component though we have understood from our
previous, from this lecture and previous lecture itself that the trend is present and we were able
to see the results also that quadratic trend was able to adequately capture the pattern, however
in this exercise we’re only focusing on the seasonality component and that is why in this
equation riders is being regressed as against season, right, and the dataset data frame is a
preparatory specified, so let’s build this model. Now have a look at the results, so now as we
know that for any you know variable you know which is factor will have the, will have the you
know this dummy variables created internally in R environment, and you can see in the results
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all this you know, all this dummy variables are there, so we don’t have to explicitly do it in R
environment, so you can see season August, season December, season Feb, so total you know,
these seasons, 11 seasons are going to be there, one is going to be one might be there for the
reference.
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So now if you look at the results here, so August this season seems to be significant then Feb is
significant, then Jan is significant and here we can see that July is also seem to be significant,
any other season let’s scroll down, so we can see that September is also significant, so it’s
seems that July, August, and September those 3 months they seem to be significant and Jan and
Feb are also seem to be significant, so these are the months which are having you know, you
know significant the higher or lower value, depending on the estimated coefficient, so if you
look at the estimated coefficient here, so for August it is 139 so it seems that for August which
is significant the values are on an average level higher for month of August and by 139 if we
look at the Feb and Jan, so the values are on an average level lower by you know for Feb it is
lower by 288 and for Jan it is lower by 251, so for some months values are higher, some months
values are lower, so for the month August it was higher.

Now if we look at the July it is also on the higher side, if we look at the September it is on the
lower side, so it is July and August where the August is having more higher level of
significance, the values are in particular on the higher side and also in July, for month of Feb
and Jan values are on the lower side, and also for the you know month of September values are
on the lower side, so we can see for certain months values are on the higher side for certain
month values on the lower side.
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So now let’s score the test dataset, now what we’ll do is we’ll compute the matrix for these two
you know sets, so let’s have a look at the numbers, let’s compute for test set also, so you can see
the RMSE value is 264 which is on test dataset which is higher in comparison to previous other
models that we have built using linear trend it was about 210 you know exponential it was also
about 210 for the polynomial the quadratic you know trend the value came down to 130, 140,
and this value has gone up, this is about 264 so it seems you know that, even though the
seasonality is present we saw that few dummy variables were significant, you know modeling
just the seasonality component actually is not good enough to capture the patterns in the series,
so this is what we understand so we can confirm the same using other plots, so let’s create the
time series for the training set and plot it, you can see here in the plot section.
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Now we’ll plot the fitted seasonality, so first we’ll compute the time index and we’ll add the
fitted points, so we can see here let’s zoom into the plot, so we can see that seasonality has been
fitted, red lines have been used, and we can see that those swings are being you know
adequately captured here, however the trend is not being captured, and that is what is resulting
in higher error for this model, seasonality only model, same thing we can confirm if we you

know plot this residual series so we will see that if we look at the residual series you can see
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that U shaped trend that we were able to adequately capture using the quadratic model, now this
is part of the residual series that means it was not captured using just the seasonality component
and it has become part of residual series, so what we need to do here is that probably we need to

model both trend and seasonalitz, SO ﬁuadratic model was able to cagture the U shaﬁed trend
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that was clearly present in the series, and the seasonality we have seen that monthly seasonality
is present for some month it was in the dummy variables were clearly significant, so therefore
we need to model both trend and seasonality the quadratic trend, and seasonality, so let’s go
back and now in the next model that we are going to create, we’ll model both.
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So let’s first compute this two predictors T and T square, so we’ll compute T and T square like
we did in previous lectures as well, we’ll add these two variables in our existing data frame,
let’s have a look at the first 6 observations, now in this data frame we have riders, season, T and
T square.
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Now next step is typically trimming, training set and test set, now if we look at the model
equation here, we are regression riders against T and T square + season which is the categorical



variable, now we’ll build this model, let’s look at the results, so we can see here September is
now significant, October, November is also significant, now this is happening because of the
presence of two predictors, T and T square, we can see now that July, Jan, Feb these two are
earlier you know significant as well, but for July the significance level has gone up, August is
significant again, so seasonality is significant, seasonality is present, now T and T square are
also significant, so it seems that this model is going to perform quite well, so let’s check that
out, so we’ll score the test set.
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Now let’s compute the matrix, so first training partition and then test partition, now let’s have a
look, you know RMSE value for training partition has also come down and RMSE value for
you know test partition has been come down, so if we look at the, focus on the test partition the
RMSE value has come down to 49, remember the best RMSE value till now that we had was
when we you know model the quadratic trend it came down to 136 something and now when
we model both quadratic trend and seasonality, now this RMSE value has come down to 49, so
it looks like that the model has improved significantly and the same thing can be you know
confirmed using some of these plots, so we’ll create a you know time series plot for training set,
so this is the plot, now let’s look at this, let’s fit the fitted model which has quadratic trend as
well as seasonality, so we’ll fit this.
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Now let’s zoom into this plot, now we see that the fitted model in the red line and the actual you
know series in the black, so we can see the swings are being captured and the fitted model is
also you know taking that shape of the actual series, so it is you know of course it is not
perfectly fitting the actual series, but now it is closely resembling the actual series, the red line
is closely resembling the, closely following the actual series, same we can confirm by plotting
the residual series, so let’s run this code, so this is the residual you know series plot. 1
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Now if we look at the residual series plot we can see, you know no you know extra pattern or
something clearly visible so you know random variation seem to be there, so it seems that we
have been able to adequately capture trend and seasonality, and therefore the model, so with



this we’ll stop here, and we’ll continue our discussion on regression based forecasting methods
in the next lecture. Thank you.
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