Business Analytics & Data Mining Modeling Using R
Dr. Gaurav Dixit
Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture - 55
Artificial Neural Network-Part II1

Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in
previous lecture previous few lectures; we have been discussing artificial neural
networks. So, we have been able to cover the background, we also did a small exercise,
we understood the architecture different layers, we also we also have gone through a few
more details related to input layer computations that, we are required to perform in input

layers or hidden layers and output layers.

We also understood some of the expression the computations, the transfer function all
those things we have gone through the bias values weights connection weights. So, all

that discussion we have completed.

(Refer Slide Time: 01:04)

|
ARTIFICIAL NEURAL NETWORKS

* Open RStudio

* Neural Network training process

— Steps to compute neural network output values are repeated for all
the records in the training partition

- Prediction errors are used for learning after each iteration

* Linear and Logistic regression as special cases

= Aneural network with single output node and no hidden layers would
approximate the linear and logistic regression models

We also discussed how linear regression and logistic regression Can be considered as

special cases of neural network.

(Refer Slide Time: 01:09)

|
ARTIFICIAL NEURAL NETWORKS

* Linear and Logistic regression as special cases
- Ifalinear transfer function (g(x) = bx) is used, output would be
P

y=B+Zw[-x,-

I=1
+ Aformulation equivalent to multiple linear regression equation

+ However, estimation method (least squares) is different from neural network (back
propagation)

(Refer Slide Time: 01:13)

|
ARTIFICIAL NEURAL NETWORKS

* Linear and Logistic regression as special cases
— If a logistic transfer function (g(x) = 1/1+e™) is used, output would be

Py =1)=

1 + 83+zf_l wx,

+ Aformulation equivalent to logistic regression equation

* However, estimation method (maximum-likelihood method) is different from neural
network (back propagation)

(Refer Slide Time: 01:16)

L
ARTIFICIAL NEURAL NETWORKS

* Normalization

— Scale of [0,1] is typically recommended for neural network models for
performance purposes

— For numeric variables,
V = min(V)

" = max(V) = min(V)

Now, let us move forward. So, we also talked about in previous lecture the
normalization. So, we talked about that scale of 0, 1 is typically recommended for a
neural network models for performance purposes, neural network models converge quite

quickly, when the scale is this is scale is used 0 to 1 scale is used.

And the performance is also improved. How, so how this is kind of normalization can be
achieved. So, we discussed this particular expression formula V norm. So, any
normalized variable in this to bring it to 0 to 1 scale; So, we can sub in the numerator we
can subtract it is value with the minimum value of that particular variable and then

divided by difference of maximum and minimum value for that particular variable.

(Refer Slide Time: 02:07)

-
ARTIFICIAL NEURAL NETWORKS

* Normalization

~ Binary variables (categorical variables with two classes)
+ Create dummy variables: set of values {0, 1}

- Nominal variables with m (>2) classes
+ Create m-1 dummy variables: set of values {0, 1}

- Ordinal variables with m (>2) classes
* Mapthe values to the set {0, 1/(m-1), 2/(m-1), ..., (m-2)/(m-1), 1}

So, that will give us the values oh in 0 to 1 scale. We also discussed that binary variable
you know they are not much to we are not required to do much, because they would
already be 0 to 1, because we would typically be used dummy variables. So, they are
anyway they are 0; they take two values 0 and 1, nominal variables also no such

problem, we will have m minus 1 dummy variables.

So, they will also have value 0 or 1. So, that would be also in the same range, ordinal
variables we talked about this particular mapping right 0 or 1 divided by m minus 1, 2
divided by m minus 1, and up to m minus 2, m minus 1 and minus 2 divided by m minus
1 and then 1. So, this is just mapping and we would be required to you know; so this is

mapping can then be used for ordinal variables.

(Refer Slide Time: 03:05)

L
ARTIFICIAL NEURAL NETWORKS

* QOther transformations

— Transformations which could spread the values more symmetrically
can be done for performance purposes
+ Log transform of a right-skewed variable

* Estimation method

~ Least squares and maximum likelihood methods use a global metric of
errors (e.g., SSE) to estimate the parameters

NP Okt
O Ll CHNMFICANION COURSE

Now, there are a few other transformations that can help. For example, if we are if we
have a right skewed variable, then probably log transform that can be done and that can
help us our neural network modelling. So, as you can see in the first point that
transformation, which could spread the values more symmetrically can be done for

performance purposes.

So, just like you know the normalization 0 to 1, and then this is log transformed we are if
we have a right skewed variable. So, that the values are are more evenly spread. So,
those kind of transformation can be done to improve the performance of our neural

network model.

Let us discuss the estimation method. So, as we are familiar about the linear regression
and logistic regression models these techniques and we know that least squares and

maximum likelihood hood methods are used as estimation technique in these methods.

So, least square is used in linear regression and the maximum likelihood method is used
in the logistic regression. However, as you would; as we have discussed while you know,
when we were discussing these technique linear and logistic that a global metric of
errors; for example, as I see some of some of square errors that is typically used to

estimate the parameter.

So, these techniques least square and maximum likelihood; so their estimation procedure
their estimation steps use this particular global matrix SSE or some other global matrix
to estimate the parameters that are betas that, because this is we you know model the
predictors as linear function and therefore, those beta values are estimated using these

methods and typically a global metric of this kind SSE is used there.

(Refer Slide Time: 05:08)

S
ARTIFICIAL NEURAL NETWORKS

* Estimation method

= Neural networks use error values of each observation to update the
parameters in an iterative fashion (referred as learning)

+ Error for the output node (prediction error) is distributed across all the hidden layer
nodes

All hidden layer nodes share responsibility for part of the error (referred as node-
specific error)
* Node-specificerrors are used to update the connection weights and bias values

However, we in neural network, we do not use any such you know global metric to
compute the parameters. So, we will understand, so what is the technique estimation

method, that is use in neural network.

So, neural networks use error values of each observation to update the parameters in an
iterative fashion. So, it is not that we compute a you know we use a global matrix and the

error computation based on those Google matrix, they are either optimized there.

So, that mirror that error is minimized. So, that typically happens in linear and logistic as
we discussed. So, in case of neural network it is for each observation, whatever error
value using the typical formula actual value minus updates predicted value, so that error
value that is used to update the parameters in an iterative fashion. So, after each
observation we would be updating. So, this is particular process this particular step is

referred as learning.

So, when we say that you know especially for data demand techniques, data demand
model for example, classification and (Refer Time: 06:20) neural network here, in this
particular case. So, these techniques these models they learn from the data. So, in
particular case, in this particular case artificial neural network the learning is based on
the error values right. So, after each observation the learning comes from the error value
for that particular observation and this happens in an attractive fashion and all the

observations are used in this learning process.

So, as you can see in few more points in the slide error for the output node, that is you
know prediction error. So, the is typically distributed across all the hidden layer node.
So, that that is what happens in neural network; then all hidden layer nodes share
responsibility for part of the error. So, you would from this it would be clear that all the
nodes that we talk about for example, hidden layer nodes or hidden layer nodes and

output layer nodes.

So, all those nodes they share they are part of the learning process, they share response
and learning happens through error values after each observation. So, they also; so these
nodes also share responsibility for part of the error. So, this is this particular is referred as
node specific error. So when the part of the error that is shared by hidden layer nodes that

is called node specific error.

Now, these nodes specific errors are used to update the connection weights and bias
values right. So, we are going to have connections between input layer nodes and output
layer nodes and similarly for between hidden layer nodes to output layer nodes. So, all

those connections, weights and the bias values for hidden layer nodes and the output

layer nodes. So, all those things all those parameters are going to be updated using these
node is specific errors. So, the actual algorithm that is actually used to perform this
process that is back propagation so as the anyway we can say that estimation method that

is using neural network is actually back propagation algorithm.

(Refer Slide Time: 08:35)

I 0000
ARTIFICIAL NEURAL NETWORKS

* Back Propagation
An algorithm to update weights and bias values of a neural network

Error values are computed from output layer back to hidden layers
+ All hidden layer and output layer nodes and all connection weights become part of
learning process
Node-specific error for output node,
err = correction factor % (actual value = predicted value)
0,0 = 0,54 + learning rate X err

W

Wyew = Wyiq + learning rate x err

Learning rate controls the rate of change from previous iteration
+ Value is typically a constant in the range [0,1]

So, this particular algorithm is used to update weights and biased values of a neural

network.

So, error values they are computed from output layer back to hidden layers that is why
you would see that it is called back propagation. If we have to understand this we can
understand the same thing through a diagram; for example, in previous lecture; we had

used this particular neural network.

(Refer Slide Time: 09:04)

1 l 3
S O:\ Ohe 1

| NV fi 3

,_&_ X O' : L{’_)P\Acr.w.n..

—[—— —(& \ el v

V§ \(/ f’*“**~x

M'o-}-ﬂ\,xc’ww

“ G P APy

So, we had two nodes here; so we had two nodes in input layer, then we had three nodes
hidden layer, and then we had one node in output layer. So, the error values would be
computed here, and then they would be propagated back to hidden layer nodes right. So,
that is why this algorithm is called back propagation; so error values are computed from

output layer back to hidden layer nodes.

The next point as you can see in the slide all hidden layer and output layer nodes and all
connection weights become part of learning process right. So, since this particular value,
that is computed here the error value that is computed here. Now, this is propagated back

to the other layers the previous layers of the network.

So, all the connections that are going to be here all the connections and the
corresponding weight the bias values they are going to be part of the learning process.
Similarly here; so since all the connections all the weights and vast values are going to
be updated using this particular error you know back in a back propagation manner. So,
all of all these parameters are going to be all these nodes and the connections are going

to be part of the learning process.

So, typically how do we compute these errors? So, let us talk about the node is specific
error, how it is computed. So, you can see that first we will discuss for the output node.
So, for example, in this case we have one output node. So, if we consider this particular

network diagram, then we can see that for this output node error can be computed in this

fashion. So, we have a correction factor, that is multiplied to the predicted error, that is
actual value minus predicted value. So, this is prediction error. So, this prediction error
that is going to be computed here; so the predicted scores, so the output value that comes
from this particular node output node, that is going to be the predicted value as we talked

about in the previous lecture.

And now we will have the actual value, now the difference actual value minus predicted
value. So, this is going to be our predicted val, so this is typical definition of prediction
error. So, this is a typical definition for any error computation. Now, this particular value
is going to be multiplied by a correction factor, this particular value is going to be
multiplied by a correction factor and that; so now, we will get a new value, now this
value this value would be assigned to the output layer node. So, now, this particular

value is going to be used to update the parameters related to this particular node.

So, as we can see that the bias value we can see that in the next equation, we can see that
bias value theta new is theta old plus learning rate into error. So, the error value that has
been computed in the previous step; So, we will multiplied with learning rate and then
add it to the old value of old bias value. So, that will give us the new bias value to be
used for the networks. So, any new observation that is run through the network it will use

this particular new bias value. So, what is learning rate?

So, learning rate controls the rate of change from previous iteration. So, you can see
what part of; what amount of the computed error value that we just saw; what part is
actually used for the learning process that is controlled by learning rate. So, typically the
learning rate value is typically it is a constant value and in the range 0 to 1. So, that will
determine what; how much; what amount of error part of the error is going to be used for

the learning process the updating process.

So these are the steps, so node specific error from the prediction error we can compute
the prediction error that we get for a particular observation. So, as I talked about for
every observation we will learn through this particular network. And in previous lecture,
we talked about that all these through an example also in R as well we understood this
that all the connection weights and bias values they are initialized to random numbers.

Now, once the first observation is passed through this particular network run through this

network these randomly initialized you know weight values and bias values are going to

be used to produce the predicted value.

And once that predicted value for that particular objects observation number 1, is
actually the core number one is actually computed, then it can be subtracted from actual
value and we will get the prediction error and from there we can compute the error and
we will know the values as given in the you know slide that we can use the learning rate
and the control the amount of change and we will get the new values and new values for

thetas and w weights and those can be updated.

So, the bias values here for output node and the weights can be updated. So, this was for
the output node and; however, the process the steps are quite similar for the hidden layer
nodes as well; however, at this point I would like to point out that this was for the first
observation. Now, second observation also once these weights and you know connection
weights and bias values have been updated for the whole network, then the second

observation will pass through these updated values right.

And again we will reach to this value will learn through the network, we will have the
predicted value again the same process will continue and again the updation and learning
will happen. And in this fashion observation 2, 3, 4 and in this fashion will keep running
these observation through the network and the network will keep on learning in this
fashion right. In the prediction the correction factor will get the error and that would be
updated as we talked about right theta new theta old plus learning rate into this error

value.

Similarly, weight new weight old plus learning rate into error value; So, in this fashion
now the new values will be updated. So, we talked about how the values are computed
for a output node, these values are being computed for the output node. Similarly, the
same type of process similar steps are performed for to compute node specific error for

hidden nodes. So, the error value that we have computed for output node this one.

Now, this is going to be used by hidden layer nodes, this is going to be used by hidden
layer nodes to perform these steps similar to what we have here. So, this particular error,
now this is going to be used here; and these steps are going to be quite similar again we
will you know; so in place of prediction error now we will have this error value, now we

will have this error value for hidden nodes and other steps are going to be similar. So, we

will use a correction factor and that correction factor is, then going to be used for all

these nodes.

Now, the correction factor is specific to the node. So, the value that is the that has been
the output value, that is there for a particular node. So, whether it is for the output node
or the hidden layer nodes that; so correction factor could be based on these output values
and therefore, it is it could it is going to be different it is going to be different for all

these nodes.

So, that correction factor then would be for output node it would be multiplied with the
prediction error, for hidden layer node it would be multiplied by the error value that is
computed for the output node. So, in this fashion all the weight and bias values are going

to be updated.

(Refer Slide Time: 18:32)

I 000
ARTIFICIAL NEURAL NETWORKS

* Back Propagation

- Node-specific error for hidden nodes
+ Based on err value of output node instead of prediction error
+ Stepsare same as those used for output node

* Methods for updating weight and bias values

- (ase updating

* Updating s done after each case or record is run through the network (referred as
atrial)

+ When all the records are run through the netwaork, it is referred as one epoch, or
sweep through the data

* Many epochs could be used to train the network

e T ROOREL

Now, let us talk about the few more things about updating weight and bias values. So,
there are two main approaches for this updation. So, for example, what we have
discussed till now is; actually you know case updating. So, what is case updating? So,

updating is done after each case or record is run through the network referred as a trial.

So, this is what we have discussed. After each observation this case updating you know
this is called case updating, after each observations the bias and weight values are

updated and this happens for all the observations in the data set.

And when all the records are run through the network it is referred as one epoch or
sweep through the data. So, that is referred as a one sweep through the data, if we are
using training partition data set, then it is going to be one sweep through the training
partition data. So, in the training process learning process of the network we might have
to run many such epochs. So, as you can see here one point here last point here in case

updating many epochs could be used to train the network.

Now, the another approach for updating weight and bias value is called a batch updating.
So, this is different from what we have discussed in you know case updating here. So,
what happens in batch updating? The updating is done after all the records are run
through the network right. Till now what we have been discussing is observation is run

through; so the weights and biased values are randomly initialized for the network.

So, once first we decide the network architecture, the network structure once that is
decided, then we will in randomly initialize the connection weights and bias values, then
we will run the first observation through the network, then the second observation
through the network, third observation through the network, and when all the
observations have been run that is one epoch. So, we might have to you know execute
many such epochs and this is, what we are discussing under case updating this is called

case updating.

And, when we talk about batch updating first all the observations; so you would see that
in case updating, after one observation has been run immediately these computations are
done and the bias values and weight values they are updated; however, in batch updating
all the observations are run through the network, and then this particular these kind of

computations are performed. So, what is the difference in these computations?

So, in place of prediction error, because the prediction error was a specific to the
observation, so for every observation you know we had a prediction error in the case
updating. Now, in place of that prediction error we will use some of prediction errors for

all records, you know that is for all records.

So, in place of prediction error some of these errors is going to be used right. So, this is
going to be used and accordingly the biased values and weight values are going to be
updated. So, again in batch updating also even you know many epochs, we would have

to run to train the network.

(Refer Slide Time: 22:12)

L
ARTIFICIAL NEURAL NETWORKS

* Methods for updating weight and bias values

- Batch updating
+ Updating is done after all the records are run through the network

+ |n place of prediction error of the record, sum of prediction errors for all records is
used

+ Manyepochs could be used to train the network

* Case updating vs. batch updating

- Case updating yields more accurate results
* With alonger runtime

Now, in terms of performance in terms of performance and modeling, how case updating
and batch updating what are the advantages or disadvantages; so the one important
difference that you can understand through the process itself; case updating is more
rigorous right. So, in case updating every time when an observation is done through the
network, the updation of these values the back propagation of these values that take place
and that takes place for each record. However, in batch updating this happens once for all

the observations in the data set.

So, you would see that case updating is more rigorous and therefore, it would require
more runtime as well. So, the accuracy of model would be much better in case updating;

however, it will take it will come at the cost of longer runtime.
Now, let us talk about the stopping criteria for updating.

(Refer Slide Time: 23:11)

I 09000
ARTIFICIAL NEURAL NETWORKS

* Stopping Criteria for updating
- Small incremental change in bias and weight values from previous
iteration
— Rate of change of error function values reaches a required threshold
- Limit on no. of runs is reached

NHTEL St
0 T RGOREE CINWICANON COURSE

So, when should be stopped; we talk about that to train the network to learn from the
nata; to learn from the data, we will have to execute many epochs will have to perform
many sweeps through the data. So, when do we stop? So, what should be the; what are

the some of them you know key stopping criteria’s for this learning process.

So, few points are discussed here, as you can see small incremental change in bias and
weight values from previous iteration. So, if the bias and weight values the change that is
happening; so that is that you can see learning rate into error. So, that component the
second component; that is being added to the previous value this is very incremental

there is not significant change.

So, when we run through; when we run our first observation, then this is this particular
component would be quite significant as we go through other observations, this value
might decrease and you know as we go through all the observation and we you know one
epoch is completed, we go through second epoch still there would be some you know

significant you know component here.

However, as we move as we do more computations of this kind this is you know that
significant that significance significant value that is being added here you know added or
subtracted here might that that magnitude of that might decrease and it might just remain

an incremental value very small change might be happening.

So, probably that is the indication that the model or network has saturated and therefore,

we should stop the learning process. So, this is what is mentioned here. The small

incremental change in bias and weight values might indicate that probably we should

stop the learning process.

Other stopping criteria could be a rate of change of error function values as there is a
required threshold. So, overall; over overall performance of the model, so some error
function could be used for example, SSE could be used to check the overall performance
of the model. So, therefore, we can see for you know different different sweep. So, that
we that we execute different sweeps, that we execute we can have the; you know that
you can see; we can check the change of error values there that is for the model error.

And we see when that is you know that is reaching the required threshold.

So, if the rate of change is you know has these there is required so; that means, the rate
of change in terms of model performance is not much. So, that is when we talk about this
error function that is with respect to the model performance. So, that error, so it could be
SSE or some other metric, and if the rate of change is not much then probably all has
reached to a established specified value threshold value, then probably we should stop

the learning process.

Now, so this is second point is quite similar to what we have been discussing in previous
techniques as well. Now, for example, in the cart algorithm also we talked about that;
you know the classification, misclassification rate on training partition and the same on
you know validation partition and somewhere when the value is minimized probably you
know that is the point where we should stop the tree growth. So, this is second point is

quite similar to this.

Now, there could be another criteria, that is limit on number of runs is released. So, we
can also specify the number of runs the maximum limits. So, this is going to be the
probably the last result to stop the network is not able to converse, then probably we
would like to set a limit at the point this particular training process learning process

would be stopped.

Typically this is the last result, when we are not able to you know stop the stop the
learning process the updating process either from first criteria, second criteria, whatever
is being used and then probably we should stop at some point and too many runs have

been done and still no conversion has taken place. And probably we should we can do

that by specifying the limit on number of runs. After this discussion let us understand

some of these concepts through a modeling exercise in R.

(Refer Slide Time: 28:02)

HORMT IAN W TR VR Bed (VR TR W R

Qg - v i o K fropont o) #

091 anann =] fiedranment Wiy =
P obcmien Q£ - . Ahu b S T H Feprwa s f ti e | (8

% :a:;;;e calflbiﬂ1sﬂfb‘¢3 Faicore el

E saltseoresc(0.9,0.1,0.4,0.5,0.5,0 8); saltscore
o

Acceptance=c(1.0,0,0.1,1); Acceptance

8+
g ¥ 14&
10
1 ¥
12 Fles P Packagm Nelp e =0
13 # 1§ and wij innitialization (random nusbers in the rang is0.0 "y -
14 biassmatrix(runif(4, -0.05, 0.05), ncol = 1, ¢ YU
15 dimnanes = 1ist(c(3,4,5,6), ("1 "))); bias W wstorad | it 2 e Hespeinn »
16 . .
1T B F— — | e uasS) R Documentaton
¥ Oy fuipd 1
ol G e =71 Ordered Logistic or Probit
You are welcone to recistribute 1t under certain conditions. 7 B
Type ‘lcense()® or ‘eence()' for distribution detatls RBQFESSIOFI
& 15 & collaborative project with many centributars
Type ‘contributors()’ for more information and Description
“eitarien()’ on how te ¢ite R or B packages in publications
b AL Fitg A logish of probi Fegiiession model 10 an ofdeed

facioe response. The defaut logutc cane s
8 proporfonal oods logishe regressian, afer whch the
Rancion o ABMad

Type ‘dema()’ for some demos, ‘help()’ for en-line help, or
"belp.start()’ For an WTML browser interface to help.
Type "al()” to quit R

Usage

So, in the previous lecture, we had used this particular example that is we had this fat
score and salt score, and this was for different experimentation with respect to cheese
samples and whether those cheese samples and that combination of fat and salt score,
whether that is being accepted or rejected by the experts. So, we had this hypothetical
later a few a values also and that was used to understand the computations that we do in
a neural network. So, we are going to use this same example to build our to build our to

train our neural network model.

So, let us execute this code. So, we will have fat score, as you can see just 6 values are

there.

(Refer Slide Time: 28:51)

LA T T e Bat (R T T

Q= 2 =L Cr e o K g) »
010 sk n =1 tedranment Wigory =0
P ety om Sow q £l - P R T fH Pepernma s § a3

1 # Hypothetical exampl b I YT Te—
& Farscoresci0.2,0, 10.2.D.?.D.4 0.3); Faticore .

3 values

4 saltscoresc(0.9,0.1,0.4,0,5,0.5,0.8); saltscore Fatscora num [1:6] 0.2 0.10.2 0.2
5 '

$ Acceptance=¢(1,0,0,0,1,1); Acceptance L]
7

B ¥ neural setwork Structure

9 ¥ Input layer. two nodes (for two predictors)- nodes 1 & 2

10 # widden layers: one with three nodes- nodes 3, 4, &5

11 # output layer: one node- node 6
12 Fis Pioh Packige Melp e =0
13 # 1 and wij ineicialization (random rusbers in the ranga: D 00As0 05) Y ;
14 bias luzru(rum!(l -0.05, 0.05), ncol I, e
15 dimriames th((l.‘.s‘s,. <("1,"1)); bias M dicdared | i 2 ¥ leperunn =
16 - T
12 ¥ : [MASS] R Documentaton
41 plowd Wil por) |
Consee el 1 =" QOrdered Logistic or Probit
& 15 a collaborative project with many centributars Regl'eSSiOﬂ
Type ‘contributors()’ for more wnformation and
“eitation()’ on how te cite R or & packages in publications
0 Lo Ee Description
Type ‘dema()’ for some demos, ‘help()’ for en-line help, or
“help.start()’ for an HTML browser interface to help. Fits ot o probe reqression model in an ardered
Type ‘a)’ to quit R faciod response. The defaut logalc cae s
o proportonal oads kgisic regression, aer which the
function s ramed

> Fatseore=e(0.2,0.1,0.2,0.2,0.4,0.3); Fatscore
(1] 0.2 0.1 0.2 0.2 0.4 0.3

3

. Usage

So, these sample size is going to be quite a small just 6 values; however, we are going to

go going through this exercise for the illustration purpose. So, let us look at the salt

Score.

(Refer Slide Time: 29:06)

MM IAR W TR Ve Be (VR T I R

Q- 2 B - e s B tvupent o) =
09 Manann =] iewdrnment isiory =0
g P ocmien Q2o AR S v FH P f e (B

33 asbras(1, 1] +werghtskoll, 3] * wtwl[l'\vwwhuw 21] output(l]l+ 1 o e = 1

M seightshold, i) output (3]

35 output (41-1/(1vexn(-x)) values

¥ Acceptance num [1:6] 100011

37 & classify firsr record uiing cutoff value=0.5 Fatscors num [1:6] 0.2 0.10.20.2

38 ifelse(output[4):0.5. 1. 0) # predicted class salticore mum [1:6] 0.90.10.4 0.5

18 acceptanca(l) # actusl value

0

41 # mode] for hypothetical data
42 library(neuralnet)

4
44 df=data frama(FatScore, saltscors, Acceptance) Fles Pioh Packsges bielp Newer =0
45 seeldf) : |
EL] XX , s
47 neura) wetwork model 1 {etard | i o Proht Hagpennn «
48 ¥ startweights vector: no. of all bias (4) and connection weight values (9) . :
9 : ' | por (MASS) R Documentaen | |
M1 hplond £ Rfuigd ¢
- 1
]
Sovesh G seudon 1y =1 Ordered Logistic or Probit
belp.start()’ for an HTML browser interface to help. - f
Type ()" to quit & Regression
> Fatscore=c(0.2,0.1,0.2,0.2,0.4,0.3); Fatscore
(1) 0.2 0.1 0.2 0.2 0.4 0.3 Description
> saltscore=<(0.9,0.1,0.4,0.5,0.5,0.8); saltscors
[1] 0.9 0.1 0.4 0.5 0.5 0.8 | Fits ki of bt regresson mode o 4 oeted
» Acceptance=c(1,0,0,0,1,1); Acceptance EC e T s KRR R
[1ooo11 proparfional oods logishe regressian, afer whh the
Ranchion o ABmad

» library(nauralnet)
Error 1n library(neuralnet) . there 13 no package called “newralnet’
| Usage

So, this is second variable than acceptance, then some of these computation that you see
and we have gone through in previous lecture. So, let us skip through; I will stop here.

So, this is the package that we require neural net.

So, this is the packet that we are going to use for our n
So, let us load this particular library a neural network;

So, let us install this package.

(Refer Slide Time: 29:49)

eural network modeling exercise.

so this is probably not installed.

U Ve T e Be IR T I

Ql=cp- =) Ll e i o
0910 3ok n =0
g ot (@ Fo 0 - 3w | 5 (W ivuic »
33 aebras(1,1]owerghtssio[1, 3] “output [1] +werghtsHol2,)] output(2]
34 weightseo(3,)] ‘ewtpur (3]
35 output[4]s1/{1+exp(-x})
36

37 & classify first record using cuteff value=0 5
18 ifelsaoutpur[4])-0.5, 1, 0) 2 predicred class
19 Acceptanca[l] # actual value

0

Mode] for hypothetical data
Tibrary(neuralnet)

df=data frame(Fatscore, Saltscore, Acceptance)
str(df)

¥ Houral Wetwork Wodel
startweights wector: no. of all bias (4) and connection weight walues (9)

Ruipd

| Sl

g Lol £

Conwely G /Lelon 11/
[1]090104050508
= acceprancesc(1,0,0,0,1,1); Acceprance
[1jloooll
= library(neuralnet)
Error in library(neuralnet) : there is no package called *neuralnet’
= install.packages("neuralnet”)
warning in install packages :
cannot open URL “http://wew.stats.ox.ac.uk/pub/rwin/src foontrib/PACkAGES . rds . HTTP &

LT
tevdranment Wistory =l
FH Pepetime s g e

| s e +
values

Azgaptance nus [106] 100011
Fatscors rwm [1:6] 0.2 0.10.2 0.2
saltscora num [106] 090104058

Fls Piob Packige Help Vs -
X R
W | e o il g «

R Documentaton | |

pok [MASS)

Ordered Logistic or Probit
Regression

Description

Fits a logrsti o peabi regression model io an ordered
faciod response. The defaut logalc caie s

tatus was "404 Not Found” propertonal ot logisic ragre s, aller which the
Installing package into “C:/users/user/Documents/R/win-library/3.4' Tunchon i ramed

{as '19b' 5 unspecifiod)

| | | Usage

So, once; so this is so there are many many packages which are available in R that can be

used for neural network modeling exercise.

(Refer Slide Time: 29:56)

WM LGN W R VR Be (VR TR A W

LIRS L Bl ot s

-]
=0

g P odmember Q£ v | BRin Y Gi v

asbnas (1, 1] swerghtsno[l, 3] “cutput [1) swerghtshold,) 1 *output [2]+
seightsnald, i output (3]

output[4]=1/(1-exp{-x]}

LI T

classify first record uiing cutoff value=0.5
ifelsa(output[4]:0.5, 1, 0) # predicted class
accaptancal] # actual value

¥ Mode] for hypothetical data
Tibrary (neuralnet)

df=data frama(FatScora, saltscors, Accaptance)
str(df)

Noura] Metwork Model
startweights vector: no. of all bnas (4) and connection weight values (%)

e Lewef) Rfuipl 1

Coniel © /esilon 1) =0
warning 1n nstall.packages :

CAMNAL opdn URL "hUTp://wew $TAT 0% 8¢ uk/pub/Wel n/bin windows /contr b/3. 4/packaces
rds”; HTTP status was "404 not Found®
trying vaL ‘hreps:/foran ratudio com/bin/windews fcontrib/3. 4 /meuralrer] 33 2ip’
content type 'application/zip’ length 59685 bytes (58 xm)
downloaded 58 kB

package ‘neuralnat’ successfully unpacked and WD5 sums checked
he downloaded binary packages are in
Ca\wsers\useriapppata’Local\ Temp \RtmpGOOSH0' down | caded_packages

= I

| s e +

K Poogent thow} *
trdngament Hitory =0
£ H Ferae it =

values
Acceptance rum [1:6] 100011
Fatscors num [1:6] 9.2 0.10.20.2
Salticore num [1:6] 09010405

Bl Fob Packsge Melp Vewer -
XX
e {uctored | et P e =

R Documentaon | |

ok {MASS)

' Ordered Logistic or Probit

Regression

Description

Fits & bogishie of probil feqression modelto an ordered
{acioe response. The defaut logasc cane s
proparfonal oods logishe regressian, afer whch the
Ranchion o ABMad

| Usage

So, neural network being one of the most used package. So, that is why we are using this

one. So, otherwise for this is applicable for other techniques as well, so there could be

more than one packages that could be available for implementation and for modeling of a

particular technique.

So, typically what we have been using are the most popular most used packages most
used functions for the modeling.
(Refer Slide Time: 30:29)

LA Ve T e Ba (iR T I

Q- =) e ae o K gt) »
0] anarn =1 | tedranment History =0
g A et | Q F B~ Ay S e v £ H et e (o
33 webvas(1,1]swerghtsno[1, 7] *output [1)+werghtsnol2,)] "output 2]+) 1ol 1 sreemers
34 weightswol(3, 3] eutput[d]
35 output [4]=1/(1-exp(-x]} values
1 Acgaptance nus [106] 100011

¥ classify first record using cuteff value=0.5
ifalsaoutput[4]:0.5, 1, 00 # predicted class

Fatscors nwm [1:6] 0.2 0.10.2 0.2
saltscora num [106] 09010405

19 Acceptanca[l] # actual value
40
41 # wodel for hypothetical datd
42 Tlibrary(neuralnet)
L}
44 df-data.frame(Fatscore, Saltscore, Acceptance) Fis Pioh Packige Melp Ve =0
45 str(df) .
% X 3] '
47 ¥ woural Ketwork Model W v | i o W lepeenn =
48 # startweights vector: no. of all bias (4) and connection weight walues (9) 3
B = ! pokr [MASS) F Documentssion | |
M1 (o low) 2 Rl
o G el 11 =111 Ordered Logistic or Probit
trying VAL ‘hteps://eran. rstudio, com/bin/windoms /contrib/3.4/neuralnet 1. 33. 210" 1 .
contant typs 'application/zip’ length 59885 byras (58) Regl'eSSIOI'I
downloaded 58 8
package ‘neuralnet’ successfully unpacked and MDS sums checked Description
The downloaded binary packages are in Fits ot o prob reqression model it an ardered
Cr\usersuserappoatalLocal\ Tamp\RTmoco05G0\ down] caded_packages faciod fesponse. The defaut logutc caie
> Tibrary(neuralnet) PROpRVIONA! BOCH logishic FRGTR4N, Bl WhCh he
warning message: funclion s named
package ‘neuralnet’ was built under R version 3.4.1 L
> . Usage

So, let us load this library once this is loaded. So, we will create a data frame of these

three variables fat score, salt score and acceptance. So, let us create this data frame.

(Refer Slide Time

:30:41)

WM IAN W TR VR Bed (VR T INE R

Q-2 =2 4 R K fvopout] *
0] Manann =1 | ieranmeni Hisory =0
g P oo Q2 AR | e v T H Fepria e @
35 cutput [4]=1/(1+exp(-x]}} N e it 1
i
37 # classify first record using cutoff values(.§ oara
18 ifelsa(outpur[4]s0.5, 1, 0) # predicted class 1 0df 6 obs. of § variables |
39 acceptanca[l] # actual value T
40
41 # Mode) for hypothetical data acceprance mm (1:6] 100011
a2 l|hr|r7(n¢url{m:] Favscore rwm [106] 0.2 0.1 0.2 0.2
L] saluscore mum [1:6] 0.9 0.1 0.4 0.5
44 df-dava.Frame(Fatscore, saluscore, Acceptance)
45 stridf)
i Fle Foh Fakage Nl e =0
47 F waura] watwork model " =
48 £ startweights vector: mo, of all bias (4) and conmection weight values (9) i -
48 2 linear outputsT for prediction A | eyt o st et =
50 # linear.outputsf for classification 3
SL.X = MASS) R Documentafion
i (plond 8 Riuip s 1 i
] =11 Ordered Logistic or Probit

The downloaded binary packages are n

Cr\users\user\AppData\Local \Temp\ RImico0sg0\ downl caded_packages REQFESSiOH
= lnbrary(neuralnet)
WirAing meiiage: Destription

package ‘neuralnet’ was built under B version 3.4.1
» df=dava frame(Fatscore, saluscore, Acceprance)

Fits A IogHe o probil regression model 1o & odéned

= str{df

'nu‘h:q'- 6 obi. of 3 variables: factoe response. The defaut logusc cane s

i Farscore . num 0.2 0.1 0.2 0.2 0.4 0.3 propartonal odds logube regress.on, after wheh the
§ saltscore : nm 09014050508 | funcion i Abmad

§ Acceptance. num 100011

>

{ Usage

So, let us look at the structure of this data frame. So, you can see fat score is the 6 values
and all our numerical as of now; so as you can see probably this particular process is
actually for a classification task. We would like to classify whether a particular key

sample is acceptable or not based on the fat score and salt score.

However, you would see that pack the package that we are going to use neural network
that restrict that does not require us to change the change the variable type to for
example, x acceptance is a categorical outcome variable, but the package does not allow
us to do that; so all the computations are done internally within the function that are

available in this package.

So, now let us talk about the model. So, structure neural network is structured as we
talked about that; that is the first thing that we need to decide and of course. So, we can
do certain experimentation with the neural network structure. However, for our
illustration we will use this particular neural network structure for this example; two
nodes in the input layer and then three nodes in the hidden layers the one node in the

output layer so in this fashion, because our output variable is binary variable.

So, we can use now a neural network, as you can see this function is going to be used to
build the model and we would see that linear output is one argument there, and this
argument has to be specified as false for classification, if we are building model for
classification task that it has to be specified as true, if we are building model for the

prediction task.

So, I we will stop here and we will continue our discussion on this particular model size

in R in the next lecture.

Thank you.

