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Lecture - 60
Discriminant Analysis-Part I1

Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in a
previous lecture we were discussing discriminant analysis and we were a doing a few
exercises in R. So, let us get back to our R studio. So, we talked about the class
separation and two data sets we used to so, that how class separation is important and

different data sets, how it is going to impact the modeling process and results.

Now, what we are going to do in this particular lecture we will do our modeling. So, a we

are using sedan car data set here. So, let us look at the structure of the data frame.
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So, this is already loaded into the environment. So, you can see. So, these are the

variables annual income household area and ownership.
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So, we can go ahead with our modeling process. So, the package that we are going to use
for this particular discriminant analysis modeling is mass. So, will let us load this

package library mass.
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And the function that we required to build our model is called LDA. So, this is for linear

discriminant analysis.
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So, for more information on LDA you can go to the help section
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And find out few more details for example, this function is for linear discriminant
analysis as you can see, and you can understand details about different arguments that

are part of this function.
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So, some of them we are going to use the important arguments.
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We are going to use in our modeling exercise. So, our outcome variable here of interest

here is the ownership. So, you can see ownership tilde remaining variables that are

annual income and household area, and then data frame that is df and let us run this

model.
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groups 0.5 and 0.5 this is nothing, but the actual proportion of actual proportion of

observations for each group, and then we have group means.



So, these are actually the centroids for you know. So, first row is for a centroid for non
owner group and the second row is the centroid for owner group. So, the values for these
two centroids, centriod you can see here. Then what we have is coefficients of linear
discriminant. So, this is quite similar to what we discussed multiple linear regression. So,
just like the betas that we compute in linear regression, but the idea is slightly different

there that is with respect to outcome variable.

But here the coefficient of linear discriminants are with respect to the class separation,
we want to achieve the class separation. So, these are the coefficient you can see 0.61
annual income and 0.3 household area. So, our LD1 that linear or function of predictors
is this one this LD1 and these are the coefficients. So, this is the line that we talked about

in the previous lecture as well.
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So, if we have. So, in this particular case the data set that were that we are using is also
quite similar to the example that I am using here on board and this is the line that we are
looking for. And the coefficients for this line we can see in this output model output, 0.61

annual income and household area 0.3.

So, these coefficient will determine this line and this could be used to discriminate the
observations into their respective groups. To understand the results of this model a bit
further, we can use a stacked histogram of LDA values for the observation that we have.

So, let us set the parameters first.
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So, graphical parameters and then let us plot this and we will see this graph here.
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So, in this graph as we can see that the LDA values for different groups.

(Refer Slide Time: 04:45)



o8

I
I

00

group nonkownes

o8

]
]
1

group owner

So, these are actually different observations we can see that in the data set we had just 20
observations. So, you can see here 4 5 and then 9 here and then we have 4 and about 8 9.
So, almost about all the observations are covered here and we have LDA’s values and we
can see for the group non owner most of the values are below 0 except 1 and then we
have a LDA values for the group owner most of the values are greater than 0 you can see

here. So, these are so, this in this fashion our model is able to discriminate.

So, the idea that we talked about that we are looking for a line, we want to find the line
that would be able to discriminate the observations into their respective groups. So, you
can see that LDA’s values less than 0 typically it is non-owner group and greater than 0

typically it is owner group of course, there are going to be few misclassifications.

So, this is the one understanding of the model that we have just filled. So, look few more
details for example, the class that is going to be predicted using the so, this is for the
training partition, the observations that have been used to train the model. So, we can use
predict function and this is going to return us a one particular value that is class for each

observation which is predicted class.
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So, let us look at this. So, for each of the observations we have about 20 there and the
predictor class we can see here right. And then its course also the classification is course
that we talked about. So, this linear discriminant you know a function the classification

linear classification function will give us these scores also.

So, predict function again can be used and this is the element one of the retained value

and that can be used to displace scores.
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So, you can see here 20 a classification scores. So, as we saw in the plot itself that for the
non-owner group the values were less than 0, the same thing you can see here, you know
less than 0 values, first observation second normal observation up to you know up to a 9
observation ninth observations all values are negative. And then we can see tenth
observation, it has positive value here and then we can see here then other observation

they have greater than so, their values are greater than 0.

So, we can see 11th is of course, seems to be misclassification, negative then we can see
positive values there 0.28, 0.77, 0.34 and in this fashion we keep on going. So, these are
the values. So, we can see here, one see there seems to be one misclassification in each
case. So, we can see observation 11, that is misclassified here and similarly there also
this one the observation 10; that is misclassified there in the non-owner group and this
11th observation misclassified in the owner group. So, these are the two miss

classifications and classification of this code we can see here.

Now, if we are interested in plotting these scores so, we can plot. So, it is discriminant
functions. So, in this case just one. So, we can actually plot this gate and a scatter plot for
this. So, let us open a new graphics device. So, this is a function again that can be used
dev dot new to open a new plot in device. So, this is how it can be done. So, this is the
new device and now the plot that we are going to create this scatter plot of discriminant

function, it is going to be on plotted on this device you can see here.
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So, these are the classification scores for all the observations. So, you can see index. So,
this index is for a row number for each of the observation, we have about 20
observations; 20 observation. So, for all 20 observations and we have the classification
scores you can see, few scores are below O and about half of the this course are
observation are scored below 0 and about half of the observation are scored as above 0 as

we have seen in other plots. So, let us add few more details levels and legend.
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So, let us look at this observation. So, here we can see that the predicted classes is
displayed using the gray colour and the actual class is displayed using the black colour.
So, for each of the observation we can see here what was the actual class and what was
the predicted class. Again, predicted class in gray colour and the actual class in black
colour. So, we can see all these observation are correctly classified. So, we can come
here and these are the observations you know, this is the observation which is actual
classes owner and has been classified as non-owner here and then another one there is

one more misclassification we need to find that point.

So, that is also this. So, this is the observations, we can see this first non owner and has
been classified as owner. So, these are the two observations which are misclassified and
so, these are quite close to our might is going to be quite close to our a discriminant line

also and other observations are being correctly classified.
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So, we can also construct a data frame of these values that we have just computed. So, let

us look at some of these values in a data frame format.
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So, predicted class and the actual class and the classification scores. So, we can see a

first state observations, 9 observation correctly classified. Then as I talked about, this is

the first misclassification then followed by second misclassification. So, in each group

we had we have one misclassification and then the remaining observation are correctly

classified into its group that is owner.
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Now, let us look at the performance of this model using the accuracy or misclassification

error matrix. So, let us compute this matrix first.
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Classification matrix you can see that here 9 observations, 9 records belonging to non-
owner clock, non-owner class, have been correctly classified as non-owner class
members and similarly for 9 owner class members have been correctly classified as
owner class members and two of diagonal elements we have 1 and 1. So, these are the

errors. So, let us compute the accuracy and error numbers here, before that there is



another important function that can be again used to visually expect the classification

matrix, this called mosaic plot. So this can also be used to see the classification matrix.

So, I think it has gone to the yes in this new device we can see. So, this is the
classification matrix, then formation we can see here. So, non-owner we can see you
know because the size of the rectangle, this is quite big. So, most of the observation are
there correctly classified and here this size of rectangle is also quite large. So, this most
of the observation have been correctly classified as owner. So, these are the observations,

this be rectangles are representing a smaller rectangles are representing the incorrect

classification.
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Now let us compute the accuracy and error. So, we can see 0.9 is accuracy and remaining

0.1 is the error in this case. So, model seems to be a doing a good job.
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However, as we saw that in the scatter plots itself the ¢

lass separation was quite clear. So,

therefore, we should have expected a good performance by the model.
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Another data frame with some key information here. So, we can see here.
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A predicted class, actual class and probability of ownership. So, that has been computed.
So, you can see here probability of ownership we have this predict function and posterior
element is being used to you know to actually display the probability of belonging to the
owner group and the 1 minus this probability is going to be the probability belonging to
the non-owner group and. So, other predictors other column names are also appended to

this particular data frame. So, we have this probability values, the predicted information

and predicted and actual class.
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So, let us move forward. Now what will do? We will create a scatter plot where will

again will create this scatter plot. So, this is again going into new device and will a use

labelling.
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For so, you can see this is the scatter plot and we are using labelling here for different
observations, and how they have been classified. See it text there so, that is telling us the

predicted class.

So, here again we can see that the, this particular observation. So, it was belong to the
owner class, but it has been predicted as non-owner. So, this is one misclassification.
And we have one observation here and this was a so, this is correctly classified and this
is another observation. So, this was supposed to be non-owner, but it has been predicted
as owner. So, again in this scatter plot itself, we can see which observations because this

was a small data set.
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We can easily spot which observation have been correctly classified and which have
been incorrectly classified. Now, what we are going to do is, we again re-plot our adhoc
line that we did before in the you know previous lecture, and we will plot the
discriminant line that, we have just computed using our model LDA function. So, let us

re-plot. So, these computations we are already we already understood.
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So, this is the adhoc line that we had plotted in previous lecture.



So, now let us look at the line that we have got from the model. So, there are two ways,
first one we can use this contour function. So, we would be required to do some of these

computations. So, because.
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So we will have to expand our observation. So, you can see here I am using I am
expanding some of these observation using expand dot grid function; more details on

expand dot grid you can find out using the help section.

So, now using the predict function and the model object, I am going to score these this
expanded grid this expanded data frame and now this is going to be used to create a

matrix, and then create the line our discriminant line.



(Refer Slide Time: 16:54).

0 - - rTons i
Q] 1ranmx =] twAranment  Wiglory |
e R ] . M M e T H Peprriwnar f L

123 I T

14 # oA Tine using contour function

125 slens500 0 dfrymm 250000 obs  of I variabl

126 wmmcseq(nin(df Sannual_Income), max(dfiannual_Income), length.out = slan) Omodploty  Large matrix (230000 ole

i y
127 ymmcgeqnin(df Deousahold_area), max(df Sousahold_araa), Tength.cut = slen wodscore  num [1:20, 1] =1.198 -2

128 dfxymmcaxpand, grid(annual_Inconeswmn, Househald_Area:yem)

129 modplatspredictimad, dfxymm)iclass values

130 modploteas.numeric (modplot ) conf matr. "rable’ it [1:2, L2l 91
131 modplotmematrix{modplot, slen, slen) # byrowss Omod List of 10

112 contour(uem, ymn, sodplowh, Tevels = c(1,2), add = 7, demwlabels = F, Omodnlar __ Laroe piserie (250000 #lsm
1 col = “pray")

134 Wi Pt Packages  Help  Viewer =0
195 ooa Tine b ntarcept and ¢lope

136 A = mediscaling: A P ron Bigaic Q) §f B disai -

17 szasne):s

18 P« modiprior; P . =

11— - ~ o 3

151 (o 8 Riuiy =} m—u—y—. 1 1
s BT 2 4 0 1 2 3
- segments(8. 5,15,
. B.5-2%¢os(slope), 15-2"sin(s1ope)) rOup NON-WNE

» 81ena’500
= wamesaq(min(df fannual_Income) , max(dfiannual_incose), length.out = slen)

« ymmeseq (min(df Swousehold_Area), max(dfisousehold_Area), length,out = slen)
» dfsysmzexpand. grid(annual_tncome=xmn, Household_Areazyms) =] % 1 l"i |¥ 1 |E
» modplotspredict{nod, df vymm)iclass o I I 1 1

» modplot=as nuseric(modplot)

» modplotMsmatrix(nodpiot, slen, slen) P byrowss 2 4 0 1 2 3
» contour (wem, yem, modplot, levels = ¢(1,2), add = 7, drawlabels = ¢,
col = “gray”) Qroup ower

So, we can see here this is our discriminant line shown in gray colour. So, this is the
product of the. So, this is from the model. So, this is the line that has been computed,

which is actually giving us the classification.

Now, the same discriminant line can also be plotted using some matrix algebra
computations. So, for example, coefficient values and other things that we are going to
compute slope and so, finally, we want to compute slope and intercept for the line. So,
some of these computations are related to this. So, will just go through these

computations. So, this matrix of algebra is bit you know complicated here.

So, we would not go into detail of this, but this is another suppose DA line that is by
computing intercept and slope and you can see that matrix algebra is involved, you can
see that coefficient values and then we take multiplied with this transpose matrix take
prior values and centroid values and then we compute our slope and intercept values.
And then the intercept in the plot that we had created, let us clip is a function that can be
restricted, that can restrict the plotting of a particular you know a line or any other

graphic to a to a limited region in the in the graphic device.

So, let us look at. So, now, you can see that gray line because this abline you can see
colour is blue. So, this gray line you can see here this has been you know you know
coloured with blue; the same gray line has converted to blue because the DA line is

going to be the same it is just different plotting mechanism that we had used.



So, you can see here from the legend itself also. So, earlier the gray line that was there
that was the DA line, now it is blue, this is the DA line, this is our black line, this is our
ad hoc line, that we had drawn on our own by looking at the you know observations and

other details are there.

So, let us move to another exercise, now this time what we are going to do is we are
going to use a this particular data set used cars data sets, let us import this data set. So,
let us move na columns na rows. So, these are the observations now let us compute each
variable, let us take backup and again you can see that this we are going to build a

classification model here.
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So, we are eliminating the price variable and will just keep the C underscore price, as
you can see here this is our factor variable categorical variable and let us convert to other

variables into factor transmission and C price.
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So, this is our final structure. So, we can see here, now we can actually partition. So, let
us partition so, 90 percent of observation to training and testing. So, you can see in the
earlier exercise all the observations were part of the you know part of the model and now

this time we have slightly bigger samples. So, we are creating different partition and then

we would be judging the performance on the validation or test partition.
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So, this is another important function that that is near 0 where so, this is to identify near
0 variance predictors. So, ideally we would not like to include these near 0 variance

predictors in our LDA modeling.
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So, library this caret library is there and which has this function near 0 variance to which

spot these variables predictors.

So, we can see in our case we do not have any you know near 0 variance predictors. So,
we are safe we can go ahead and do our modeling. So, this was the library that we has
used for LDA exercise and LDA is the function on this case you can say C price being

request against all other predictors and this is our training partition.
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So, let us build the model. Now you can see we since we have just two groups here

again. So, we just need one you know linear discriminant function here and we can see

the combinations, this is combination linear function of all the predictors.

So, you can see diesel, petrol, SR price, KM transmission, owners, airbag, age. So, all

these variables we can see here and we can see the our linear discriminant function, now

we can go ahead and it compute some of these scores.
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So, classification then the scores classification scores and then the estimated probabilities

values and let us look at the classification matrix.
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Now this is the classification matrix, this is on training partition. So, we can see the
model is doing a good job here.
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Let us look at the accuracy and error numbers, 87 percent and 12 percent. Now let us

look at this particular data frame with some information on some key variables.
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Let us look at this. So, we have predicted class, actual class, we have a score that is from
coming from the our discriminant function. So, this is our classification scores, then we
have probability of belonging to class 0 and probability of belonging to class 1 and after
we have all the predictor. So, this particular data frame has all the important information,
the output of the model and the input as well. So, this in this fashion so, as you can see
that, we can we can if the class separation and other things are quite good then you
would see that the 1 linear discriminant function does a quite good job. So, we can
compare our scenario, this linear discriminant scenarios to the classification and

regression trees.

So, there we used to identify the rectangular regions, which would be you know able to
separate some of these observations in this fashion. So, in this case you would see
instead of looking for a set of horizontal and vertical lines, creating rectangular region as
we typically doing classification and regression trees. In this case we are looking for a
diagonal line or a line, which is able to discriminate between the observation and you
know classify them into their respective groups. So, each technique has its own strengths
right you can see, instead of looking creating so many rectangular regions, as we do in
cut. Just one discriminant line was sufficient for this particular data set to get a good

model.



So, let us go back to our discussion on using slides. So, few important things that we
would like to cover here. So, there are some assumptions and other issues that are

concerning discriminant analysis.
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For example, predictors, first assumption is that predictors follow are supposed to follow
multivariate normal distribution for all classes. So, the predictors that we have been that
we have to used for our to construct our discriminant linear line that discriminant

function.

So, for each of these those classes they should follow a normal distribution. However, if
there are good enough sample points, then the results are quite robust to violation of this
particular assumption, about the adequate sample size for you know each of those classes
have to be there. So, this is first assumption and then the second one is that correlation
structure between predictors for each class should be same. So, that structure is important
for us to be able to build a valid discriminant analysis model. So, this is the second one.
So, we can always look at the correlation matrix and find out whether the correlation

structure is similar for each of those classes.

Now, this technique is also sensitive to outliers, as you can understand from the
discussion as well, that if there are a few outliers our linear discriminant line can change
significantly and that can impact the results. So, therefore, it is important to identify

those extreme points and eliminate them if possible. Few more comments on



discriminant analysis so, as we talked about that application and performance aspects are

similar to multiple linear regression.

So, just like in linear regression with respect to outcome variable, we compute our you
know a coefficients. So, as you can see in the second point, in discriminant analysis
coefficients of linear discriminant or optimized with respect to class separation. So, we
want to achieve class separation and the coefficient of linear discriminant that line that
are optimized in that fashion. When we talk about linear regression the coefficient are
optimized with respect to outcome variable because we want to predict that outcome
variable, so coefficient or output price with respect to that. So, that is one difference
otherwise there are so, many similarities, only the approach is different the optimization
process. So, in both cases the coefficients or weights are optimized and the estimation
technique is same. So, we use least square in both the cases and discriminant analysis as
well as multiple linear regression, these squares is used, the same estimation technique is

used here in discriminant analysis.

So, with this we have completed our discussion on discriminant analysis and with this we
have also discussed we have covered most of the supervised popular supervised learning
techniques under this course. So, we started with so, first to be had introductory lectures,
then we started you know understood the data mining process, we looked at some of the
exploratory techniques visual visualization techniques, we also went through the matrix
that are used to assess the performance of classification model and prediction model,

then we started our discussion on formal techniques that are used for modelling.

We started with multiple linear regression and then (Refer Time: 28:03) new base, we
covered neural network, we also covered classification and regression trees. So many
other techniques that we have covered logistic regression and discriminant analysis. So,
all these techniques that I just talked about, they come under the umbrella of supervised
learning algorithms. So, there is always an outcome variable and with respect to that
outcome variable, we go about building our models either for prediction tasks or

classification tasks.

So, in this course in this course and this part of the this particular course, we have been
able to understand some of the basics of data mining modeling and analytics in general,

and we covered statistical techniques, mathematical techniques, data mining machine



learning algorithms and we have understood how these techniques can be used in
modeling process. And most of as I said most of these techniques are typically used for

classification and prediction that is supervised learning techniques.

So, I hope that you have learned a lot you know going through the lectures of this course,
and you would be able to use some of the information some of the learning’s that you

have used here in your future in your career.

Thank you.



