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Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in

previous  lecture  previous  few  lectures;  we  have  been  discussing  artificial  neural

networks. So, we have been able to cover the background, we also did a small exercise,

we understood the architecture different layers, we also we also have gone through a few

more details related to input layer computations that, we are required to perform in input

layers or hidden layers and output layers. 

We also understood some of the expression the computations, the transfer function all

those things we have gone through the bias values weights connection weights. So, all

that discussion we have completed.

(Refer Slide Time: 01:04)

We also discussed how linear regression and logistic regression Can be considered as

special cases of neural network.

(Refer Slide Time: 01:09)
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Now,  let  us  move  forward.  So,  we  also  talked  about  in  previous  lecture  the

normalization.  So, we talked about that scale of 0, 1 is typically  recommended for a

neural network models for performance purposes, neural network models converge quite

quickly, when the scale is this is scale is used 0 to 1 scale is used. 

And the performance is also improved. How, so how this is kind of normalization can be

achieved.  So,  we  discussed  this  particular  expression  formula  V  norm.  So,  any

normalized variable in this to bring it to 0 to 1 scale; So, we can sub in the numerator we

can subtract  it  is  value  with the  minimum value of  that  particular  variable  and then

divided by difference of maximum and minimum value for that particular variable.
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So, that will give us the values oh in 0 to 1 scale. We also discussed that binary variable

you know they are not much to we are not required to do much, because they would

already be 0 to 1, because we would typically be used dummy variables. So, they are

anyway  they  are  0;  they  take  two  values  0  and  1,  nominal  variables  also  no  such

problem, we will have m minus 1 dummy variables.

So, they will also have value 0 or 1. So, that would be also in the same range, ordinal

variables we talked about this particular mapping right 0 or 1 divided by m minus 1, 2

divided by m minus 1, and up to m minus 2, m minus 1 and minus 2 divided by m minus

1 and then 1. So, this is just mapping and we would be required to you know; so this is

mapping can then be used for ordinal variables. 

(Refer Slide Time: 03:05)

Now, there are a few other transformations that can help. For example, if we are if we

have a right skewed variable, then probably log transform that can be done and that can

help  us  our  neural  network  modelling.  So,  as  you  can  see  in  the  first  point  that

transformation,  which  could  spread  the  values  more  symmetrically  can  be  done  for

performance purposes. 

So, just like you know the normalization 0 to 1, and then this is log transformed we are if

we have a right skewed variable.  So, that the values are are more evenly spread. So,

those  kind of  transformation  can  be done to  improve the performance  of  our  neural

network model.



Let us discuss the estimation method. So, as we are familiar about the linear regression

and logistic  regression models  these techniques  and we know that  least  squares  and

maximum likelihood hood methods are used as estimation technique in these methods. 

So, least square is used in linear regression and the maximum likelihood method is used

in the logistic regression. However, as you would; as we have discussed while you know,

when we were discussing  these  technique  linear  and logistic  that  a  global  metric  of

errors;  for example,  as I see some of some of square errors that is typically  used to

estimate the parameter.

So, these techniques least square and maximum likelihood; so their estimation procedure

their estimation steps use this particular global matrix SSE or some other global matrix

to estimate the parameters that are betas that, because this is we you know model the

predictors as linear function and therefore, those beta values are estimated using these

methods and typically a global metric of this kind SSE is used there.

(Refer Slide Time: 05:08)

However, we in neural network,  we do not use any such you know global metric to

compute the parameters.  So, we will understand, so what is the technique estimation

method, that is use in neural network. 



So, neural networks use error values of each observation to update the parameters in an

iterative fashion. So, it is not that we compute a you know we use a global matrix and the

error computation based on those Google matrix, they are either optimized there.

So, that mirror that error is minimized. So, that typically happens in linear and logistic as

we discussed. So, in case of neural network it is for each observation, whatever error

value using the typical formula actual value minus updates predicted value, so that error

value  that  is  used  to  update  the  parameters  in  an  iterative  fashion.  So,  after  each

observation we would be updating. So, this is particular process this particular step is

referred as learning. 

So, when we say that you know especially for data demand techniques, data demand

model for example, classification and (Refer Time: 06:20) neural network here, in this

particular  case.  So,  these  techniques  these  models  they  learn  from  the  data.  So,  in

particular case, in this particular case artificial neural network the learning is based on

the error values right. So, after each observation the learning comes from the error value

for  that  particular  observation  and  this  happens  in  an  attractive  fashion  and  all  the

observations are used in this learning process.

So, as you can see in few more points in the slide error for the output node, that is you

know prediction error. So, the is typically distributed across all the hidden layer node.

So,  that  that  is  what  happens  in  neural  network;  then  all  hidden  layer  nodes  share

responsibility for part of the error. So, you would from this it would be clear that all the

nodes that we talk about for example,  hidden layer nodes or hidden layer nodes and

output layer nodes.

So, all those nodes they share they are part of the learning process, they share response

and learning happens through error values after each observation. So, they also; so these

nodes also share responsibility for part of the error. So, this is this particular is referred as

node specific error. So when the part of the error that is shared by hidden layer nodes that

is called node specific error. 

Now, these nodes specific  errors are used to update the connection weights and bias

values right. So, we are going to have connections between input layer nodes and output

layer nodes and similarly for between hidden layer nodes to output layer nodes. So, all

those connections, weights and the bias values for hidden layer nodes and the output



layer nodes. So, all those things all those parameters are going to be updated using these

node is  specific  errors.  So,  the actual  algorithm that  is  actually  used to  perform this

process that is back propagation so as the anyway we can say that estimation method that

is using neural network is actually back propagation algorithm.

(Refer Slide Time: 08:35)

So, this  particular  algorithm is used to update weights and biased values of a neural

network.

So, error values they are computed from output layer back to hidden layers that is why

you would see that it is called back propagation. If we have to understand this we can

understand the same thing through a diagram; for example, in previous lecture; we had

used this particular neural network.



(Refer Slide Time: 09:04)

So, we had two nodes here; so we had two nodes in input layer, then we had three nodes

hidden layer, and then we had one node in output layer. So, the error values would be

computed here, and then they would be propagated back to hidden layer nodes right. So,

that is why this algorithm is called back propagation; so error values are computed from

output layer back to hidden layer nodes. 

The next point as you can see in the slide all hidden layer and output layer nodes and all

connection weights become part of learning process right. So, since this particular value,

that is computed here the error value that is computed here. Now, this is propagated back

to the other layers the previous layers of the network. 

So,  all  the  connections  that  are  going  to  be  here  all  the  connections  and  the

corresponding weight the bias values they are going to be part of the learning process.

Similarly here; so since all the connections all the weights and vast values are going to

be updated using this particular error you know back in a back propagation manner. So,

all of all these parameters are going to be all these nodes and the connections are going

to be part of the learning process.

So, typically how do we compute these errors? So, let us talk about the node is specific

error, how it is computed. So, you can see that first we will discuss for the output node.

So, for example, in this case we have one output node. So, if we consider this particular

network diagram, then we can see that for this output node error can be computed in this



fashion. So, we have a correction factor, that is multiplied to the predicted error, that is

actual value minus predicted value. So, this is prediction error. So, this prediction error

that is going to be computed here; so the predicted scores, so the output value that comes

from this particular node output node, that is going to be the predicted value as we talked

about in the previous lecture.

And now we will have the actual value, now the difference actual value minus predicted

value. So, this is going to be our predicted val, so this is typical definition of prediction

error. So, this is a typical definition for any error computation. Now, this particular value

is  going to  be  multiplied  by  a  correction  factor,  this  particular  value  is  going to  be

multiplied by a correction factor and that; so now, we will get a new value, now this

value this value would be assigned to the output layer node. So, now, this  particular

value is going to be used to update the parameters related to this particular node.

So, as we can see that the bias value we can see that in the next equation, we can see that

bias value theta new is theta old plus learning rate into error. So, the error value that has

been computed in the previous step; So, we will multiplied with learning rate and then

add it to the old value of old bias value. So, that will give us the new bias value to be

used for the networks. So, any new observation that is run through the network it will use

this particular new bias value. So, what is learning rate?

So, learning rate controls the rate of change from previous iteration. So, you can see

what part of; what amount of the computed error value that we just saw; what part is

actually used for the learning process that is controlled by learning rate. So, typically the

learning rate value is typically it is a constant value and in the range 0 to 1. So, that will

determine what; how much; what amount of error part of the error is going to be used for

the learning process the updating process.

So these are the steps, so node specific error from the prediction error we can compute

the prediction error that we get for a particular observation. So, as I talked about for

every observation we will learn through this particular network. And in previous lecture,

we talked about that all these through an example also in R as well we understood this

that all the connection weights and bias values they are initialized to random numbers.

Now, once the first observation is passed through this particular network run through this



network these randomly initialized you know weight values and bias values are going to

be used to produce the predicted value.

And  once  that  predicted  value  for  that  particular  objects  observation  number  1,  is

actually the core number one is actually computed, then it can be subtracted from actual

value and we will get the prediction error and from there we can compute the error and

we will know the values as given in the you know slide that we can use the learning rate

and the control the amount of change and we will get the new values and new values for

thetas and w weights and those can be updated.

So, the bias values here for output node and the weights can be updated. So, this was for

the output node and; however, the process the steps are quite similar for the hidden layer

nodes as well; however, at this point I would like to point out that this was for the first

observation. Now, second observation also once these weights and you know connection

weights  and bias  values  have  been  updated  for  the  whole  network,  then  the  second

observation will pass through these updated values right.

And again we will reach to this value will learn through the network, we will have the

predicted value again the same process will continue and again the updation and learning

will happen. And in this fashion observation 2, 3, 4 and in this fashion will keep running

these observation through the network and the network will  keep on learning in this

fashion right. In the prediction the correction factor will get the error and that would be

updated as we talked about right theta new theta old plus learning rate into this error

value.

Similarly, weight new weight old plus learning rate into error value; So, in this fashion

now the new values will be updated. So, we talked about how the values are computed

for a output node, these values are being computed for the output node. Similarly, the

same type of process similar steps are performed for to compute node specific error for

hidden nodes. So, the error value that we have computed for output node this one.

Now, this is going to be used by hidden layer nodes, this is going to be used by hidden

layer nodes to perform these steps similar to what we have here. So, this particular error,

now this is going to be used here; and these steps are going to be quite similar again we

will you know; so in place of prediction error now we will have this error value, now we

will have this error value for hidden nodes and other steps are going to be similar. So, we



will use a correction factor and that correction factor is, then going to be used for all

these nodes.

Now, the correction factor is specific to the node. So, the value that is the that has been

the output value, that is there for a particular node. So, whether it is for the output node

or the hidden layer nodes that; so correction factor could be based on these output values

and therefore, it is it could it is going to be different it is going to be different for all

these nodes. 

So, that correction factor then would be for output node it would be multiplied with the

prediction error, for hidden layer node it would be multiplied by the error value that is

computed for the output node. So, in this fashion all the weight and bias values are going

to be updated.

(Refer Slide Time: 18:32)

Now, let us talk about the few more things about updating weight and bias values. So,

there  are  two  main  approaches  for  this  updation.  So,  for  example,  what  we  have

discussed till now is; actually you know case updating. So, what is case updating? So,

updating is done after each case or record is run through the network referred as a trial. 

So, this is what we have discussed. After each observation this case updating you know

this  is  called  case  updating,  after  each  observations  the  bias  and  weight  values  are

updated and this happens for all the observations in the data set.



And when all  the records are run through the network it  is referred as one epoch or

sweep through the data. So, that is referred as a one sweep through the data, if we are

using training partition data set, then it is going to be one sweep through the training

partition data. So, in the training process learning process of the network we might have

to run many such epochs. So, as you can see here one point here last point here in case

updating many epochs could be used to train the network.

Now, the another approach for updating weight and bias value is called a batch updating.

So, this is different from what we have discussed in you know case updating here. So,

what  happens  in  batch  updating?  The updating  is  done after  all  the  records  are  run

through the network right. Till now what we have been discussing is observation is run

through; so the weights and biased values are randomly initialized for the network.

So, once first  we decide the network architecture,  the network structure once that  is

decided, then we will in randomly initialize the connection weights and bias values, then

we  will  run  the  first  observation  through  the  network,  then  the  second  observation

through  the  network,  third  observation  through  the  network,  and  when  all  the

observations have been run that is one epoch. So, we might have to you know execute

many such epochs and this is, what we are discussing under case updating this is called

case updating.

And, when we talk about batch updating first all the observations; so you would see that

in case updating, after one observation has been run immediately these computations are

done and the bias values and weight values they are updated; however, in batch updating

all the observations are run through the network, and then this particular these kind of

computations are performed. So, what is the difference in these computations?

So,  in  place  of  prediction  error,  because  the  prediction  error  was  a  specific  to  the

observation, so for every observation you know we had a prediction error in the case

updating. Now, in place of that prediction error we will use some of prediction errors for

all records, you know that is for all records. 

So, in place of prediction error some of these errors is going to be used right. So, this is

going to be used and accordingly the biased values and weight values are going to be

updated. So, again in batch updating also even you know many epochs, we would have

to run to train the network.



(Refer Slide Time: 22:12)

Now, in terms of performance in terms of performance and modeling, how case updating

and  batch  updating  what  are  the  advantages  or  disadvantages;  so  the  one  important

difference  that  you can understand through the process  itself;  case updating  is  more

rigorous right. So, in case updating every time when an observation is done through the

network, the updation of these values the back propagation of these values that take place

and that takes place for each record. However, in batch updating this happens once for all

the observations in the data set. 

So, you would see that case updating is more rigorous and therefore, it would require

more runtime as well. So, the accuracy of model would be much better in case updating;

however, it will take it will come at the cost of longer runtime.

Now, let us talk about the stopping criteria for updating.

(Refer Slide Time: 23:11)



So, when should be stopped; we talk about that to train the network to learn from the

nata; to learn from the data, we will have to execute many epochs will have to perform

many sweeps through the data. So, when do we stop? So, what should be the; what are

the some of them you know key stopping criteria’s for this learning process.

So, few points are discussed here, as you can see small incremental change in bias and

weight values from previous iteration. So, if the bias and weight values the change that is

happening; so that is that you can see learning rate into error. So, that component the

second component;  that is being added to the previous value this is very incremental

there is not significant change.

So, when we run through; when we run our first observation, then this is this particular

component would be quite significant as we go through other observations, this value

might decrease and you know as we go through all the observation and we you know one

epoch is completed, we go through second epoch still there would be some you know

significant you know component here. 

However, as we move as we do more computations of this kind this is you know that

significant that significance significant value that is being added here you know added or

subtracted here might that that magnitude of that might decrease and it might just remain

an incremental value very small change might be happening.

So, probably that is the indication that the model or network has saturated and therefore,

we should  stop  the  learning  process.  So,  this  is  what  is  mentioned  here.  The small



incremental change in bias and weight values might indicate that probably we should

stop the learning process.

Other stopping criteria could be a rate of change of error function values as there is a

required threshold. So, overall; over overall performance of the model, so some error

function could be used for example, SSE could be used to check the overall performance

of the model. So, therefore, we can see for you know different different sweep. So, that

we that we execute different sweeps, that we execute we can have the; you know that

you can see; we can check the change of error values there that is for the model error.

And we see when that is you know that is reaching the required threshold.

So, if the rate of change is you know has these there is required so; that means, the rate

of change in terms of model performance is not much. So, that is when we talk about this

error function that is with respect to the model performance. So, that error, so it could be

SSE or some other metric, and if the rate of change is not much then probably all has

reached to a established specified value threshold value, then probably we should stop

the learning process.

Now, so this is second point is quite similar to what we have been discussing in previous

techniques as well. Now, for example, in the cart algorithm also we talked about that;

you know the classification, misclassification rate on training partition and the same on

you know validation partition and somewhere when the value is minimized probably you

know that is the point where we should stop the tree growth. So, this is second point is

quite similar to this.

Now, there could be another criteria, that is limit on number of runs is released. So, we

can also specify the number of runs the maximum limits.  So, this is going to be the

probably the last result to stop the network is not able to converse, then probably we

would like to set a limit  at the point this particular  training process learning process

would be stopped. 

Typically  this is the last result,  when we are not able to you know stop the stop the

learning process the updating process either from first criteria, second criteria, whatever

is being used and then probably we should stop at some point and too many runs have

been done and still no conversion has taken place. And probably we should we can do



that by specifying the limit on number of runs. After this discussion let us understand

some of these concepts through a modeling exercise in R.

(Refer Slide Time: 28:02)

So, in the previous lecture, we had used this particular example that is we had this fat

score and salt score, and this was for different experimentation with respect to cheese

samples and whether those cheese samples and that combination of fat and salt score,

whether that is being accepted or rejected by the experts. So, we had this hypothetical

later a few a values also and that was used to understand the computations that we do in

a neural network. So, we are going to use this same example to build our to build our to

train our neural network model.

So, let us execute this code. So, we will have fat score, as you can see just 6 values are

there.

(Refer Slide Time: 28:51)



So, these sample size is going to be quite a small just 6 values; however, we are going to

go going through this exercise for the illustration purpose.  So, let  us look at  the salt

score.

(Refer Slide Time: 29:06)

So, this is second variable than acceptance, then some of these computation that you see

and we have gone through in previous lecture. So, let us skip through; I will stop here.

So, this is the package that we require neural net. 



So, this is the packet that we are going to use for our neural network modeling exercise.

So, let us load this particular library a neural network; so this is probably not installed.

So, let us install this package.

(Refer Slide Time: 29:49)

So, once; so this is so there are many many packages which are available in R that can be

used for neural network modeling exercise.

(Refer Slide Time: 29:56)

So, neural network being one of the most used package. So, that is why we are using this

one. So, otherwise for this is applicable for other techniques as well, so there could be



more than one packages that could be available for implementation and for modeling of a

particular technique.

So, typically what we have been using are the most popular most used packages most

used functions for the modeling.

(Refer Slide Time: 30:29)

So, let us load this library once this is loaded. So, we will create a data frame of these

three variables fat score, salt score and acceptance. So, let us create this data frame.

(Refer Slide Time: 30:41)



So, let us look at the structure of this data frame. So, you can see fat score is the 6 values

and all our numerical as of now; so as you can see probably this particular process is

actually  for a  classification  task.  We would like to  classify whether  a  particular  key

sample is acceptable or not based on the fat score and salt score. 

However, you would see that pack the package that we are going to use neural network

that  restrict  that  does  not  require  us  to  change  the  change  the  variable  type  to  for

example, x acceptance is a categorical outcome variable, but the package does not allow

us to do that;  so all the computations are done internally within the function that are

available in this package.

So, now let us talk about the model. So, structure neural network is structured as we

talked about that; that is the first thing that we need to decide and of course. So, we can

do  certain  experimentation  with  the  neural  network  structure.  However,  for  our

illustration we will  use this  particular  neural network structure for this  example;  two

nodes in the input layer and then three nodes in the hidden layers the one node in the

output layer so in this fashion, because our output variable is binary variable.

So, we can use now a neural network, as you can see this function is going to be used to

build the model and we would see that linear output is one argument there,  and this

argument  has to be specified as false for classification,  if  we are building model for

classification task that it has to be specified as true, if we are building model for the

prediction task.

So, I we will stop here and we will continue our discussion on this particular model size

in R in the next lecture.

Thank you.


