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Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in

previous we lecture lectures we have been discussing neural artificial neural networks

and in particular in previous lecture we started our modeling exercise using this small

data set related to g samples and there is you know the acceptance or rejection based on

two predictors fat score and salt score. So, we were at this point, we were trying to build

this model. So, let us start again.

So, data frame we had already created in the previous lecture. So, the same date frame

you can see we are going to use the data frame 6 observations 3 variables. 

(Refer Slide Time: 00:51)

The particular neural network R texture that we are going to use is the same that we had

used in previous lectures this is the so the R texture is this one. 
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So, this was the texture that we had used in previous lectures for this particular example,

right. So, these are the connections, and then further then bias values. So, we can see

these connections and bias values, these this is the R texture that we are going to use. So,

as I talk about we can certainly do certain experimentation with this particular R texture,

we can certainly add more hidden more hidden layers. 

So,  we  can  have  one  more  hidden  layer  here  with  two  nodes.  So,  this  kind  of

experimentation we can always perform. However, what has been seen that typically one

hidden layer is sufficient to model even the most complicated complex relationships. So,

we typically  start  with one hidden layer  and typically  the performance  is  higher  for

higher for the one hidden layer networks. 

Again in terms of how many nodes that we should be using in a particular hidden layer

that is also of course, we can experiment with that part also. So, we can of course, have

you know one more node and that experimentation and the performance of that particular

network we can always compare it with. So, we can always build different candidate

network model and we can always check which one is performing better, and those kind

of experimentation with the network R texture can also be performed. However, for our

this illustration for this exercise we are sticking to this particular network 2 nodes, 3

nodes and 1 node in the input layer hidden, hidden layer and output layer respectively. 



So, let us discuss further about this so the package as we talked about is the neural net

and the function is neural net that we are going to use to build our neural network model.

So, the first argument is the formula for the model equation as you can see, acceptance is

the output variable outcome variable then we have two predictors fat score and salt score.

And then data is coming from the data frame df and you can see the next argument is

hidden, so that is a number of hidden layers and you know that is the number of nodes in

different hidden layers. So, we have just 1 hidden layer and we have 3 nodes, we have

just mentioned 3 here. However, if you have we have more number of hidden layers and

different number of nodes there, so that can we specified using this particular vector. 

Then we have a start weights. So, this is for the initialization. So, like we did in our

previous exercise be the same data set so we can see we need 13 values. So, this we can

understand we have number of bias values 4. So, we have 4 bias values and here for

every node we have it is connected with the nodes of next layer. So, 2 you know 3 into 2,

6 plus 3, so we have 9 connections and we have 4 bias values. So, in total we need 13

initialization; 13 values we need to initialize. 

So, the same thing is mentioned here in the start weights. You can see start weights run if

13 values, and as we talked about that typically we initialize these values from minus 0.5

to 0.5. So, the same thing is mentioned here. So, this will be used this these particular

values are going to be used for the initialization step. And then when we see another

argument rep that is for number of reputation a number of repetition that we want to

number of times that we want to train our model, right.

So, we just want to run it you know once right. So, this we if you understand finding

more detail about this particular function you can go here in the help section neural net

and you will get more details about this particular function. 
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You can see all these arguments and for example, specifically we were discussing a rep. 

(Refer Slide Time: 05:34)

So, you can see number of repetitions for the neural networks training. 



(Refer Slide Time: 05:35)

So, in this case we just want one. If you specify more than one then of course, you will

have in a way you will have two candidate models. So, that other actually based on two

runs. So, an every run the results might be might change slightly as we have been talking

about that machine learning algorithm or data driven models they are sensitive to data.

So, therefore, you know every run results might change. So, from those runs we can

always let the best model.

However, in this particular case for the illustration we are just running it building our

model just once.
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Now the algorithm that we can select, so there are multiple options here, so that we can

you can see in the help section. So, this particular argument algorithm is here.
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You  can  see  many  options  here.  So,  we  have  back  prop  that  is  traditional  back

propagation algorithm. Then we have R prop plus, R prop minus and other you know

variance. So, all these could be used to build our neural network model; however, for our

exercise we are using back prop. Then certain arguments in this particular function are

depend on the algorithm that is being used. 



So, for example,  in this case back prop we might specify one more argument that is

learning rate, right. So, we discussed about the learning rate that the value the constant

value, that could be used for the you know to control the amount of learning that happens

and you know that happens from previous iteration or in each iteration. So, this is 0.1, so

right.

So, the whatever formula that we saw the updation formulas that we saw in the previous

lecture for thetas and weights ah, so there it was the values were or the addition was the

learning rate into the error value. So, you can see 10 percent of that particular value is

being used to learn. 

Now, we have error dot fct; so this function again can be used. So, this is sse, so this can

be used to check the overall model error then we have act dot fct; so this is activation

function which is nothing, but what we have been calling as transfer function. So, this

activation  function  is  actually  the  transfer  function.  So,  as  we  talk  about  different

alternatives the logistic is the most popular. So, that is being used here. 

Then as we talked about in previous lecture linear output is the argument that is to be

specified as false if  we are building a classification model and if  you are building a

application model then this has to be specified as true. So, let us run this code. Let us run

this and we will have our model.
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Now in the model we many values are written. So, one of them is result dot matrix that

will actually have the values of you know bias values and connection weights and few

more a few more few more parameters about the model. 

So,  you can  see  here  we are  just  looking at  first  3  values,  so first  3  values  of  this

particular matrix. So, first column so, you can see. So, first 3 values are actually about

error. So, this error is actually based on. So, this is actually sse value because we had

used sse here; so we have other options also for model error. So, as you can see here sse

and ce in the help section and you can see ce is cross entropy error and as a some of

square error. So, these are the option that could be used. 

Then  we have  reached  this  threshold.  So,  that  is  0.0098;  so  that  is  about  0.01.  So,

threshold we had not specified, however the default value for the threshold is there. So,

that we can see you can see threshold is 0.01. So, the threshold has these two this level

therefore the training process was it stopped, right. So, the threshold is again based on

this the error value that we talked about and the steps that have been taken 6 steps were

required.  However,  if  as  we talked about  if  the  model  is  not  able  to  converge  then

probably the training process would be stopped by the limit that is specify the number of

steps. 

However, by default  this  limit  is  quite  high;  so therefore,  there is  a you know good

chance that model will converge you can see the default value is step max in the help

section, you can see steps max it is 1 e plus 0 5. So, that is 10000, I think that is 10000

steps more than so that is more than 10000 steps 1 lakh, 1 lakh steps. So, that could be

used. So, those number of steps put the limit. So, in this particular case only 6 steps have

been used. 

Now, let  us  move  forward.  So,  next  thing  that  we  would  like  to  understand  is  the

interlayer  connection  weights,  so  which  is  nothing  but  the  information  about  these

values. So, these are these are some of the weights so we would like to see from the

model; the final model that we have what are these values thetas and weights. 

So, first we will look at these values and these weights and theta combination and then

here these value.  So,  typically  because we have one hidden layer  if  we had a  more

hidden layer and again and we would we can; so for every inter layer combination, so



input layer 2 first hidden layer in this case we have just one hidden layer. So, from input

layer to this hidden layer we will have few weights and bias values. 

Now next is from hidden layer to output layer; so again we have some weights and bias

value. So if we had more hidden layer, so we would have more such combinations. So,

inter layer connections weights and bias values we want to have a look. So, first we look

at the input layer to hidden layer connection. So, this is the matrix that we can this is

actually list that is returned when the model is built. So mod dollar weights. So, within

this the you can see in the list the first element of this list is actually nothing, but a matrix

for storing these weights right.

So, by default these values are stored using the default row number and column number

1 2 3. However, I have changed the dimension names that is row names and column

names for this  particular  matrix.  So,  that  we are able  to understand which particular

value is for which particular connection or by aspect or you know for which bias value

for which particular node.

So, we this is the code; so you can see I am using dim names function and we use this

function allows us to change the row names and column names of a particular matrix or

data frame. So, in this case we can see the list is to be supplied. So list first early first

element is always the row names and then the second element is the for the column

names. 
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So, let us execute this code and you can see this is the result; you can see bias values for

node 3 is this one, node 4 is this one; so you can see for node 5, similarly a node 1,

which is also corresponding to the predictor fat. So, the connection weights are specified

so from node 1 to node 3 and node 4 and node 5 these are the weights. Then node 2 that

is corresponding to the predicted salt and the connections to node 3, node 4 and node 5

and the connection weights we can see here. 

So,  a  specific  connection  weights  and  their  values,  the  bias  values  and  connection

weights values we can access in this fashion. Similarly from hidden layer to output layer

also we have 3 weights and 1 bias value, so 4 values. So, that also we can access and in

the  similar  fashion.  So,  again  I  am  changing  the  dimension  in  here  again  for  this

particular second element of weights a list. So, again as you can see bias the list is being

supplied with first element being the row names and the second element being the you

know column names. So, let us execute this code. 
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Now you would see that the row names bias, now you see the row names have changed.

Now, the hidden layer hidden layer you know bias and hidden layer bias value and nodes

they have become the row names and the output layer nodes node has become the you

know column name. 



So, you can see bias that bias value for this particular output node and then we have this

connection weight from node 3 to node 6 and node 4 to node 6 and node 5 to node 6. So,

these are the connection weights and bias values for the model that we have just built. 

Now, the final output values the values that we get from the output node, so this value.

So, this value is also returned by the model by the function in our model object. So, this

can be accessed using net dot not net dot result list somewhat dot what dollar net dot

result will give us these cold values. So, in this particular case we had just one node. So,

we have just one value here. So, because this was for classification this was classification

task.

So, these values can be compared with our cut off value. So, in this particular case we are

taking 0.5 as the cut off value which is equivalent to the most proper class method where

you know there are only two classes then 0.5 cut off value will actually implement that

most proper class method. So, we will get these specific values using these scores. So, if

you want to have a look at this scores also so we can look at this scores as well. 
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So, if we run this you can see this is a list and we have just one node and 6 observations

there. So, these are the scores. So, if we compare this with 0.5, we will get the values.

Let us unname these column names, these names, dimension names and we will get this

now we are creating a table with the scored you know this the predicted class and then



actual class and then the predicted value that is the you know we can say the probability

scores and then predictors.
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So, this is our data frame with all  the information the relevant information predicted

class. You can see all the observations have been predicted as class 1 belonging to class 1

and if you look at the predictor value all of them are more than 0.5. 

So, because this was a small sample just 6 observations you can see that you know all the

values have been classified as belonging to one particular  class and you can see the

predictor the predictors also their values also. So, now we can look at the performance;

however, this is quite obvious 3 cases correctly classified.
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So,  in  this  case  as  you can  see  the  predicted  classes  all  the  observation  have  been

classified as class 1. So, therefore, we need to make certain changes in this particular

code that we have been using for the other techniques because there will  not be any

values for level 0. 

So,  therefore,  we  need  to  specify  that  explicitly,  so  that  that  actually  comes  in  the

classification matrix that we want to generate here. So, you can see that modtrainc I am

converting it into a factor variable and then giving these two levels. So, that even if there

are no observations being predicted as belonging to class 0 is still  that particular you

know column in the classification metric would be displayed; so let us run this. 
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So, you can see this  column I was talking about.  So,  no observation,  but it  is being

displayed because of this change in the code that we have done. 

We had used just the modtrainc directly this column would have gone. So, we can see

that 3 values in the diagonal element 3 observation have been correctly classified and 3

observations are incorrectly classified. So, all the observation belong to you know you

know in  class  0  I  have  been  incorrectly  classified  as  class  1.  So,  the  classification

accuracy an error are also obvious 0.5 in this case. 

We want to have a look at the network diagram now using R. So, this is the function plot

and we have to pass the this neural network object mod here and we will get the diagram.
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So, you can see here, so you can see here that this is the neural network diagram that has

been prepared by this function plot. 

So, you can see fatscore, saltscore these are the two predictors corresponding nodes so

you can see here and from each node you can see the values the weights from both these

nodes and you can see the bias values also here. So, 3 bias values corresponding to 3

hidden layer  nodes here and then we have one bias node for the output node and 3

connection weights for the output node and then we have the, so this particular output

node is corresponding to the acceptance that is our outcome variable. 

So, other details as you can see this was the error that is the sse value and the number of

steps  that  were  required  to  reach  the  conversion  right  to  stop  the  network  learning

process. So, this is our model. 
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Now, so this example was you know we used small sample just 6 observations. 
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So, probably this was not an appropriate you know example an appropriate sample for us

to understand you know build a good enough neural network model. So, what we will do

we will use our used cars data set that we have been using in other techniques as well.

So, this particular data set we are going to use to build a model with you know a slightly

you know larger sample size. 

So, because we would be importing data from excel file. So, let us load this package;

there very now let us import this file which cars. So, you can see 79 observations of 11



variables; however, even for this dataset this data set is also small, but better than the

previous example that we have used. So, let us remove na columns, na rows. 
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Let us look at the first 6 observations. So, these are the variables we are already familiar

with  this  dataset  brand  so  this  is  about  the  used  car.  So,  we would  like  to  build  a

prediction model to predict the value, offered price value of a used car. So, the variables

that we have brand model manufacturing here Fuel type it is petrol, diesel or CNG then

we have SR price that is show room price, that is the price when the that particular used

the car was first purchased. Then we have kilometres the accumulated kilometres, then

price the offer price of the used car in the current condition. 

That is you know that we can see through the different variables. Transmission 0 or 1

that is manual or automatic, then the Owners previous number of 5 persons who have

actually owned this car before this sale offer. So, that is there then the number of airbags

and then we have another variable C underscore price; however, however we will not be

using this particular variables C underscore price. 

Now from the manufacturing year as we have been doing in other techniques also when

we  use  the  particular  data  set  that  we  compute  the  age  variables.  So,  that  is  more

appropriate for our prediction model. So, let us compute this. Let us add it to data frame

and let us also take a backup of this data frame. 



Now, if we look at the variables, so now, we would like to you know get rid of certain

columns certain variables. 
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For  example,  one  is  I  think  brand  name  yes;  so  brand  name,  model  name  and

manufacturing you are no longer required and the last one that is as you can see this is

this is actually C price we do not want. So, this is actually we have 12 variables this is

the variable number 11. 

So, we do not want this one as well, so because we are going to build a prediction model.

So, let us cut it off these columns and now let us look at the variables that we have. So,

we have now 79 observation 8 variables. So, these are the variables of interest to us.

Now, what will do as we discussed in previous lectures that the neural network models

perform much better when we have the scale of you know 0 to 1. So, if all the variables

they are in  this  scale  0 to  1 then probably neural  network model  they perform they

converge quickly and also the performance improves. 

So, in this, particular data frame as we can see we have two categorical variable Fuel

type and Transmission, so however, as we will see that neural network you know as we

did in the previous exercise also the acceptance was categorical outcome variable, but we

did not change it to change it into a factor variable; because the neural network function

it does not allow us to do that conversion. So, all the computations are done internally in

that particular function. So, we would be required to change some of these variables. So,



what we will do? We will so this is a one particular example in R environment where we

have to explicitly create dummy variables. 

So, dummy coding we have to do probably for the first time. So, we have been gone

through  so  many  techniques.  So,  typically  the  we  convert  the  variables  into  factor

variable and the functions take care of the dummy conversion process and the model

building later on however, in this particular case will have to explicitly do this. So, a fuel

type we have 3 levels, let us check the level CNG, diesel, petrol. So, all these levels will

look to convert them into dummy variables this is one way to achieve that you can see. 

So, CNG if df1 dollar fuel type if it is CNG then because this logical operator we are

using. So, therefore, if it is CNG then the it will be true otherwise false. So, it could be a

logical variable, you can see in the environment section CNG has been created logical

you can see false false true.  So, in the neural network function the values should be

either the variables that use there should be the logical or numerical. 

So, you are converting the factor variables the categorical variable into logical variables

the logical dummy variables. So, now let us convert the diesel and then petrol. 
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Then we have another variable transmission that is also factor variables; let us convert it

into a logical or dummy variables. So, manual T and auto T however, as we understand

that we will not be using all 3 all categories and one when we taken as the reference.



So, we would be no for fuel type we would be taking only two of the dummy variables in

the  modeling  exercise  and for  transmission also just  one of  the dummy code in  the

modeling exercise. So, we will take diesel and petrol you know these two categories of

Fuel type and the automatic transmission as the one category from transmission variable.

So, next process as we talked about as we discussed in previous lecture is we need to

convert our numeric variable into you know bring them into a 0 1 scale. So, this is how

we can do it. So, what first computation is we are trying to compute the max values for

all the numeric variables; so you can see df1 data frame we have excluded a column

number 1 and 5 which are the corresponding to fuel type and transmission. So, we left

with only numeric variables here and then we are trying to compute max value for all

these variables. And then in the next line we are trying to compute the min value for all

these numeric variables. So, let us execute these two lines, and you would see that in

max d of one here in the environment section we have 6 values because we have you

know 6  numeric  variable  and  again  min  df1,  6  values  because  we  have  6  numeric

variables. 

So, the max and min value have been computed. Now, we can use these values in the

scale function. So, this scale function we are going to use to normalize to a 0 1 scale. So,

you can see centre  is  now min df1 and the scale  is  max df1 minus min df1; so the

particular formulation that we discussed in the slides so that is how it can be done using

R.  So,  scale  function  can  be  used  and  then  we  will  store  these  values  in  the  same

columns. 
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So, let us execute this code, now so we have scaled all these we have normalized all

these numeric variables. So, let us add the dummy variables in and create a new data

frame that we are going to use in our modeling exercise, so diesel, petrol and automatic

transmission.
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So, this was this these are the variables that we are taking into our modeling exercise, let

us create the data frame, let us look at the structure of this final frame. 
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So, this is the frame df2 that data frame that we are going to use for our network model.

So, you can see we have variable SR price, KM price, owners, airbag and age all have

been scaled to 0 and 1 and you can see the values there in the structure output. And then

we have 3 dummy variables  which have been which have been taken as the logical

variables here diesel, petrol and automatic transmission. So, once this is done we can go

ahead and do our partitioning. 
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So, df2 is our data set now. So, we will take 90 percent of the values in the training

partition and the remaining 10 percent of the values will be left for validation testing

partition. So, let us create this. So, let us create training partition, then test partition. 
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Now the same function the same packaged a neural net that we are going to use here; so

neural network a structure that we have to decide right now if we look at the number of

variables that we have. So, we have 9 variables, so one of them is the outcome variable

that  is  price.  So,  that  leaves  us  with  8  variables  that  is  we  have  8  predictors.  So,

therefore,  in  the  input  layer  as  we  have  been  doing  for  previous  examples.  So,

corresponding to 8 predictors we would like to have 8 nodes. So, that would cover nodes

number 1 to 8; then hidden layer as we talked about that typically one hidden layer is

sufficient to even model the complex relationships.

So, it will take just 1 hidden layer and you know we will take you know we will have 9

nodes, so 1 more than the number of predictors here. So, we had 8 predictors will let us

take 9 nodes. So, of course, we can do experimentation with the number of nodes and

even with the number of hidden layers. So, that will cover us the nodes number 9 to 17

then we will have a just 1 node in the output layer that is node number 18. 
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So, with this network structure we can go head and we can build our model and see the

performance. Of course, after experimentation we can try out different candidate models

as well and then finally, select one. 

So, we will stop here and we will continue model access model building exercise for this

particular dataset in the next lecture.

Thank you.


