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Welcome to the course Business Analytics and Data Mining Modeling Using R — Part 2, so in
previous few lectures we have been discussing cluster analysis. So this is going to be the last
lecture of this particular technique cluster analysis.

Cluster Analysis

* k-means Clustering

* Algorithm
1. Start with user-specified no. of desired clusters, k
. Initial assignment of observations into k clusters

. Then cluster centroids are computed
2. Each observation is reassigned to the cluster with nearest centroid

3. Re-computation of cluster centroids to adjust for the loss or gain of
observations

4. Repeat step 2 and then step 3 till new iterations lead to decrease in
cluster dispersion
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So in previous lecture we talked about K means clustering, we understood the algorithm of this
particular technique, we also did an exercise in R to understand the steps, so what we discussed
about K means these, you know let’s go through these steps quickly once again, so we typically
start with user specified number of desired clusters that is K, then initial assignment of
observations into these K clusters is done, then after that clusters centroids are computed and
once this is done then in the next step for each observation is reassigned to the cluster that




nearest centroid and as a result of this re-computation of cluster centroids to adjust for the loss
or gain of observation that is done, and we keep on repeating these step 2 and then followed by
you know, and then step 3 till there is decreased in cluster dispersion, so these are the main
steps of K means clustering which we discussed in the previous lecture as well. Then in R also
we talked about you know we did a small exercise, and discussed how K means clustering can
be implemented, so we took first 5 cereals and then we started, we assumed 2 cluster you know
first cluster with just, if you know first two cereals and the second cluster with the remaining
three cereals, and we saw that when we compute the centroids and then when we start you
know reassigning the observation into the closest centroid then what happened, one of the
cluster was actually got reassigned and then when we repeated the exercise we saw that, that
was the final configuration that all the you know observations they were into their closest you
know, they were into the cluster with closest centroids. So we, in that exercise we have gone

throu%h the steps of K means clusterin%.

Cluster Analysis

Open RStudio

Selecting k
— Domain knowledge
— Practical constraints

— Try different values of k, compare the results, and finalize
+ Start with expected no. of clusters
+ Analyze how sum of distances changes with increase or decrease ink
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Now let’s discuss few more important points about K means clustering, so from the steps of K
means clustering as we can see, selecting suitable K for our clustering task is an important
exercise which is part of this method, so let’s discuss a view point, how do we decide which is
going to be the you know best K for our clustering analysis, cluster analysis, so selecting K few
important points, for example domain knowledge, so sometimes domain knowledge will guide
you in terms of the number of expected cluster, so as you know that in K means clustering, we
need to pre-specify the number of clusters that we want and domain knowledge about the
particular data set about the problem at hand can actually help us in terms of the clusters that we
are looking for, for example if we talk about the customer segmentation so we can always you
know understand that, in the kind of income groupings that we expect from a target population,
because we will have some pre-existing knowledge about the target population like you know
there is going to be a segment which is earning less than rupees 5,000 per month then there is
going to be a segment which is earning between 5,000 and about 12,000, then you know 12,000
to you now 25,000 and in that fashion e can have our own expectation from the you know target



population, so that kind of domain knowledge can always be used you know when we apply, K
means clustering.

Similarly the practical constraint can also sometimes guide or in a way restrict us in terms of
selecting the number of clusters, so in many you know business applications sometimes it might
be difficult for us to plan our you know if it is about the customer segmentation and that is to be
used later on for the marketing and promotional schemes, then sometimes it might be difficult
or costly for us to administratively or economically implement those schemes for a large
number of clusters, so therefore we might you know like to have fewer number of clusters and
then you know come up with the promotional and marketing schemes for them, and implement
them, so therefore the practical constraint you know if they could be administrative in nature
and financial in nature, they can also put a limit on the number of clusters that we can you know
select for our cluster analysis, specifically K means clustering.

So beside these two you know, beside these two points the remaining approach is which could
be the default approach you know more often they’re not, that we can try different values of K
and compare the results and finalize, so we can go about doing our clustering, so we might have
still we have to start with you know a given number of clusters that are more likely to be there,
and then we can start you know with those number of clusters and experiment, so we can you
know try different values of K and then compare the results, and based on that the best possible
number of you know will be able to pick the best possible value for K, so start with the
expected number of clusters and analyze how sum of distances changes with increase or
decrease in K, so as we talked about in the previous lecture also, so let’s have a look at it again,

so as we talked about that in iou know non-hierarchical methods, we tg to iou know minimize

Cluster Analysis

* Non-Hierarchical Methods
— No. of desired clusters are to be pre-specified

Each observation is assigned to one of these clusters such that
dispersion within clusters is minimized

* Leading to homogeneous non-overlapping clusters
Measure of within-cluster dispersion

sum of distances of observations from their cluster centroid”

"

If Euclidean distance metric is used then

“sum of squared Euclidean distances of observations from their cluster
centroid”

MFTEL SHLINE
. N LA R CEETINCATION COURSE

this within cluster dispersion, and this sum of distances, sum of squared distances of
observation from their centroid, this is the measure that is strictly used, so keeping this
particular measure in mind if we are trying out different values of K, then we can analyze for
different values of K how this sum of distances is changing, because that is the measure, that is
the you know metric that we use in K means clustering where we look to minimize the
dispersion, so depending on, the results depending on this comparison you know the number of



the particular K value for which this sum of distances is probably lower, probably we can go
with that value of K, so these are you know different phase in which we can you know select
and appropriate value for K.

Cluster Analysis

* k-means Clustering

* Algorithm
1. Start with user-specified no. of desired clusters, k
. Initial assignment of observations into k clusters

. Then cluster centroids are computed
2. Each observation is reassigned to the cluster with nearest centroid

3. Re-computation of cluster centroids to adjust for the loss or gain of
observations

4. Repeat step 2 and then step 3 till new iterations lead to decrease in
cluster dispersion
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So few other important points about K means clustering, so let’s go back to the algorithm, so
there in the first point itself we get that, we need to decide a suitable value for K, and then
you’ll also see that something that is mentioned in the slide also that initial assignment of
observation into clusters, how that should be done, so that can also play an important role in
deciding your clustering results, so how initial partitioning of observations into you know a
given number of clusters is to be done that also we need to take care off. So few points which
could be helpful in this decision that we have mentioned here in the slide, so let’s discuss them,



Cluster Analysis

* Initial Partitioning of observations into k clusters

— External information suggesting for a particular partitioning can be
used

— External information about potential cluster centroids can also be
used to allocate the observations

— Try different randomly generated starting partitions

]

@ oo T,
so first one is external information suggesting for a particular partitioning can be used, so if we
have you know certain information that is not part of you know, that is not part of the dataset
itself and it is suggesting that a particular kind of you know, particular observations you know,
group of observation should be in you know in certain clusters should be in one group, so that
kind of information can always be used, for example if we are doing customer segmentation
and we know that you know a group of customers they are coming from a certain locality they
are coming from a metro city or they might be coming from a TL2 or TL3 cities so that kind of
geographical you know, geographical you know clustering that this, that information can also
be used for to implement this kind of partitioning, so because this step where we are doing
initial partitioning of observation to K clusters, can actually reduce our computation time, so if
we are thinking about you know 100s and 1000s of records and applying clustering analysis,
because as we know that we are into unsupervised learning you know method you know into
that domain and there typically we need, we deal with a large number of observations, so
therefore anything that can reduce the computation time for us that is always recommended and
preferred.
So as I suggested for example customer segmentation you know we can incorporate the
geographical testing if we feel that, that information is going to be you know important in our
clustering process, in our clustering result then certainly that can be incorporated in the you
know partitioning, initial partitioning itself and later on the algorithm will take care as the new
centroids are computed and the distances of each observation from this new centroids, centroids
are you know, are computed we can you know that reassignment on all those things are going to
you know take care of the you know a good enough solution for us.
Now let’s move to the next point that is external information about potential cluster centroids
can also be used to allocate the observations, so if we happen to know the dataset that we have
the observations that we have, and you know the problem domain that is there, the context of
the problem that is there we have some idea, we have some idea about where this centroids you
know, the clusters and number of cluster and their hospital centroids are going to be, then we
can use that details about those centroids at their you know potential you know coordinates, if




we have some idea about that then those, that information can also be plugged into you know
initial partitioning scheme of K means clustering, and which could be a very good starting
point, you know to reduce in terms of, you know reducing the computation time of this
particular technique.

So external information about you know particular partitioning or centroids itself can always be
used in the initial partitioning, if we don’t have you know this kind of information to help us in
initial partitioning, then of course we can you know that is the default approach where we can
try different, randomly generated starting positions and then select which one is more suitable,
because there could be various you know candidate models even based on same technique
because you know different configurations could be there, specifically in the context of cluster
analysis, so therefore it makes sense to try different randomly generated starting positions and
then you know use the best one that is that the risk there for later analysis.

So let’s move forward, so before we discuss further let’s go back to R studio and do an exercise,
so in previous lecture we did an exercise using just you know the first five cereals, and then we
understood how the K means clustering can be applied and how, what kind of results we got,
now what we are going to do is we’ll apply the K means clustering on full dataset and we’ll
analyze the results later on, so let’s go through few of the code, let’s go through, run through
few lines of code that we have to do for importing datasetanother things, so let’s load this
library, let’s import the dataset.
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Let’s take a new copy of this dataset like we’ve been doing in previous lectures as well, so
some of the transformation steps are going to be common for K means clustering also, so we’ll
go through these transformations and then use it for applying K means clustering. So we need
to find that part of code where we had done the scaling of full dataset, because now we are
going to use the full dataset you can see here, normalization of all variables, so let’s go ahead
with this, so we’ll normalize so we can see here, the variables that are part of this and first 6
observations, so this full data set these observations and variables are going to be part of our
you know next K means clustering, so let’s move ahead, so now we’ll go back to the full
dataset, part of code where we apply K means clustering, so this part we’ve discussed before K



means clustering on first 5 cereals, this part we have gone through in previous lecture, now here
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e are now going to use full dataset for K means clustering, so here we are again using the
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K, value of K as 6, so let’s have a look at the first 6 observations, so these are the first 6
observation we can see the variables that are part of this.
Now as you can see few of these variables they have NA values so we’ll get rid of these
variables, so let’s identify them so you can see here in the code I have written 9, 10, and 12, 13
so you can see 1, 2, 3,4, 5, and then 6, 7, 8, 9 you can see some NA values even in the first 6
observation and 10 also, 10 and 11 seems to be fine then in 12 and 13 also, in the first 6
observation itself we are able to see some NA values so that in the code itself also the same is
reflected, column numbers 9, 10, 12, 13 have been left out, and K means is applied, so K means
is the function that we have used here, so and the second argument is where we specify the
number of clusters that we want out of this clustering process, so let’s go through this code.
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Now the model has been K means clustering, model has been built, now let’s look at the
clusters centroids so there are many attributes which are returned from this k means function, so
we’ll access the important ones, so first one is where we get the cluster centroids, so this is the
code and then what we are doing here in the next line row names we are changing the names of
row names to the, to reflect the centroids this is done.

Now next thing that we are going to do is the distance of observations from cluster centroids in
normalized coordinates, so as we know that there are 35 observations and you know 6 clusters,
plus one more column that we are going to have that is for the cluster ID, so we’ll like to have
you know one column where we know which observation is assigned to which clust cluster, so
that cluster is going to be represented by cluster ID, so and then there are going to be you know
6 centroids, so since this matrix is going to have the distances between all the observation and
each of the cluster centroid, so let’s initialize this 35 x 7 matrix, rownames are going to be 1 to
35 for the observations, and then column names as you can see first one is cluster ID, and then
we have the you know distance from you know these clusters which is actually distance from
those clusters centroids, so let’s change this.
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Then cluster assignment, so as part of the model that we have just built in this particular
attribute mode 3 dollar cluster, so in the cluster, the cluster assignments have been given so let’s
have a look at this result, so you can see here in the output that the first column has been filled
with data, and first observation has been assigned to cluster number 4, second observation
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has been assigned to cluster number 1, third observation has been assigned to cluster number 5,

and fourth observation has been assigned to cluster number 5, so in this fashion we can see the
you know assignment of these observation into different clusters we can see here, now we are
going to compute the distances between these observation and clusters, cluster centroids so you
can see here, I’'m running a far loop it is running from 1 to 35 for each of those 35 observations,
and then the distance is being computed, distance is being computed here between these



observations and you know the cluster centroids, so we can see for each of these observations
that are going to be 6 you know such distances because there are 6 centroids, so let’s compute
this.
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Now we can see here in the output, that all the metric cells have been filled with the you know
values, so the first column as we discussed the cluster assignment and then distances of this
observation from each of this clusters, so if we look at the first row then we can see it has been
assigned to cluster number 4, and its distance from cluster 1 is given 2.38, its distance from
cluster 2 is 1.73, its distance from cluster 3 is 5.17, its distance from cluster 4 is 1.51, and its
distance from cluster 5 is 2.91, if you observe this first observation itself you can see the
distance of this observation from its own cluster is the smallest one, you can see 1.51, so that is
why it is, it has been assigned to this cluster, so the distance of this observation from its own
clusters centroid is the smallest one and other you know centroids, distance from other cluster
centroid is rightly on the higher side.

Similarly we can analyze for other observations also, now what we are going to do is we’ll
order this particular output using cluster ID, so we’ll get all the observations which are part of
the same clusters, and also there you know distances from the cluster centroids, so let’s run this
code which will give us this output, so let’s scroll up, so we can see here the first four
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observations which are part of cluster 1 or observation number 2, 7, 18 and 23, so these
observations are part of cluster 1, and distances of these observation from 6 cluster centroids
also can be seen here, now we have performed this, we can see 4 observations are part of cluster
1, then followed by number of observations which are part of cluster 2, then followed by 3
observations which are part of cluster 3, and then observations which are part of cluster 4
followed by, so in this fashion so on we can see the observations, we can identify these
observation through the ID and we can see, so last one we can see that observation number 32,

L e a
o - a * « Adding - B ey
D4 cak o ™ Envicnmenl Hilory  Consmcliond ™
SO e on Sive R *fun v Souiee - 4 * o Datawn - F Lig =

116 oed (1, 2| =disTirbindldfnlt, |, cc[1,]), merhad = “euclidean’ T Glotal Erergament -

217 owh (1 3 =disT(rbind(dfn (1, ] cc[2,]), methad = “euclidean’ w ok wma . wr ad war aw e

31| pews (1,8 ~distirbind dfnl1,] ., ccl3,]0, methad “auc Tidean" - . i

g oo (1, 5] distirbind(dfn[i,].ccl4a,]), methad wuc lidean dfn 3% “‘_" of 14 variables

T30 o [ G =distirbind (dfa v, o5, 10, methad e lidean’ OME mun [1:35, 1:7] 4 1 53 5 .

1 o[, Pl =distirkind(dfald, ] cel6, 10, methad = “euclidean’ Full ldf 35 obs. of 17 vartables

5 y

fi} L] ol List of 4§

F

34 ¥ oirds clusTar g values

2% DB arderiDME (10 0]

3316 Files  Flots  Packages  Help  Viewsr -

27 1518 e

roCentro v a
P28 meanv-apply(df [ oo01,00,11,13,040 ], 2, mean

2% sov-apply(df, oc(1,10,11,13, 1407, &, sd

P cc.argetiapplyicc, 1, functianir) rosdvemeanv)); cc.oerg
o

Console Terminal

19 5 1. 5400850 3.335105 4. 9B31%6 2. 6285199 1. 998291

24 3 L. 5468849 3.061021 5090591 2.3334759 1.964E14

Pl 5 L.axdeaar 2. BESGES 5. 041531 19578517 X, 154880

3% k] 4. 4597689 1.47198% 5 BJ04E 4 B49BEA% 2. ara449

32 B 12, 1690605 10, 254765 12.422:0% 10.4393051 11.9199%)

i1 & 1 LL.0324104 9. B93T06 9.429915 9. 9433693 10, 755600

34 3 . 4495444 B Q25622 10350364 &, 3FTR953 a9, B56797
oist Clust . &

e B.570832

v 10 058143

i AR ATRERS

| - _ o o = s __________________________________ _ . __ |
33, and 34 they are part of cluster number 6, so we can identify which observation has been
assigned to which cluster and their distances from these cluster centroids, and we can also see
that these observations they are closest to their you know assigned you know cluster centroid.
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So let’s move ahead, now if we are interested in looking at the coordinates of these cluster
centroids, so till now what we have seen is that earlier that CC value, so this CC value that this
actually contains the coordinates for, coordinates for cluster centroids in normalized scales, so
as you can see here these are the 6 cluster centroid, and these coordinates you know different
you know dimensions, price, energy, protein, carbohydrates and other variables, other
dimensions, so these are you know these are coordinates in the normalized you know scales, if
we want these coordinates in the original scales we’ll have to use this particular piece of code
where you can see that the mean value for the average value for each of these dimensions is
going to be computed, and then standard deviation value for each of these dimension is going to
be computed, now these mean and standard deviation value are going to be used to convert the
normalized scale value into original scale values, so let’s go through this code, first we compute
the mean values then standard deviation value and then you can see here, we are applying these
values on you know CC which is cluster centroid coordinates on normalized scales, and we’ll
get the centroids on using original scales.
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Now let’s have a look at the output, so as you can see now the centroids and their coordinates
using the original scales, now you can see the price values they are in their original scales,
centroid 1 is having the price value of 582.5, energy value of 360.15 and similarly other values,
similarly we can look at the original values for other centroids.

Now all these computations that we have just done can be used for the next important you
know, next important computation that we wanted, is the distance between clusters centroids,
we are interested in analyzing the distance between cluster centroids because that can give us
idea about how clusters are separated from each other which is important because the objective
of cluster analysis to get the meaningful and insightful clusters and looking at the distances
between these cluster centroids will give us a sense about how you know separated these
clusters are, so let’s compute this, so coordinates in the normalized scales and in the original
scales both we have, so we can have a look at both of this outputs, so this particular piece of
code is going to compute for us the distances between cluster centroids, so let’s run this so we
can see here, so in this matrix we can see each of the 6 centroid and their distance with the
remaining centroids, so this is symmetrical matrix some of the values are going to be common,
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so if we look at the centroid 1 here and its distance from other centroids 2, 3, 4, 5 so we can see
here, so this centroid 1 seems to be closest to centroid 5, so centroid 1 seem to be closest to
centroid 5, and much far away from the centroid 6, that means cluster 6, so centroid 1 and
centroid 6 they are farthest, and centroid 1 and centroid 5 they are closest, so this can also give
us some idea about, though we have this 6 clusters which clusters can be joined and merged, so
this idea also we can get from here.

So let’s move forward, so original scales we can also compute the original scales here, so we
can see the values in original scales and also you’ll you know see the same thing, centroid 1 if
we look at the centroid 1 and we can see it is much far away from centroid 6, and much closer
with centroid 5, so similar kind of analysis we can do for other centroids also.
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Now let’s look at some other important piece of information, now what we are going to do is
we are going to summarize these cluster distances, so let’s create this matrix where we have you
know this is 7 by 2, so let’s initialize this matrix, row names you can see we have 6 clusters and
then the overall results, so that is why we needed 6, we needed 7 rows here, so let’s run this, 2
columns, so 1 indicating the number of observation so we’ll get to know the number of
observation in a summary format, now which cluster is having you know what number of
observation, and the average distance that is there in cluster, so that will also give us some idea
about the dispersion within that particular cluster, so let’s run this.
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So we’ll go through this part of code to find out this summary table, so we can see here cluster
1 having 4 observations, cluster 2 having 6 observations, cluster 3, 3, and then cluster 4 is 7,
cluster 5 is the biggest cluster with having 12 observations, so overall 35 as you can see, so
cluster 3 and cluster 6 are the smallest cluster having just 3 observations.

Now if we analyze the average distance in each of these clusters, we can find from here that the
cluster 1 it is having the smallest average distance among all the clusters and it is much lower
than the average, so average is closer to 5 and the overall average is closer to 5, and the average
in for this cluster 1 is closer to 3.5, so there is a significant difference, so cluster 1 seems to be
you know having lower you know dispersion, so it is seems to be more homogeneous in that
sense, if we look at the clusters 6, so average distance is much higher, it is almost you know
double of the overall and if we compared with the cluster 1 it is much higher, so cluster 6 seems
to be having higher dispersion, so less homogeneous cluster.
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Same kind of analysis we can also do using the you know original coordinates, so let’s go

through this part of code which will give us that result, so the similar kind of table but now
we’ll have the distances, average distances in the original coordinates that is all, so this is the
table as you can see here, first column is same then we have the average distance in cluster that
was using the normalized scale and then read the last column is having the original scales, so
we can see here that cluster 1, average distances lowest, cluster it is, so we can see here, in
terms of original scales, results are more or less similar, but in terms of original scale the cluster
4 is having, seems to be having the lowest, other results you know comparable, if we compare
these clusters you can see clusters 6 is having highest to dispersion, and cluster 1 and 4 and 2

are having the lowest dispersion.
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Now let’s analyze this results further, so what we are going to do is we are going to create a
parallel coordinates plot, this particular plot is going to help us in terms of characterizing these
clusters, so let’s go through this part of the code, so before we create the parallel coordinates
plot as we have discussed in our previous codes, when we were discussing the visualization
techniques we have to change the scales to 0, 1, so let’s do this, once the data has been changed
with the scale we can use this particular library mass and there we can call this function
parcoord which will give us the parallel coordinates plot, so let’s go through this part of the
code we can see here in the output, so in this particular plot we can see a 6 lines here, each
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representing you know centroids for you know their clusters, so we can always analyze this
particular you know plot in terms of you know characterizing these clusters, so if we look at
this particular cluster this one, so this particular cluster is having the you know higher values
for energy, protein and many of the you know variables it is having the higher value except the
price, price is in the medium range and the last one rating is also in the medium range, so it is in
terms of, it is higher in terms of energy and everything else, so it seems to be more you know
rich kind of cereal, that breakfast cereal that is there, so in that sense we can characterize this,
so rich cereal could be one characterization for this particular you know, in this particular
cluster, so rich set of cereals can be one characterization.

Similarly if we look at this you know bold line, so this particular cluster and along with one
more cluster, but this one more specifically is having values, lower values along all the
dimensions, so in that sense if we look at this particular cluster then it is having almost lower
values along all, for all the variables so therefore it can be you know, it can be called you know
low richness you know cereal breakfast cereals and we can see the price is on the, in the lower
side, however rating is in the you know medium range, so therefore this particular lecture can
be, can also be characterize, can be characterize as low you know low rich level, so in this
fashion we can characterize different clusters depending on the kind of you know values that
they are taking, so this is one way to understand the clusters and the characterize.
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Now what we are going to do is next we are going to create a plot, so for this we are going to
use this particular library cluster and this plot is going to be 2D representation of clusters, so
even though there are many dimensions because of the presence of many variables, but those
variables are going to be brought down to 2D you know levels, so 2D representation of clusters
is something that we are going to create, so this is the function clust plot that is going to be
used, so in this we’ll get this output, so first we are passing on the data then we are passing on
the cluster assignments how this you know different clusters you know the different observation
have been assigned to different clusters and this information is going to be used to create a 2D

reBresentation, so let’s run this.
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Before we run this let’s clear the previous part so that we get a more clear picture here, so this is
the plot we can see here, so in this 2D representation this is 2 dimensional component 1 and
component 2, however this is good enough 2D representation because we can see that these 2
components explain 70.83% of the point variability, this is much similar to what we did, this is
like multi-dimensional scaling, what we did in PCA, so this analysis is quite similar to that, but
what we are seeing right now is the graphical representation of that analysis, so we can see here
the cluster number 6 and the points that are observation which are part of this cluster 6, which
are clearly visible in this plot and we can also see that these points are, these observation the
cereals are also you know, average distance is higher, right, if we look at the other clusters so
there are more you know a bit of overlapping clusters, however let me remind you this is 2D
representation of the whole clustering process, so you can see cluster number 2 the observation
which are part of a cluster number 1, cluster number 4, and observation which are part of it
cluster number 5 which is very closely going along with the cluster number you know 1 and

then the cluster number 3 is here havin% just 3 observations.
Cluster Analysis

* Open RStudio

* Evaluating usefulness of clustering results

— Distances between final clusters can be used
Ratio of
the sum of squared distances for a given k
to
the sum of squared distances to the mean of all records (k=1)

— If value of this ratio is closer to 1, then clustering has not been
effective

— Ifvalue is small, then we have well-separated clusters
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Cluster number 3 and 6 having just 3 observation and we can see other cluster were having few
more observations here, so in this fashion also we can understand the clusters and the
characterizing, characterization process that we did can also be completed. So with this we’ll
like to go back to our discussion, so let’s go back, so few more points about specifically about
the K means clustering, so how do we evaluate usefulness of these clustering results, so one
metric that could be used is the distances between final clusters that can actually be used to
compute this ratio, the sum of squared distances for a given K to the sum of squared distances
to the mean of all records, so this particular ratio value will give us about the idea about
whether the clustering results are useful or not, so this is more about understanding whether the
clusters are separated or not, so if the clusters are separated then probably the clustering
process, clustering results are good, so this particular ratio will give us that indication, so the
value of this ratio comes out to be closer to 1, then probably clustering has not been effective
and there are too many overlaps, significant overlaps, if the value of this particular ratio is
small, then probably we have well separated clusters.




So if we have well separated cluster then it is more likely that the clustering results are going to
be useful, and as we have seen in the R studio, in the R exercise that we can always characterize
them, analyze them and generate meaningful insights from them, so that is the end of cluster

analysis, so we’ll stop here. Thank you.
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