Business Analytics & Data Mining Modeling Using R
Dr. Gaurav Dixit
Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture - 56
Artificial Neural Network-Part IV

Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in
previous we lecture lectures we have been discussing neural artificial neural networks
and in particular in previous lecture we started our modeling exercise using this small
data set related to g samples and there is you know the acceptance or rejection based on
two predictors fat score and salt score. So, we were at this point, we were trying to build

this model. So, let us start again.

So, data frame we had already created in the previous lecture. So, the same date frame

you can see we are going to use the data frame 6 observations 3 variables.
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48 values

47 # Neural Network Model .

48 # startweights vector: no. of a1l bias (4) and connection weight values (9) Acceptance nun [1:6] 100011

49 # linear.output=T for prediction Fatscore num [1:6] 0.2 0.10.2 0.2
0.90.10.40.5

50 # linear.output=F for classification saltscore num [1:6]
51
52 mod=neuralnet(Acceptance ~ FatScore + Saltscore, df, hidden=c(3),
53 startweights = runif(13, -0.05, 0.05), rep = 1, Files  Plots Packages Help Viewer =0
54 algorithm = "backprop”, learningrate=0.1, err.fet = "sse", 77
55 act.fet = "logistic", 2 9 W
Sg Tinear.output=F) 1t Ordered | gistc o Probit eqression =
S T 7
58 ¢ — ' | polr {MASS} R Documentation
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The downloaded binary packages are in a 5
C:\Users\user\Appbata\Local\Temp\RtipGoosgd\downloaded_packages RegFeSSIOH
> library(neuralnet)
warni :
arning message Description

package ‘neuralnet’ was built under R version 3.4.1
» df=data.frame(Fatscore, SaltScore, Acceptance)

> str(df) Fits a logistic or probit regression model to an ordered

factor response. The default logistic case is

‘data.frame': 6 obs. of 3 variables:

§ Fatscore : num 0.2 0.10.2 0.2 0.4 0.3 proportional odds logistic regression, after which the
§ saltscore : num 0.9 0.1 0.4 0.50.50.8 - function is named

§ Acceptance: num 100011 E

> Usage

The particular neural network R texture that we are going to use is the same that we had

used in previous lectures this is the so the R texture is this one.
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So, this was the texture that we had used in previous lectures for this particular example,
right. So, these are the connections, and then further then bias values. So, we can see
these connections and bias values, these this is the R texture that we are going to use. So,
as | talk about we can certainly do certain experimentation with this particular R texture,

we can certainly add more hidden more hidden layers.

So, we can have one more hidden layer here with two nodes. So, this kind of
experimentation we can always perform. However, what has been seen that typically one
hidden layer is sufficient to model even the most complicated complex relationships. So,
we typically start with one hidden layer and typically the performance is higher for

higher for the one hidden layer networks.

Again in terms of how many nodes that we should be using in a particular hidden layer
that is also of course, we can experiment with that part also. So, we can of course, have
you know one more node and that experimentation and the performance of that particular
network we can always compare it with. So, we can always build different candidate
network model and we can always check which one is performing better, and those kind
of experimentation with the network R texture can also be performed. However, for our
this illustration for this exercise we are sticking to this particular network 2 nodes, 3

nodes and 1 node in the input layer hidden, hidden layer and output layer respectively.



So, let us discuss further about this so the package as we talked about is the neural net
and the function is neural net that we are going to use to build our neural network model.
So, the first argument is the formula for the model equation as you can see, acceptance is
the output variable outcome variable then we have two predictors fat score and salt score.
And then data is coming from the data frame df and you can see the next argument is
hidden, so that is a number of hidden layers and you know that is the number of nodes in
different hidden layers. So, we have just 1 hidden layer and we have 3 nodes, we have
just mentioned 3 here. However, if you have we have more number of hidden layers and

different number of nodes there, so that can we specified using this particular vector.

Then we have a start weights. So, this is for the initialization. So, like we did in our
previous exercise be the same data set so we can see we need 13 values. So, this we can
understand we have number of bias values 4. So, we have 4 bias values and here for
every node we have it is connected with the nodes of next layer. So, 2 you know 3 into 2,
6 plus 3, so we have 9 connections and we have 4 bias values. So, in total we need 13

initialization; 13 values we need to initialize.

So, the same thing is mentioned here in the start weights. You can see start weights run if
13 values, and as we talked about that typically we initialize these values from minus 0.5
to 0.5. So, the same thing is mentioned here. So, this will be used this these particular
values are going to be used for the initialization step. And then when we see another
argument rep that is for number of reputation a number of repetition that we want to

number of times that we want to train our model, right.

So, we just want to run it you know once right. So, this we if you understand finding
more detail about this particular function you can go here in the help section neural net

and you will get more details about this particular function.
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42 Tibrary(neuralnet)
43
44 df=data.frame(FatScore, SaltScore, Acceptance)
45 str(df) J
46
47 # Neural Network Model
48 # startweights vector: no. of all bias (4) and connection weight values (9)
49 # Tinear.output=T for prediction
50 # linear.output=F for classification
1
52 mod=neuralnet (Acceptance ~ FatScore + Saltscore, df, hidden=c(3),
53 startweights = runif (13, -0.05, 0.05), rep = 1,
54 algorithm = "backprop”, learningrate=0.1, err.fet = "sse",
55 act fet = "logistic”,
56 Tinear.output=F)

57 g
S8 3 m 0
5355 (oplew) ¢ RSuipl ¢
console G/sesslon 11/ =0

The downloaded binary packages are in
c:\Users\user\AppData\Local\Temp\RtmpGoosgD\downloaded_packages

> library(neuralnet)

Wﬂl’ﬂi"g message:

package ‘neuralnet’ was built under R version 3.4.1

> df=data.frame(Fatscore, Saltscore, Acceptance)

> str(df)

‘data.frame': 6 obs. of 3 variables:

§ Fatscore : num 0.2 0.10.2 0.2 0.4 0.3
§ saltscore : num 0.9 0.1 0.4 0.50.50.8
§ Acceptance: num 100011

>

]

4| 0 df

K project o) =

Environment  History =Di

@B Pportoaet | f i | @|

) clobal | nvironment = Q ‘

pata [
6 obs. of 3 variables @

values
Acceptance num [1:6] 1
FatScore num [1:6) 0
saltscore num [1:6] 0

Files Plots Packages Help Viewer
¢ B g Q reyraned
R Iraining of neural netwarks = ¢

-
R Documentation ||

neuralnet {neurainet)

Training of neural networks

Description

neuzulnel 15 used to train neural networks using l
backpropagation, resilient backpropagation (RPROP)

with (Riedmiller. 1994) or without weight backiracking
(Riedmiller and Braun, 1993) or the modified globally
convergent version (GRPROP) by Anastasiadis et al
(2005). The function allows flexible settings through
custom-choice of error and activation function.

Furthermore the calculation of aeneralized weiahts. |
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42 library(neuralnet)
43
44 df-data.frame(Fatscore, saltscore, Acceptance)
45 str(df) 1
46 |
47 # Neural Network Model
48 # startweights vector: no. of all bias (4) and connection weight values (9)
49 # linear.output=T for prediction
50 # linear.output=F for classification
51
52 mod=neuralnet(Acceptance ~ Fatscore + Saltscore, df, hidden=c(3),
53 startweights = runif(13, -0.05, 0.05), rep = 1,
54 algorithm = "backprop”, learningrate=0.1, err.fct = "sse",
55 act.fet = "logistic”,
56 Tinear. output=F)

57 -
58 ¢ .
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Console G/Sesslon 11/ =0

The downloaded binary packages are in
c:\Users\user\AppData\Local\Temp\RtmpGoosgD\downloaded_packages

> library(neuralnet)

warning message:

package ‘neuralnet’ was built under R version 3.4.1

» df=data.frame(Fatscore, saltscore, Acceptance)

> str(df)

‘data frame': 6 obs. of 3 variables:

§ Fatscore : num 0.2 0.10.20.2 0.4 0.3
§ saltScore : num 0.9 0.1 0.4 0.50.50.8
$ Acceptance: num 100011

>

You can see all these arguments and for example, specifically we were discussing a rep.

B project (Nore) +

Environment  History

@B Pporomets | f

) clobal 1 nvironment « Q

Data

0df

values
Acceptance num [1:6] 100011
Fatscore num [1:6] 0.2 0.1 0.2
saltscore num [1:6] 0.9 0.1 0.4

6 obs. of 3 variables @

0.2
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Q. neuralnet

1t raining of neural networks =

nenralner is used o rain neural networks using m
backpropagation, resilient backpropagation (RPROP)

with (Riedmiller, 1394) or without weight backlracking
(Riedmiller and Braun, 1993) or the modified globally
convergent version (GRPROP) by Anastasiadis et al.
(2005). The function allows flexible settings through !
custom-choice of error and activation function.
Furthermore the calculation of generalized weights
(Intrator O. and Intrator N., 1993) is implemented.

Usage

neuralnel (lomula, data, hiddes = 1, Uhee |
atepmax  lel05, rep |, starr |
learningrate. Limil = NULL,

Tazvnimavirs famrey  1ioriming |

So, you can see number of repetitions for the neural networks training.
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45 str(df) 0df 6 obs. of 3 variables @

46
values
47 # Neural Network Model

48 | startweights veetor: no. of all bias (4) and connection weight values (9) Acceptance nun [1:6) 100011

49 # linear.output=T for prediction Fatscore num [1:6] 0.2 0.10.2 0.2

50 # linear.output=F for classification saltscore num [1:6] 0.9 0.1 0.4 0.5

51

52 mod=neuralnet(Acceptance ~ Fatscore + Saltscore, df, hidden=c(3),

53 startweights = runif(13, -0.05, 0.05), rep = 1, Fils Plots Packages Help Viewer =0

54 algorithm = "backprop”, learningrate=0.1, err.fet = "sse",

55 act.fct = "logistic”, PP RIS S Dewiinet

56 Tinear. output=F) K¢ raining of neura networks =

57 =1 CUSWIIFIIVICE Ui E11U1 @i duuvauvil Ui it

S8 " ' | Furthermore the calculation of generalized weights
5355 (oplevel) ¢ RSubl = - (Intrator O. and Intrator N., 1993) is implemented. i)
Console /sesion 11/ =0 Usage
The downloaded binary packages are in E

c:\Users\user\AppData\Local\Temp\RtmpGoosgo\downloaded_packages nenralnet (formila, data, hidden 1, thre

> library(neuralnet) slepmax = le05, rep = 1, slarl
wWarning message: Tearningrate.limit  NULL,
package ‘neuralnet’ was built under R version 3.4.1 Leagningrale. Laclor = List(ninu
» df=data.frame(Fatscore, saltscore, Acceptance) Tearningrate NULL, 1ifasign "

> str(df)

slep = 1000, algocilhm

‘data.frame': 6 obs. of 3 variables: , act.fer  "lag
§ Fatscore : num 0.2 0.10.20.2 0.4 0.3 lincar.outpul = TRUE, exclude =
$ saltscore : num 0.9°0.10.40.50.50.8 i constant.weights  NULL, 1ikeli
§ Acceptance: num 100011 b

> _ Arguments

So, in this case we just want one. If you specify more than one then of course, you will
have in a way you will have two candidate models. So, that other actually based on two
runs. So, an every run the results might be might change slightly as we have been talking
about that machine learning algorithm or data driven models they are sensitive to data.
So, therefore, you know every run results might change. So, from those runs we can

always let the best model.

However, in this particular case for the illustration we are just running it building our

model just once.



(Refer Slide Time: 06:29)

B KT (000 Viw PO NSO Kl ety O 160k KD

Q- 2[(» E e | adding +
0 nannux =0
a M osoucosawe | Q Zel D1 . “HRun | 5% [ FSouce <
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43
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45 str(df) F
46

47 # Neural Network Model

48 # startweights vector: no. of all bias (4) and connection weight values (9)
49 # Tinear.output=T for prediction

50 # linear.output=F for classification

52 mod=neuralnet(Acceptance ~ Fatscore + saltscore, df, hidden=c(3),

53 startweights = runif(13, -0.05, 0.05), rep = 1,

54 algorithm = “"backprop”, learningrate=0.1, err.fet = "sse”,

55 act_fct = "logistic",

56 Tinear. output=F)

57

58 « m ’
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Console G/sesslon 11/ =0

The downloaded binary packages are in
c:\Users\user\AppData\Local\Temp\RtmpGoosgD\downloaded_packages

> library(neuralnet)

Warning message:

package ‘neuralnet’ was built under R version 3.4.1

> df=data.frame(Fatscore, Saltscore, Acceptance)

> str(df)

‘data.frame': 6 obs. of 3 variables:

§ Fatscore : num 0.2 0.10.2 0.2 0.4 0.3

§ saltscore : num 0.9 0.1 0.4 0.50.50.8 1
§ Acceptance: num 100011 3

>

=g x

K project (None) =

Environment  History

P E ot e ©
& clobal  nvironment = Q

pata

0df 6 obs. of 3 variables @
values

Acceptance num [1:6] 100011
Fatscore num [1:6] 0.2 0.1 0.2
saltscore num [1:6] 0.9 0.1 0.4

Files Plots Packages Help Viewer

PR B 4 neuralnet
It Ieaining of neural nefworks =
g
slaclweights avector containing
starting values for the

weights. The weights wil
not be randomly initialized. %

leacningrale. Linil  avectororalist
containing the lowest and
highest limit for the
learning rate. Used only
for RPROP and
GRPROP.

Learningzale, Laclor  avectororalist
containing the
muttiplication factors for
the upper and lower

Now the algorithm that we can select, so there are multiple options here, so that we

you can see in the help section. So, this particular argument algorithm is here.
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43
44 df-data.frame(Fatscore, saltscore, Acceptance)
45 str(df) L
46

47 # Neural Network Model

48 # startweights vector: no. of all bias (4) and connection weight values (9)
49 # linear.output=T for prediction

50 # linear.output=F for classification

51

52 mod=neuralnet(Acceptance ~ Fatscore + saltscore, df, hidden=c(3),

53 startweights = runif(13, -0.05, 0.05), rep = 1,

54 algorithm = “backprop"”, learningrate=0.1, err.fct = "sse",

55 act.fet = "logistic",

56 Tinear.output=F)

57

5§ ¢ 0
431 (oplewe) ¢ RSuipl ¢
Console G/Sesslon 11/ =0

The downloaded binary packages are in
C:\users\user\appData\Local\Temp\RtmpGoosgo\downloaded_packages

> Tibrary(neuralnet)

warning message:

package ‘neuralnet’ was built under R version 3.4.1

> df=data.frame(FatScore, SaltScore, Acceptance)

> str(df)

‘data.frame': 6 obs. of 3 variables:

§ Fatscore : num 0.2 0.1 0.2 0.2 0.4 0.3

§ saltscore : num 0.9 0.1 0.4 0.50.50.8 a
§ Acceptance: num 100011

> o

& project (None) *

Environment  History =0
@ H oo s f line @
) clabal | nvironment «
Data
0df 6 obs. of 3 variables ]
values
Acceptance num [1:6] 100011
Fatscore num [1:6) 0.2 0.1 0.2 0.2
saltscore num [1:6] 0.9 0.1 0.4 0.5

Files Plots Packages Help Viewer =0
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1t Iraining of neural etworks =
TIESIGH IUE.

algocilln astring containing the
algorithm type to calculate
the neural network The
following types are

possible: ‘backprop',
'rprop+', 'rprop-', 'sag’, or
‘sir’.‘backprop'refers to
backpropagation, prop+’
and ‘prop-'refer fo the
resilient backpropagation
with and without weight
backiracking, while ‘sag'
and 'sit induce the usage
of the modified globally
convergent algorithm

You can see many options here. So, we have back prop

can

that is traditional back

propagation algorithm. Then we have R prop plus, R prop minus and other you know

variance. So, all these could be used to build our neural network model; however, for our

exercise we are using back prop. Then certain arguments in this particular function are

depend on the algorithm that is being used.



So, for example, in this case back prop we might specify one more argument that is
learning rate, right. So, we discussed about the learning rate that the value the constant
value, that could be used for the you know to control the amount of learning that happens
and you know that happens from previous iteration or in each iteration. So, this is 0.1, so

right.

So, the whatever formula that we saw the updation formulas that we saw in the previous
lecture for thetas and weights ah, so there it was the values were or the addition was the
learning rate into the error value. So, you can see 10 percent of that particular value is

being used to learn.

Now, we have error dot fct; so this function again can be used. So, this is sse, so this can
be used to check the overall model error then we have act dot fct; so this is activation
function which is nothing, but what we have been calling as transfer function. So, this
activation function is actually the transfer function. So, as we talk about different

alternatives the logistic is the most popular. So, that is being used here.

Then as we talked about in previous lecture linear output is the argument that is to be
specified as false if we are building a classification model and if you are building a
application model then this has to be specified as true. So, let us run this code. Let us run

this and we will have our model.
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47 # Neural Network Model
48 # startweights vector: no. of all bias (4) and connection weight values (9) pata
49 # linear.output=T for prediction 0df 6 obs. of 3 variables 8
S0 # linear.output=F for classification | values
51
52 mod=neuralnet(Acceptance ~ Fatscore + saltscore, df, hidden=c(3), Acceptance nun (1:6] 100011
53 startweights = runif(13, -0.05, 0.05), rep = 1, R WD [ 2 0L 02 O
54 algorithm = "backprop”, learningrate=0.1, err.fct = "sse", O mod List of 13
35 act.fet = "logistic”, saltscore num [1:6] 0.9 0.1 0.4 0.5
56 Tinear.output=F)
57 Files Plots Packages Help Viewer =0
58 odSresult.matrix[1:3,1]
59 N XN} h neuralnet
60 # Interlayer Connection weights 1t Iesining of neural nenworks =
61 # Input layer to Hidden layer connections - eIy 0uE.
620 : 0
581 | (lop Lovel) ¢ RSuipt ¢ || algorilhm astring containing the
algorithm type to calculate
Console G/Sesslon 11/ =0 the neural network. The
> df=data.frame(FatScore, SaltScore, Acceptance) - folowing types are
> str(df) possible: ‘backprop’, J
‘data.frame': 6 obs. of 3 variables: Tprop¥, fprop-, 'sag, o
§ Fatscore :num 0.2 0.10.20.20.40.3 sir. backprop'refers o
§ saltscore : num 0.9 0.1 0.4 0.5 0.5 0.8 backpropagation, prop+
§ Acceptance: num 100011 and 'rprop- refer to the

> mod=neuralnet(Acceptance ~ Fatscore + saltscore, df, hidden=c(3), resilient backpropagation
+ startweights = runif(13, -0.05, 0.05), rep = 1, with and without weight
+ algorithm = "backprop”, learningrate=0.1, err.fct = "sse", backtracking, whie 'sag’
+ act.fet = "logistic", L] and sl induce the usage
+ Tinear.output=F) of the modified globally
- convergent algorthm




Now in the model we many values are written. So, one of them is result dot matrix that
will actually have the values of you know bias values and connection weights and few

more a few more few more parameters about the model.

So, you can see here we are just looking at first 3 values, so first 3 values of this
particular matrix. So, first column so, you can see. So, first 3 values are actually about
error. So, this error is actually based on. So, this is actually sse value because we had
used sse here; so we have other options also for model error. So, as you can see here sse
and ce in the help section and you can see ce is cross entropy error and as a some of

square error. So, these are the option that could be used.

Then we have reached this threshold. So, that is 0.0098; so that is about 0.01. So,
threshold we had not specified, however the default value for the threshold is there. So,
that we can see you can see threshold is 0.01. So, the threshold has these two this level
therefore the training process was it stopped, right. So, the threshold is again based on
this the error value that we talked about and the steps that have been taken 6 steps were
required. However, if as we talked about if the model is not able to converge then
probably the training process would be stopped by the limit that is specify the number of
steps.

However, by default this limit is quite high; so therefore, there is a you know good
chance that model will converge you can see the default value is step max in the help
section, you can see steps max it is 1 e plus 0 5. So, that is 10000, I think that is 10000
steps more than so that is more than 10000 steps 1 lakh, 1 lakh steps. So, that could be
used. So, those number of steps put the limit. So, in this particular case only 6 steps have

been used.

Now, let us move forward. So, next thing that we would like to understand is the
interlayer connection weights, so which is nothing but the information about these
values. So, these are these are some of the weights so we would like to see from the

model; the final model that we have what are these values thetas and weights.

So, first we will look at these values and these weights and theta combination and then
here these value. So, typically because we have one hidden layer if we had a more

hidden layer and again and we would we can; so for every inter layer combination, so



input layer 2 first hidden layer in this case we have just one hidden layer. So, from input

layer to this hidden layer we will have few weights and bias values.

Now next is from hidden layer to output layer; so again we have some weights and bias
value. So if we had more hidden layer, so we would have more such combinations. So,
inter layer connections weights and bias values we want to have a look. So, first we look
at the input layer to hidden layer connection. So, this is the matrix that we can this is
actually list that is returned when the model is built. So mod dollar weights. So, within
this the you can see in the list the first element of this list is actually nothing, but a matrix

for storing these weights right.

So, by default these values are stored using the default row number and column number
1 2 3. However, I have changed the dimension names that is row names and column
names for this particular matrix. So, that we are able to understand which particular
value is for which particular connection or by aspect or you know for which bias value

for which particular node.

So, we this is the code; so you can see I am using dim names function and we use this
function allows us to change the row names and column names of a particular matrix or
data frame. So, in this case we can see the list is to be supplied. So list first early first
element is always the row names and then the second element is the for the column

names.
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58 modSresult.matrix[1:3,1] 0df 6 obs. of 3 variables a

59 ; y values
60 # Interlayer Connection weights

61 # Input layer to Hidden layer connections Acceptance nun [1:6] 100011
62 dimnames (modSweights[[111[[1]1)= list(c("bias","nodel:fat","node2:salt"), WRIEEEE D [1:6] 0.2 0.10.2 0.2
63 c("node3", "node4", "node5")); modSweights[[1 | ©mod List of 13
64 saltscore num [1:6] 0.9 0.1 0.4 0.5
65 | Hidden layer to output layer connections
66 dimnames (modSweights[[1]][[2]])= 1ist(c("bias","node3", "noded", "nodes"), Files Plots Packages Help Viewer =0
67 c("node6:accept")); modsweights[[1]1]1[[2]]
68 ®» DO 8 neursinet
69 # classify training records 1€ raining of neural networks =
70 modtrainc=ifelse(modSnet.result([1]](,1]>0.5, 1, 0); modtrainc - | G GG TG TV TG00 1 R
A R— S F
651 (oploved) 2 Rsunt | gage P
ool G Samlon 11/ SO et (tomuta, data, hidden = 1, Uizeatd
+ linear.output=F) o atepmax  1e105, rep 1, startwei
> mod$result.matrix(1:3,1] learningrate. limit = NULL,
error reached.threshold steps 1earningr. factor  list(minns
0.750095223085 0.009869959881 6.000000000000 learningrule=NULL, lilesign = "nor
» dimnames (modSweights[[1]1[[1]])= 1ist(c("bias", "nodel:fat", "node2:salt"),
+ c("node3", "noded”, "node5")); modsweights([[1]][[
1]
node3 noded nodeS
bias 0.04907725236 -0.01088512971 0.005528508468
nodel:fat -0.04518572328 0.03796026029 0.019906937424 rguments

node2:salt -0.04692743047 -0.01837509188 -0.034242291563
> 2 ornula - a svmbolic descrintion of




So, let us execute this code and you can see this is the result; you can see bias values for
node 3 is this one, node 4 is this one; so you can see for node 5, similarly a node 1,
which is also corresponding to the predictor fat. So, the connection weights are specified
so from node 1 to node 3 and node 4 and node 5 these are the weights. Then node 2 that
is corresponding to the predicted salt and the connections to node 3, node 4 and node 5

and the connection weights we can see here.

So, a specific connection weights and their values, the bias values and connection
weights values we can access in this fashion. Similarly from hidden layer to output layer
also we have 3 weights and 1 bias value, so 4 values. So, that also we can access and in
the similar fashion. So, again I am changing the dimension in here again for this
particular second element of weights a list. So, again as you can see bias the list is being
supplied with first element being the row names and the second element being the you

know column names. So, let us execute this code.

(Refer Slide Time: 14:40)

TOTes
| Addine ¥ K Project (None)
091 annux ] environment  History =0
M Soueonsoe Q Zv L] e ARy 5% [souce v T H oot f list »
57 1 @ clobal i nwironment =
58 modSresult.matrix(1:3,1]
59 Data
60 # Interlayer Connection weights 0df 6 obs. of 3 variables @
61 # Input layer to Hidden layer connections values
62 dimnames(modsweights[[1]1[[1]])= list(c("bias", "nodel:fat", “node2:salt"), .
63 ¢("node3”, "noded” ,"nodeS")): modSweights[[1 || Acceptance num [1:6] 100011
64 Fatscore num [1:6] 0.2 0.1 0.2 0.2
65 # Hidden layer to output layer connections O mod List of 13
66 dimnames (modSweights [[1)][[2]1)= Tist(c("bias","node3", "node4" , "node5"), saltscore num [1:6] 0.9 0.1 0.4 0.5
67 ¢("node6:accept”)); modsweights([1]]([2]]
68 Files Plots Packages Help Viewer =0
69 F Classify training records e
70 modtrainc=ifelse(modSnet.result[[1]][,1]-0.5, 1, 0); modtrainc 9 a 2 Deuralnet
71 modtrainc=unname (modtrainc)
n
7RI e
01 (oplow) 2 Rsuit: | sage r
Console G/Sesslon 11/ BEIN i (Lomult, dulu, bidden = 1, Uizeobd
node3 node4 node$ 3 stepmax  lel05, rep 1, startwei
bias 0.04907725236 -0.01088512971 0.005528508468 Leagnil limil = NULL,
nodel:fat -0.04518572328 0.03796026029 0.019906937424 Tearni
node2:salt -0.04692743047 -0.01837509188 -0.034242291563 learningrale=NULL,
» dimnames (modSweights[[1]][[2]]1)= 1ist(c("bias","node3", "node4", "nodeS"), Tifesi
+ c("node6:accept”)); mod$weights[[1]]([2]] oL

Ik, e

node6:accept
hls = NULL,

bias  0.025300250271
node3 -0.003196513522
node4 0.040000335432 rguments
node5 -0.034636759934
>

3 ormula a svmbolic descriotion of

Now you would see that the row names bias, now you see the row names have changed.
Now, the hidden layer hidden layer you know bias and hidden layer bias value and nodes
they have become the row names and the output layer nodes node has become the you

know column name.



So, you can see bias that bias value for this particular output node and then we have this
connection weight from node 3 to node 6 and node 4 to node 6 and node 5 to node 6. So,

these are the connection weights and bias values for the model that we have just built.

Now, the final output values the values that we get from the output node, so this value.
So, this value is also returned by the model by the function in our model object. So, this
can be accessed using net dot not net dot result list somewhat dot what dollar net dot
result will give us these cold values. So, in this particular case we had just one node. So,
we have just one value here. So, because this was for classification this was classification

task.

So, these values can be compared with our cut off value. So, in this particular case we are
taking 0.5 as the cut off value which is equivalent to the most proper class method where
you know there are only two classes then 0.5 cut off value will actually implement that
most proper class method. So, we will get these specific values using these scores. So, if

you want to have a look at this scores also so we can look at this scores as well.
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61 # Input layer to Hidden layer connections " values

62 dimnames (modSweights[[1]][[1]])= list(c("bias","nodel:fat", "node2:salt"),

63 c("node3", "noded", "node5")); modsweights[[1

65 # Hidden layer to output layer connections
66 dimnames (modSweights[[1]1[[2]1)= list(c("bias","node3","node4", "node5"),

Acceptance num [1:6] 100011

Fatscore num [1:6) 0.2 0.1 0.2 0.2
O mod List of 13

saltscore num [1:6] 0.9 0.1 0.4 0.5

67 c("node6:accept”)); modSweights([111[[2]]

68 Files Plots Packages Help Viewer =
69 # Classify training records

70 modtrainc=ifelse(modSnet.result| [1]][,1]:0.5, 1, 0); modtrainc XN 2 neuralner
71 modtrainc=unname (modtrainc) 1t Iraining of neural networks =

n o | G T 13 T 19 S

730

032 (opLewe) ¢ Bsupl ¢ | gage r

(T SO iU tomuta, data, hidden = 1, Uizestid

node5 -0.034636759934 3 ¥ 1, startwei

> mod$net.result limil = NULL,

({88 factor  list(minus
99 NULL, Lilesign = "not

1 0.5065925524; m

2 0.5065564247

3 0.5065737737

405065775296 conslanl .weighls = NULL, Likeliho

5 0.5065896939

6 0.5065948789 rguments

> 2 ommula a svmbolic descrintion of

So, if we run this you can see this is a list and we have just one node and 6 observations
there. So, these are the scores. So, if we compare this with 0.5, we will get the values.
Let us unname these column names, these names, dimension names and we will get this

now we are creating a table with the scored you know this the predicted class and then



actual class and then the predicted value that is the you know we can say the probability

scores and then predictors.
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71 modtrainc=unname(modtrainc) Al L e
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76 Files Plots Packages Help Viewer =0
77 F classification matrix % A
78 table("Actual class"=df$Acceptance, QORI 4 neuralnet
79 “predicted Class"=factor(modtrainc, levels = ¢("0","1"))) 1t raining of neural neworks =
80 # classfication accuracy [ ——————
81 ¢ o
71 (oplews) ¢ Bsupl ¢ | gage r
il ) SO e tommuta, data, hidden = 1, Uizeatd
> modtrainc=unname (modtrainc) g stepmax  1&105, rep 1, startued
> data.frame("predicted Class"=modtrainc, "Actual class"=dfSacceptance, Llearningrale. limil = NULL,
+ “"predicted value"=modSnet.result[[1]]1(,1], "fat"=dfSFatscore, learningrate factor  list(minus
"salt"=df $saltscore) £ L. lilesign = "not

+
predicted.Class Actual.Class Predicted.value fat sal 1000, algorithm

t
1 1 1 0.5065925524 0.2 0.9 acl. Lol = "loglsl
2 1 0 0.5065564247 0.1 0.1 linear.outpnt. MUK, exclude NG
- i 0 05065737737 0.2 0.4 conslunl.weighls = NULL, Likelihod
4 1 0 0.5065775296 0.2 0.5
5 1 1 0.5065896939 0.4 0.5 rguments
6 1 1 0.5065948789 0.3 0.8 a3
> S sada & a svmbolic descrintion of

So, this is our data frame with all the information the relevant information predicted
class. You can see all the observations have been predicted as class 1 belonging to class 1

and if you look at the predictor value all of them are more than 0.5.

So, because this was a small sample just 6 observations you can see that you know all the
values have been classified as belonging to one particular class and you can see the
predictor the predictors also their values also. So, now we can look at the performance;

however, this is quite obvious 3 cases correctly classified.
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> data frame("Predicted class"=modtrainc, "Actual class"=df$acceptance, Lleagningrate. Limil = NULL,

+ “predicted value"=modSnet.result[[1]][,1], "fat"=dfSratscore, learningrate.factor  lisr(minng
a "salt"=df$saltscore) learningrale=NULL, lilesign = "nor
predicted.Class Actual.Class Predicted.value fat salt Tifesiq 1000, algorithm
1 1 0.5065925524 0.2 0.9 4 suet, acl.lel = "logisl
2 il 0 0.5065564247 0.1 0.1 Pt MMy Skainde Fan
3] 1 0  0.5065737737 0.2 0.4 conslanl.weighls = NULL, Llikelihoc

4 1 0 0.5065775296 0.2 0.5

5 i 1 0.5065896939 0.4 0.5 rguments

6 1 1 0.5065948789 0.3 0.8 o

> 3 ormula a svmbolic descrintion of

So, in this case as you can see the predicted classes all the observation have been
classified as class 1. So, therefore, we need to make certain changes in this particular
code that we have been using for the other techniques because there will not be any

values for level 0.

So, therefore, we need to specify that explicitly, so that that actually comes in the
classification matrix that we want to generate here. So, you can see that modtrainc I am
converting it into a factor variable and then giving these two levels. So, that even if there
are no observations being predicted as belonging to class 0 is still that particular you

know column in the classification metric would be displayed; so let us run this.
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76

77 # classification matrix
78 table("Actual Class"=dfSAcceptance,

79 "predicted class"=factor(modtrainc, levels = ¢("0","1")))

80 F classfication accuracy
81 mean(modtrainc==df SAcceptance)
82 # Misclassification error
83 mean(modtrainc!=df Sacceptance)

85 # narunck dianram

(]| Environment  History -

01 (opleve)

Console G:/sesslon 11/

2 1 0 0.5065564247 0.1 0.1

3 1 0 0.5065737737 0.2 0.4

4 1 0 0.5065775296 0.2 0.5

5 i 1 0.5065896939 0.4 0.5

6 il 1 0.5065948789 0.3 0.8

» table("Actual class"=dfSacceptance,

+ "predicted Class"=factor(modtrainc, levels = c("0","1")))

predicted class
Actual Class 0 1
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So, you can see this column I was talking about. So, no observation, but it is being

displayed because of this change in the code that we have done.

We had used just the modtrainc directly this column would have gone. So, we can see

that 3 values in the diagonal element 3 observation have been correctly classified and 3

observations are incorrectly classified. So, all the observation belong to you know you

know in class 0 I have been incorrectly classified as class 1. So, the classification

accuracy an error are also obvious 0.5 in this case.

We want to have a look at the network diagram now using R. So, this is the function plot

and we have to pass the this neural network object mod here and we will get the diagram.
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So, you can see here, so you can see here that this is the neural network diagram that has

been prepared by this function plot.

So, you can see fatscore, saltscore these are the two predictors corresponding nodes so
you can see here and from each node you can see the values the weights from both these
nodes and you can see the bias values also here. So, 3 bias values corresponding to 3
hidden layer nodes here and then we have one bias node for the output node and 3
connection weights for the output node and then we have the, so this particular output

node is corresponding to the acceptance that is our outcome variable.

So, other details as you can see this was the error that is the sse value and the number of
steps that were required to reach the conversion right to stop the network learning

process. So, this is our model.
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77 # classification matrix
78 table("Actual Class"=dfSAcceptance,

79 "predicted class"=factor(modtrainc, levels = ¢("0","

80 # classfication accuracy
81 mean(modtrainc==df SAcceptance)
82 # Misclassification error
83 mean(modtrainc!=df Sacceptance)

85 # Network diagram
86 plot(mod)

88 [library(x1sx)

89 # usedcars.xlsx
90 dfl-read.x1sx(file.choose(), 1, header = T)
91 dfl=dfll, 'apply(is.na(dfl), 2, all)]

R
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& clobal t nvironment =
Data
1) 0df
values
Acceptance num [1:6] 100011
Fatscore num [1:6] 0.2 0.1 0.2 0.2
O mod List of 13
modtrainc num [1:6] 111111

6 obs. of 3 variables J
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Console G/sesslon 11/

> table("Actual Class"=dfSacceptance,

+

predicted Class

Actual class 0 1

003

103
> mean(modtrainc==df SAcceptance)
[ 0.5
> mean(modtrainc!=df Sacceptance)

[1] 0.5

> plot(mod)
>

"predicted class"=factor(modtraine, levels = ¢("0","1")))

RSuiipl &

&0

. ACCEQI_EJ ice

Error: 0.750095 Steps: 6

Now, so this example was you know we used small sample just 6 observations.
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> mean(modtrainc==df SAcceptance)
[1os
> mean(modtrainc!=df$Acceptance)
(1) 0.5
> plot(mod)
> library(x1sx)
Loading required package: riava
Loading required package: x1sxjars
> dfl=read.x1sx(file.choose(), 1, header = T)
>

. ACCEEI_EJ ice

Error: 0.750095 Steps: 6

So, probably this was not an appropriate you know example an appropriate sample for us
to understand you know build a good enough neural network model. So, what we will do
we will use our used cars data set that we have been using in other techniques as well.
So, this particular data set we are going to use to build a model with you know a slightly

you know larger sample size.

So, because we would be importing data from excel file. So, let us load this package;

there very now let us import this file which cars. So, you can see 79 observations of 11



variables; however, even for this dataset this data set is also small, but better than the

previous example that we have used. So, let us remove na columns, na rows.

(Refer Slide Time: 21:38)

[ R TETR
MR G View o Sewen KA Dehg It 100 Mo

Q- =) S dding ¢ K project (None) =

@M annit =1 Environment  History -

4 7 oswconsoe @ /v o orun | 3] Gosource » P H Pt f liw e
83 mean(modtrainc!=df Sacceptance) BN @ e
84
85 # Network diagram Data
86 plot(mod) 0df 6 obs. of 3 variables
L 0 df 79 obs. of ]
88 1ibrary(xlsx) \)d] 1 9 obs. of 11 variables
89 # usedcars.xlsx - values
90 dfl=read.xIsx(file.choose(), 1, header = T) Acceptance num [1:6] 100011
91 dfl=dfll, !apply(is.na(dfl), 2, all)] Fatscore num [1:6] 0.2 0.1 0.2 0.2
92 df1=df1[!apply(is.na(dfl), 1, all),] O mod List of 13
93 head(df1) 1
94 Files Plots Packages Help Viewer =0
95 hge-2017-df15Mfg_vear a 5
96 dfl=cbind(dfl, Age) B zoon Begotr @ ff % rublish +

% dfibedfl

951 | (lopLewl) ¢ RSuipl &

Console G/Sesslon 11/ =0
3 mMarut1 Suzuki  sx4 2011 retrol 7.18 48.000
4 chevrolet  geat 2013 etrol 4.92 41.000
5 Honda Civic 2008  petrol 13,50 110.000
6 Honda  Brio 2012 petrol 5.74 60.000 2.99
Airbag C_price

0 1

w o
oroo
o

Vo b o
coocoo
coocoo

Let us look at the first 6 observations. So, these are the variables we are already familiar
with this dataset brand so this is about the used car. So, we would like to build a
prediction model to predict the value, offered price value of a used car. So, the variables
that we have brand model manufacturing here Fuel type it is petrol, diesel or CNG then
we have SR price that is show room price, that is the price when the that particular used
the car was first purchased. Then we have kilometres the accumulated kilometres, then

price the offer price of the used car in the current condition.

That is you know that we can see through the different variables. Transmission 0 or 1
that is manual or automatic, then the Owners previous number of 5 persons who have
actually owned this car before this sale offer. So, that is there then the number of airbags
and then we have another variable C underscore price; however, however we will not be

using this particular variables C underscore price.

Now from the manufacturing year as we have been doing in other techniques also when
we use the particular data set that we compute the age variables. So, that is more
appropriate for our prediction model. So, let us compute this. Let us add it to data frame

and let us also take a backup of this data frame.



Now, if we look at the variables, so now, we would like to you know get rid of certain

columns certain variables.
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For example, one is I think brand name yes; so brand name, model name and
manufacturing you are no longer required and the last one that is as you can see this is

this is actually C price we do not want. So, this is actually we have 12 variables this is

the variable number 11.

So, we do not want this one as well, so because we are going to build a prediction model.
So, let us cut it off these columns and now let us look at the variables that we have. So,
we have now 79 observation 8 variables. So, these are the variables of interest to us.
Now, what will do as we discussed in previous lectures that the neural network models
perform much better when we have the scale of you know 0 to 1. So, if all the variables

they are in this scale 0 to 1 then probably neural network model they perform they

converge quickly and also the performance improves.

So, in this, particular data frame as we can see we have two categorical variable Fuel
type and Transmission, so however, as we will see that neural network you know as we
did in the previous exercise also the acceptance was categorical outcome variable, but we
did not change it to change it into a factor variable; because the neural network function
it does not allow us to do that conversion. So, all the computations are done internally in

that particular function. So, we would be required to change some of these variables. So,



what we will do? We will so this is a one particular example in R environment where we

have to explicitly create dummy variables.

So, dummy coding we have to do probably for the first time. So, we have been gone
through so many techniques. So, typically the we convert the variables into factor
variable and the functions take care of the dummy conversion process and the model
building later on however, in this particular case will have to explicitly do this. So, a fuel
type we have 3 levels, let us check the level CNG, diesel, petrol. So, all these levels will

look to convert them into dummy variables this is one way to achieve that you can see.

So, CNG if dfl dollar fuel type if it is CNG then because this logical operator we are
using. So, therefore, if it is CNG then the it will be true otherwise false. So, it could be a
logical variable, you can see in the environment section CNG has been created logical
you can see false false true. So, in the neural network function the values should be

either the variables that use there should be the logical or numerical.

So, you are converting the factor variables the categorical variable into logical variables

the logical dummy variables. So, now let us convert the diesel and then petrol.
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* ! adding * K Project (Nore) *
@311 annn x =1 Environment  History =0
M soueonsae @ /v - iy 0% [ souce - 2 H Pmpoe s f list »
96 dfl cbind(df1, Age) “| @ ciohal | nvironment =
97 i 1Y 0US. U1 iC variauies
98 dflb=dfl
values

99 dfl=dfl[,-c(1,2,3,11)]

100 str(dfl) Acceptance num [1:6] 100011

Age num [1:79] 4 5649563

102 # variable transformation and normalization CNG logi [1:79] FALSE FALSE FA
103 Tevels(df1SFuel_type) | Dpiesel logi [1:79] FALSE TRUE FAL
104 cNG-=df15Fuel_type=="nG" Fatscore num [1:6) 0.2 0.1 0.2 0.2

105 Diesel=df13Fuel_type=="Diesel" Ounod TS

106 petrol=df1SFuel_type=="petrol"

107 Files Plots Packages Help Viewer =0

108 manualT=df15Transmission==0

109 AutoT=df1$Transmission==1 P o BHegats 0 % pubiish -

111 maxdf1=unnane (apply(df1(,-c(1,5)], 2, max, na.rm=T))

1061 (lopLeve) ¢ R Suipl +

Console G/sesslon 11/ =0

§ sRPrice  :num 8.88 6.99 7.18 4.92 13.5 . =

$ kM tonum 75 49.3 48 41 110

§ price :num 5.6 3.95 2.99 2.35 3.65 2.99 3.87 5.8 5.5 3.1 ... :

§ Transmission: num 0000101001 ALCQM‘CE
§ owners g (i LUt 2 Al ALl

§ Airbag tnum 0000001111,

§ Age : num 45849563104

> levels(dflSFueW_(ype)

(1] "ong" ~ "piesel” "Petrol” 1
Error: 0.750095 Steps: 6

> CNG=df1$Fuel_type=="eNG"
> Diesel=df1SFuel_type=="Diesel"
>

Then we have another variable transmission that is also factor variables; let us convert it
into a logical or dummy variables. So, manual T and auto T however, as we understand

that we will not be using all 3 all categories and one when we taken as the reference.



So, we would be no for fuel type we would be taking only two of the dummy variables in
the modeling exercise and for transmission also just one of the dummy code in the
modeling exercise. So, we will take diesel and petrol you know these two categories of

Fuel type and the automatic transmission as the one category from transmission variable.

So, next process as we talked about as we discussed in previous lecture is we need to
convert our numeric variable into you know bring them into a 0 1 scale. So, this is how
we can do it. So, what first computation is we are trying to compute the max values for
all the numeric variables; so you can see dfl data frame we have excluded a column
number 1 and 5 which are the corresponding to fuel type and transmission. So, we left
with only numeric variables here and then we are trying to compute max value for all
these variables. And then in the next line we are trying to compute the min value for all
these numeric variables. So, let us execute these two lines, and you would see that in
max d of one here in the environment section we have 6 values because we have you
know 6 numeric variable and again min dfl, 6 values because we have 6 numeric

variables.

So, the max and min value have been computed. Now, we can use these values in the
scale function. So, this scale function we are going to use to normalize to a 0 1 scale. So,
you can see centre is now min dfl and the scale is max dfl minus min dfl; so the
particular formulation that we discussed in the slides so that is how it can be done using
R. So, scale function can be used and then we will store these values in the same

columns.
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0 dfl 79 obs. of 8 variables 1
107 0dflb 79 obs. of 12 variables (]

108 ManualT=df15Transmission==0 Valiee
ﬁg AutoT=df15Transmission==1 ccetance [ IR Ol 0

111 maxdfl=unname(apply(dfl[,-c(1,5)], 2, max, na.rm=T)) Age num [1:79] 45649563
112 mindfl=unname(apply(df1[,-c(1,5)], 2, min, na.rm=T)) AutoT Togi [1:79] FALSE FALSE FA.
113 df1[,-c(1,5)]=scale(df1[,-c(1,5)], center = mindfl, NG Togi [1:79] FALSE FALSE FA. -
114 scale = maxdfl-mindf1)

104
105
106 petrol=df1SFuel_type=="retrol"

Fils Plots Packages Help  Viewer =

116 Hf2=cbind(df1[,-c(1,5)], Diesel, Petrol, AutoT,
17 Etr(df?)( SR gl B o BHegpats 0§ % pubiish -

119 # partitioning (90%:10%)

1161 | (opLevel) & RSuiipl &

Console G/sesslon 11/ =0
> levels(df1Sruel_type) -
[1] "ong”  "Diesel” "petrol”

> CNG=df1$Fuel_type=="CNG"

> Diesel=df1$Fuel_type=="Diesel"

» petrol=df1$Fuel_type=="petrol"

> ManualT=df 1§Transmission==0

> AutoT=df1$Transmissions:

> maxdf 1=unname(apply(df1[,-c(1,5)], 2, max, na.rm=T))

> mindf1=unname (apply(df1[,-c(1,5)], 2, min, na.rm=T))

> df1[,-c(1,5))=scale(df1[,-c(1,5)], center = mindfl, Error: 0.750095 Steps: 6
+ scale = maxdfl-mindf1)

>

. Accegtgn; ice

So, let us execute this code, now so we have scaled all these we have normalized all
these numeric variables. So, let us add the dummy variables in and create a new data

frame that we are going to use in our modeling exercise, so diesel, petrol and automatic

transmission.
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e KW (0% View B sion KA Dewn MOk 10 Hop
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Q- =11 ‘ B ndding +
01 annnx [ Envlronment History =0
a M osoueonsae Q f v £ v SR | 5% _#Soune P E ot iwe @&
107 ol 1 @ cilobal i nvironment = Q
108 ManualT=df1STransmission==0 = 5
109 AutoT=df1$Transmission== 0dfl 79 obs. of 8 variables [
110 0dflb 79 obs. of 12 variables [
111  maxdfl=unname(apply(df1[,-c(1,5)], 2, max, na.rm=T)) values 3
112 mindfl=unname (apply(dfl[,-c(1,5)], 2, min, na.rm=T)) [1:6100011
13 df1[,-c(1,5)]=scale(df1[,-¢(1,5)], center = mindfl, | R
114 scale = maxdfl-mindfl) Age num (1:79] 45649563
AutoT Togi [1:79] FALSE FALSE FA.

115
116 df2=cbind(df1[,-c(1,5)], Diesel, petrol, AutoT) NG Togi [1:79] FALSE FALSE FA. -

117 str(df2)

118 Fils Plots Packages Help  Viewer )

119 # partitioning (90%:10%) 5 p

120 partidx=sample(1:nrow(df2), 0.9°nrow(df2), replace = F) B zoom | Begals 0] % rubish +

121 df2train=df2[partidx,]

122 df2test=df2(-partidx,] ,

12300 0

11630 (Top Lewed) RSuipl ¢
=0

Console G:/sesslon 11/

> levels(df1Sruel_type)

[1] "ong”  "Diesel” "petrol”
> CNG=df1$Fuel_type=="CNG"

> Diesel=df1$Fuel_type=="1
» petrol=df1$Fuel_type=:
> ManualT=df1$Transmissio
> AutoT=df1§Transmissions:
> maxdf 1=unname(apply(df1[,-c(1,5)], 2, max, na.rm=T))

> mindfl=unname (apply(df1(,-c(1,5)], 2, min, na.rm=7))

> df1[,-c(1,5)]=scale(df1[,-c(1,5)], center = mindfl,

+ scale = maxdfl-mindf1)

>

So, this was this these are the variables that we are taking into our modeling exercise, let

us create the data frame, let us look at the structure of this final frame.
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»  Adding v

01 annix

107
108
109
110
111
112
113

ez-80-

ManualT=df 15Transmission==0
AutoT=df15Transmission==1

40N SoueonSave

maxdf 1=unname (apply (df1[,

mindf 1=unname (apply (df1[, , 2, min, na.rm=T)

df1[,-c(1,5)]=scale(df1[, ], center = mindfl,
scale = maxdf1-mindf1)

], 2, max, na.rm=T))
] )

df2=cbind(df1[,-c(1,5)], piesel, petrol, AutoT)
str(df2)

[ partitioning (90%:10%)
partidx=sample(1:nrow(df2), 0 9°nrow(df2), replace = F)
df2train=df2[partidx, ]

=% Run

5%

=

2 Soure v

df2test=df2[-partidx,]

(Top Level) 2

Console G/sesslon 11/

> str(df2)

‘data.frame':
§ SR_Price: num

79 obs. of 9 variables:
0.0511 0.0344 0.0361 0.016 0.092 ...

$ kM : num 0.378 0.205 0.196 0.149 0.615 ...

§ price . num 0.0628 0.0395 0.026 0.0169 0.0353 ...

§ owners : num 00001000010,.,

$airbag :num 0000001111 ...

$ Age : num 0.25 0.375 0.5 0.25 0.875 0.375 0.5 0.125 1 0.25 ...
§ Diesel : logi FALSE TRUE FALSE FALSE FALSE FALSE ...

§ petrol : logi TRUE FALSE TRUE TRUE TRUE TRUE

§ AutoT @ logi FALSE FALSE FALSE FALSE TRUE FALSE ...

>

RSuiipl &

=0

&) gt o) =

Environment  History =0
@ E ot e ©
2 ciobal | nvironment = Q

0dfl 79 obs. of 8 variables ®m -
0 dflb 79 obs. of 12 variables [
0df2 79 obs. of 9 variables ]
values

Acceptance num [1:6] 100011
Age num [1:79) 4 5649563
AutoT logi [1:79] FALSE FALSE FA. -

Fils Plots Packages Help  Viewer
B Bxporl »

=0

B 2oom Q% rubiish -

So, this is the frame df2 that data frame that we are going to use for our network model.
So, you can see we have variable SR price, KM price, owners, airbag and age all have
been scaled to 0 and 1 and you can see the values there in the structure output. And then
we have 3 dummy variables which have been which have been taken as the logical

variables here diesel, petrol and automatic transmission. So, once this is done we can go

ahead and do our partitioning.
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R
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112 mindf name (apply (df1[,-c(1,5)], 2, min, na.rm=T))
113 dfl[,-c(1,5)]=scale(df1[,-c(1,5)], center = mindfl,
114 scale = maxdfl-mindf1)
115
116 df2=cbind(df1[,-c(1,5)], Diesel, petrol, AutoT)

117
118
119
120
121
122

str(df2)

[ Partitioning (90%:10%)

partidx=sample(1.nrow(df2), 0.9*nrow(df2), replace = F)
df2train=df2[partidx, ]

df2test=df2[-partidx, ]

library(neuralnet)

# Neural Network Structure

# Input layer. 8 nodes (for 8 predictors)- nodes 1.8
A ,‘ % 7

% Run

.4

=0

_# Souee v

i

(Top Lovel) ¢

Console G/Sesslon 11/

> str(df2)

‘data.frame': 79 obs. of 9 variables:

$ sR_price: num 0.0511 0.0344 0.0361 0.016 0.092 ...

$ kM : num 0.378 0.205 0.196 0.149 0.615 ...

§ price  : num 0.0628 0.0395 0.026 0.0169 0.0353 ...

$ owners :num 0000100000 ...

$ Airbag :num 0000001111...

$ Age :num 0.250.375 0.5 0.25 0.875 0.375 0.5 0.125 1 0.25
§ Diesel : logi FALSE TRUE FALSE FALSE FALSE FALSE ...
§ petrol : logi TRUE FALSE TRUE TRUE TRUE TRUE ...

§$ AutoT  : Togi FALSE FALSE FALSE FALSE TRUE FALSE ...

>

RSuipl ¢

=0

& project (None) +

Environment  History =0
*H Feprtomers iiwe @&
) clabal | nvironment « 4

0dfl 79 obs. of 8 variables @ -
0dflb 79 obs. of 12 variables (]
0df2 79 obs. of 9 variables [
values

Acceptance num (1:6) 100011
Age num [1:79) 4 5649563
AutoT log1 [1:79] FALSE FALSE FA

=0

¥ % rublih

Files Plots Packages Help Viewer
Bz Hegal+ 0]




So, df2 is our data set now. So, we will take 90 percent of the values in the training
partition and the remaining 10 percent of the values will be left for validation testing

partition. So, let us create this. So, let us create training partition, then test partition.
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v ndding K Project (Nonc)
@91 annix =1 Environment History =0
M osuceoswe | Q Ze 1 . iy | 5% [ soune - P E ot it *
B e B L =
112 mindfl=unname(apply(dfl[,-c(1,5)], 2, min, na.rm=T)) & clobal  nvironment =
13 dfi[,-¢(1,5)]=scale(df1[,-c(1,5)], center = mindfl, ©df2train 71 obs. of 9 variables
114 scale = maxdfl-mindfl)
115 values
116 df2=cbind(df1[,-c(1,5)], Diesel, Petrol, AutoT) Acceptance num [1:6] 100011
117 str(df2) Age num [1:79) 4 5649563
18 AutoT Togi [1:79] FALSE FALSE FA
gg # Pnrénwm;\g(igo .1?;;2) o ) ; 5 oG Togi [1:79] FALSE FALSE FA
partidx=sample(1:nrow ,» 0.9%nrow! , replace = ; il
121 dfovrain-df2parcids,] CE ) () ISR
122 pf2test=df2(-partidx,]
123 Files Plots Packages Help Viewer =0
124 Tibrary(neuralnet) B om | Begot e 0] f % pubiish +

125 # Neural Network structure
126 # Input layer: 8 nodes (for 8 predictors)- nodes 1:8
127 4 uidden lavers: one with 9 nodes. nodes 0-17

o v
121 | (loplevel) ¢ RSuiipl

Console G/Sesslon 11/
§ SR_Price: num
$ KM : num

0.0511 0.0344 0.0361 0.016 0.092 ...
0

§ price :num 0.
0
0
0.

0
378 0.205 0.196 0.149 0.615

0628 0.0365 0.026 0.0169 0.0353 ... Acceptapce
0

§ Owners : num 00100000

$ Airbag inum 0000001111 ...

$Age  :num 0.250.3750.50.25 0.875 0.375 0.5 0.125 1 0.25 ...
§ Diesel : logi FALSE TRUE FALSE FALSE FALSE FALSE ...

§ petrol : logi TRUE FALSE TRUE TRUE TRUE TRUE ...

§ AutoT : logl FALSE FALSE FALSE FALSE TRUE FALSE ...

> partidx=sanple(l:nron(df2), 0.9%nron(df2), replace = F) Error: 0.750095 Steps: 6
> df2train=df2[partidx,]

>

Now the same function the same packaged a neural net that we are going to use here; so
neural network a structure that we have to decide right now if we look at the number of
variables that we have. So, we have 9 variables, so one of them is the outcome variable
that is price. So, that leaves us with 8 variables that is we have 8 predictors. So,
therefore, in the input layer as we have been doing for previous examples. So,
corresponding to 8 predictors we would like to have 8 nodes. So, that would cover nodes
number 1 to §8; then hidden layer as we talked about that typically one hidden layer is

sufficient to even model the complex relationships.

So, it will take just 1 hidden layer and you know we will take you know we will have 9
nodes, so 1 more than the number of predictors here. So, we had 8 predictors will let us
take 9 nodes. So, of course, we can do experimentation with the number of nodes and
even with the number of hidden layers. So, that will cover us the nodes number 9 to 17

then we will have a just 1 node in the output layer that is node number 18.
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01 annnx =] Environment  History =0
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118 . = Q
119 # arcitioning (90%:10) b pAn -
120 partidx=sample(1:nrow(df2), 0.9°nrow(df2), replace = ) Odf2test 8 obs. of 9 variables ]
121 df2train=df2[partidx, ] Odf2train 71 obs. of 9 variables i)
122 df2test=df2[-partidx,] e
123 Acceptance num [1:6] 100011

124 Tibrary(neuralnet)

125 # neural Network Structure Age num [1:79] 45649563
126 # 1nput layer: 8 nodes (for 8 predictors)- nodes 1:8 < AutoT Togi [1:79] FALSE FALSE FA
127 # Hidden layers: one with 9 nodes- nodes 9:17 NG logi [1:79] FALSE FALSE FA
128 # output Thyer: one nodé- node 18

129 Files Plots Packages Help  Viewer [m]
130 mf=as.formula(paste("price ~", paste(names(df2)[!names(df2) %in% "price"], 7 —

131 collapse = " + ")) P oo BHegats 0§ % pubiish -

132

133 modl=neuralnet(mf, algorithm = “rprop+",

134 @ I 0

12811 | (loplevel) ¢ RSuipl ¢

Console G:/Sesslon 11/ =0
B e P L e FR e P =
> str(df2)
‘data.frame': 79 obs. of 9 variables:

$ sR_Price: num 0.0511 0.0344 0.0361 0.016 0.092 ... p ACCEE@ ice
$ kM : num 0.378 0.205 0.196 0.149 0.615 ...

§$ price  : num 0.0628 0.0395 0.026 0.0169 0.0353 ...

$ owners :num 0000100000

§ Airbag :num 0000001111...

$ Age : num 0.250.375 0.5 0.25 0.875 0.375 0.5 0.125 1 0.25 ..

§ piesel . logi FALSE TRUE FALSE FALSE FALSE FALSE ... Error: 0.750095 Steps: 6

§ petrol : logi TRUE FALSE TRUE TRUE TRUE TRUE ...
$ AutoT  : logi FALSE FALSE FALSE FALSE TRUE FALSE ...
> partidx=sample(l:nrow(df2), 0.9*nrow(df2), replace = F)

So, with this network structure we can go head and we can build our model and see the
performance. Of course, after experimentation we can try out different candidate models

as well and then finally, select one.

So, we will stop here and we will continue model access model building exercise for this

particular dataset in the next lecture.

Thank you.



