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Welcome to the course Business Analytics and Data Mining Modeling Using R. So, in

previous  lecture  we  started  our  discussion  on  artificial  neural  network.  So,  we  will

continue that; so till now we have been we have been able to discuss the neural network,

architecture,  the  background,  multi  layer  feed  forward,  network  and  specific  details

about computations that are involved in input layer hidden layers and output layer. 

Now, what  we will  do;  the  this  particular  process,  that  is  the  computations  that  are

involved in different layers. We will go through some of those things using an example

using  exercise  in  R.  So,  let  us  open  R  studio  and  the  particular  example  this  is  a

hypothetical one. 

(Refer Slide Time: 01:09)

So, the example that we are going to is about is about a particular cheese combination.

So,  in  a  particular  cheese  we have  these  scores  fat  score  and salt  score.  So,  this  is

combination of is going to be tested by is has been tested by expert and the they indicate,

whether that particular fat score and salt score combination that particular fat and salt is

combination is going to be accepted or not.



So, we have fat scores for every such experiment and the salt score and whether that was

accepted or not. So, you can see we have just 6 observations. So, 6 observation in each of

these vectors fat score, salt score and acceptance and this can be used to this is a small

example, that we are going to use to understand certain computations that we discussed

in the previous lectures.

(Refer Slide Time: 02:22)
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So, let us create first variable fat score, so you can see fat score and the environment

section we can see 6 observations; numeric vector. And then let  us compute this salt

score. So, again we can see 6 observations numeric vector and then the acceptance.

(Refer Slide Time: 02:39)

So, you can see salt score the acceptance 6 values 1 0 0 0 1 1. So, corresponding to each

combination of fat and salt we have a value for acceptance, whether that was accepted or

rejected.

Now, the typical example that the a specific example that we are going to follow is going

to be based on this neural network structure. So, input layer will have two nodes, nodes 1

and 2, reason being we have two predictors here fat score and salt score. And hidden

layers will have just one hidden layer with three nodes. So, that is one more than the

number of predictors. So, p plus 1 n nodes in hidden layer. 

So, they are going to be denoted by 3, 4 and 5. Then we have output layer of one node.

So,  that  would  be  representing,  because  we  have  a  you  know  binary  variable  here

acceptance that is either 1 or 0, so one node for that; so that is denoted by node number

6.

So, if we want to draw the neural network architecture, that we have decided for this

small exercises this one.

(Refer Slide Time: 03:55)



So, node 1 and 2 , so node 1 and 2; so that is the values will come from this particular

this particular predictor as we saw in our R environment, and then we have salt score and

then these, so this is input layer. So, this is input layer now as we have discussed in

previous lecture that input layer nodes all the all the input layer nodes they are going to

provide input values to the next layer that is the first hidden layer. So, we had these

predictors p value of p is 2.

So, typically around the number of predictors that we have; the same number of nodes

we have input layer as we discussed and around the same number we have the number of

nodes in the hidden layer. So, here we have just one hidden layer and the number of

nodes that we are taking are p plus 1, otherwise here in this case three. So, this is no

number 3, 4 and 5.

Now, as we talked about that from each node in the input layer we will have an arrow.

So,  this  will  provide  a  feed  to  this  node as  well  as  this  node as  well  as  this  node.

Similarly, from second you know from second node that is corresponding to the second

predictor salt score will be providing feed to all three hidden layer nodes. So, you can see

two arrows, because we had two predictors, two arrows coming to this particular this

particular you know all the nodes of two arrows arriving at connecting to all the nodes in

the hidden layer.

Then as we discussed that will have one node in the output layer. So, this is our output

layer and this is the only hidden layer that we have. So, all the nodes in the hidden layer



are going to be connected to the output layer node the single output layer node that we

have; so, they would be providing feed to the output layer single output layer node that

we have, this is why we have just one node here. So, this is actually corresponding to the

output variable that we have outcome variable, which is; which is binary variable in this

case, which is binary variable in this case; which is acceptance. So, the feeds from all the

hidden layer nodes would be provided, would be forwarded to this single output layer

node. So, this is our typical neural network. 

We will also have a bias values on each of the hidden layer nodes and output layer nodes.

So, these are biased value. So, we will also have them. So, each of these nodes, we will

have corresponding weights right. So, we will have these are bias values thetas and we

will have weights for all the connected arrows. So, this is the typical neural network

architecture that we are going to use for this example. 

So, let us proceed. So, you can see first step is initialization. So, as you can see here in

the comment that the theta and wij initialization that we have to perform first. So, this

particular  character  this  was  actually  theta;  however,  this  probably  this  does  not

supported some problem here. So, this is being depicted by some other character, but this

is; what we are talking about is the initialization of bias values that is thetas and weights.

So, that is the typically that is first step.

So, bias values if we look at this particular function that we are using here is the matrix.

So, we will compute a matrix of bias values, the first argument is of course, the data. So,

we are using runif function to generate these random numbers. So, we are generating 4

random numbers, if we look at that we have three nodes in the hidden layer and one node

in the output layer. So, we have 4 values we will have 4 bias values and therefore, I am

generating 4 4 random numbers here.

And you can see the range of these numbers is minus 0.5 to 0.5. So, we will have that

number  of  column is  1,  so that  is  going to  be representing  all  have  all  bias  values.

Dimension names are are 4, 3, 4, 5, 6, that is corresponding to node numbers 3, 4, 5, 6

for each of these node will have the row number and then we will have the 4 values

corresponding values biased value. So, let us compute this.
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So, you can see here; corresponding to node number 3, 4, 5, 6 which is which are being

represented by row number here 3,  4,  5,  6 we have randomly initialized bias values

which are from which range between minus 0.5 to 0.5.

Now, let us move forward to next step that is weights. So, first weights of arrows, which

are connecting input layer nodes to hidden layer node; the single hidden layer node that

we have. So, again here you would see that we have from we have two input layer nodes

and three hidden layer nodes so; that means, we will have 2 into 3, 6 connecting arrows. 

So, therefore, we will have to randomly initialize 6 values 6 of the weights first. So,

again same range 6 values same range and we will  have 3 columns 3 columns here

corresponding to  three  nodes  in  the  hidden layer  nodes  and we will  have  two rows

corresponding to two nodes in the; input layer.

So, as you can see in the dimension names you can see first  is  for row names first

element is for row names; first vector the second vector in this list is for column names.

So, 1 and 2 2 nodes for input layer two and then three nodes in the hidden layer. So, in

this fashion we will generate the randomly initialize the weights.

(Refer Slide Time: 11:17)



So,  let  us  compute  these  values,  you  can  see  here  in  the  output.  So,  row  number

correspond to input layer nodes that are 1 and 2, and the column names correspond to

hidden layer nodes that are 3 and node number 3, 4 and 5 and you can see the values

randomly initialized values in the range minus 0.5 to 0.5.

Then, let us move to next step that is initializing weight values that are that are there for

the connections between hidden layer nodes to output layer nodes. So, we have three

nodes in the hidden layer and just single hidden layer that we have; I am just single node

in the output layer. So, we have 3 connecting rows 3 into 1, 3 connecting arrows and

therefore,  3 bits we will have to initialize same you can see in this particular matrix

function; 3 values will be in the same range one column, that is because we have just one

node in the output layer. 

So, you can see the dimension names, arrow names are corresponding to the hidden layer

nodes that is 3, 4, 5 and the column name is corresponding to the output layer node that

is 6 here.
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So, let us compute this particular matrix and you can see in the output, that row numbers

3, 4, 5 responding to hidden layer nodes and the column name is 6, that is corresponding

to  out  single  output  layer  node that  we have  and these  are  the  randomly  initialized

values.

So, once the random initialization has happened for all these w's and thetas, then for a

particular observation we can start certain computations. So, let us look at the first record

that we have. So, first record that we have; you can have a look in the environment

section as well, you can see fat score first value is 0.2 and salt score first value is 0.9. So,

first record we have fat fat score as 0.2 and salt score as 0.9. 

So, now, we will do certain computation. So, this is one variable output, where we are

going to come store the output value values. So, any output values that are going to be

processed after applying transfer function, they are going to be stored in this particular

variable. So, let us initialize this (Refer Time: 13:43).

Now, because this  is  for first  observation,  k is  1;  that  is  for first  observation that  is

nothing, but to access the vectors of fat score and salt score, because the first value that

we are taking here. So, let us initial initialize this now the loop; so this in loop runs from

the you know all the all number of bias values and number of bias values and one less

than the number of bias values. So, that is we can see that that, this is specifically for the

hidden layer nodes we have three hidden layer nodes as you can see. So, this how we can



compute this. And now you can see the expression bias that expression that we saw in the

slide. So, let us again have a look at that expression.

(Refer Slide Time: 14:35)
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This is we saw in a previous lecture.
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So, you can see this is what we want to compute? We want to compute a weighted value.

So, you can see theta value the bias value plus summation over all the predators values

the weighted average of all the predictors values.

So, we can see that bias value is being accessed, the bias value that we had initialized

here  right;  starting  from first  value  and then  we can  see  weights  then that  we have

initialized you can see the bias this one matrix first column first value right weights,

again this was matrix; weights between input layer two hidden layer and you can see the

you know a first row and then the we are going to through the i value is going to be 1. In

the first iteration, so that is first column, then second column.

So, we would see in the output itself, if you go above here and bias values and then the

weights IH; you can see the first column is corresponding to node number 3, second

column is corresponding to node node number 4, and third column is corresponding to

node number 5. So, you can see these column numbers are changing; however, we are

dealing with the you know you know same row.

So, you can see row number 1 and here and for next one row number 2. So, first arrow,

this is going to be the weight and then fat score and then, the second arrow this is the

weight and for the same column and this is going to be computed. So, this expression is

essentially being computed using this particular code and then the output values you can

see the a logistic function here 1 divided by 1 plus exponential of minus x. So, we have



computed the logit value the logistic function and for all the nodes all the hidden layer

nodes, this would be computed. So, let us run this loop.

Now, once this is computed, then we have one more output value to be computed that is

for corresponding to the output layer node.  So, let  us increase increment  the i value

counter, and j also let us initialize this. Now you can see this particular code is for the

output  layer  node biased value you can see here the bias values  this  was i  we have

already implemented. 

So, therefore, the last pass value is going to be used here that is corresponding to the

output  layer  node;  then  weight  this  is  between  hidden  and  output  layer.  So,  the

corresponding weight is being accessed from that matrix that we have and then that same

expression the same expression that we have here is being evaluated here. So, let us

compute this. 

(Refer Slide Time: 17:49)

Now, again we are using a logistic function to compute the value for the single output

layer node.
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So, now all the values output values have already been computed and; as you can also

see when we computed the output value for the out single output layer node, the input

values were the output of hidden layer you can see output 1 and output 2, output 3. In the

loop you can see that input values were coming from input layer node, fat score here and

salt score here. 

These were the two nodes in the input layer and these values were being used. When we

look at the you know output layer node, you can see the input values are coming are

being used as the what output values of hidden layer are being becoming the input values

for the output layer, and output 1 and output 2 and output 3 can be clearly seen here. And

that is how we compute output for the output layer node. And once we have that value;

so let us look at this value output 4; so the value that has been computed comes out to be

0.4918236.

(Refer Slide Time: 19:01)



And, now as we know that the acceptance variable that outcome variable that we have

that is; essentially a binary variable 0 and 1 whether that particular combination was

accepted or not. So, this value; this score can be used you know compared with a cut off

score that is we can take 0.5 as the cut off score and it can be compared to classify this

observation, whenever this is the code that we are using.

(Refer Slide Time: 19:44)

So, if else if this output value is greater than 0.5, then classified to that at row 1; that

means; accepted otherwise 0; so we can compute this value; so this comes out to be 0,

because the value is 0.49 quite close to 0.5, but less than that. So, this has been classified

as 0; however, quite close if you look at the actual value acceptance it was 1.



(Refer Slide Time: 19:58)

So, the value that  was computed here is 0.49. So, there is  still  some it  was still  not

classified as you know class 1. So, therefore, what we can understand is; more iterations

are to be performed, this  neural network that we have this is what this was the first

iteration that we had done. 

So, therefore, more iteration have to be performed for us to be able to have the final

model, which will have higher accuracy, higher classification accuracy. So, this was just

first iteration. So, more iteration the network will learn something more from the data

and then probably the performance will improve the actual you know results would start

matching the actual values.

So, let us go back to our discussion. So, as you can see whatever discussion that we had

in  previous  lecture  the  computations  that  we  talked  about  in  previous  lecture,  this

particular expression as well. So, that we now saw how it are going to be performed you

know in R environment R studio environment.

Now, let us now talk about the next important point here, we talked about in previous

lecture  that  linear  and logistic  regression can be treated  as  a special  cases of  neural

network, how is that how can that happen; so let us discuss. So, let us consider a neural

network  with  single  output  node  and  no  hidden  layers  and  that  would  actually

approximate the linear and logistic regression models right.



So, as we talked about that excavation, that we use the expression that we use for for

weighing  the  inputs  here  right;  the  expression  that  we  used  here  this  theta  plus

summation of w and x i predictor values, this is quite similar to what we have in linear

regression the beta plus you know beta 0 plus here we have summation beta and x this is

quite similar to what we have in linear regression.

So, therefore, in that sense we can try and approximate we can try an approximate linear

regression as a special case of neural network what we will do we will have 0 hidden

layers. So, let us zero down layer single output node that we already have. So, if the

same diagram we want to convert into a linear regression this is what we can probably

do. 

So, if we remove the hidden layer, if we remove the hidden layer the input layer nodes

are going to be directly connected with the output layer node right; directly going to be

connected with the output layer node, and if we are not using; if we are using the transfer

function, so these arrows will also change this will also go. So, these arrows will also

change.

(Refer Slide Time: 23:21)

So, this will become there will be a feed to this from this node and there is going to be a

feed to this. Let us remove some of these things. So, this is what we will have and this is

theta this is going to be. So, they are going to be weights. So, we have two predictors and

one output variable and if you look at; now there is similarity, transfer function if g is



something  like  this,  then  the  input  values  that  receive  the  same  are  going  to  be

transferred here and therefore, this is what we will have. 

So,  this  will  approximate  what  we  talked  about  this  will  approximate  the  linear

regression. So, as we can see in the slide as well if a linear transfer function gx and equal

to bx is used so; that means, the input values that we receive from predictors the same

input values are going to be fed to the output layer node there are no hidden layer nodes,

then the formulation is going to be equivalent to that of a linear linear regressions you

can see these formulations.

(Refer Slide Time: 24:20)

So, this formulation will become equivalent to the formulation that we have in linear

regression.  However, the  estimation  method how do we estimate  how you know we

estimate the beta's in linear regression, that is typically done using least square that is

different in case of neural network. Neural network we apply back propagation algorithm

to estimate theta thetas and w.

So, theta and w’s values are estimated using back propagation algorithm neural network;

however, in linear regression these betas are estimated using least square. So, estimation

method is different;  otherwise, we can approximate the linear regression using neural

network. So, therefore, we can say that in a way linear regression or a special cases of

neural network.



The similar thing similar conceptualization we can do for logistic regression as well.

(Refer Slide Time: 25:44)

Suppose this  transfer  function is  logistic  function,  if  this  transfer  function is  logistic

function,  then  you would  see that  you would see  that  the  neural  network  with zero

hidden layer nodes zero hidden layers would again approximate the logistic regression

equation. So, you can see as in the slide probability of a particular record belonging to

class 1 and this is you know they are also noise degrees and also we use this logistic

response function and we will have expression like this here.

So, that will; so this will actually approximate this will actually approximate the logistic

regression. So, if the formulation is equivalent to what we have in logistic regression

equation, how well just like linear regression; the estimation method is different there in

logistic  regression  that  is  the  maximum  likelihood  method  that  is  typically  used  in

logistic, and in neural network as I talked about typically back propagation is used. So,

linear and logistic regression they both can be conceptualized as a special cases of neural

network.

Let us move forward; so some more important points with respect to artificial  neural

network, so one is normalization.

(Refer Slide Time: 27:17)



Typically, the amount of iterations that are performed in a neural network depending on

the number of observations and the depending on the learning rates and other things that

we will discuss later on. So, depending on that quite you know number of computations

number of computations or computational intensity of a artificial neural network could

be quite high. So, therefore, to boost the performance to get the converging convergence

in neural network and to also get better performance; it is generally recommended that

all the variables should be in the scale of 0, 1.

So, all the predictors; so we would like to have all the predictors in this scale 0 to 1. So,

normalization,  so  we  would  be  required  to  perform  normalization.  So,  that  all  the

variables  are  in that  scale.  So,  for numeric  variables  as you can see in  the slide the

normalized variable V norm could be computed in this fashion V minus minimum of V

divided by max V minus min V. So, this will give us a normalized variable, which will

have values in this particular range 0 to 1. So, this is for numeric variables. 

If  we  talk  about  the  binary  variables  the  categorical  variable  with  two  classes;  So,

typically there is not much that we need to do; if we create dummy variables, so they will

anyway have take values set of values is going to be 0 and 1. So, either 0 or 1 values is

going  to  be  taken  for  all  the  observations.  So,  binary  variable  will  work  just  fine

irrespective of whether they are ordinal or nominal. So, binary variables are going to be

with this range this normalization.



We talked about the nominal variables with greater than two classes, then we can create

m minus 1 dummy variables and because these are dummy variables again they will have

this set of values 0 and 1. So, values good are going to be either 0 or 1. So, that is also

ok.

Now, when we talk about the ordinal variables ordinal variables with m classes, where m

is greater than 2, then we have to think about what can be done. So, typically the values

can be mapped to this particular set of values. So, 0 comma 1 divided by m minus 1, so if

there are m classes; so we are dividing 1 by m minus 1, then 2 divided by m minus 1,

then up to m minus 2 divided by m minus 1 and 1. So, this is to map the values.

So, if there are let us say; if there are 4 classes if we have an ordinal variable with 4

classes. So, we would like to as discussed in slide. So, you would see that, we would like

to have in this fashion the values as mentioned in the slide. Now for four classes that

scenario would be 0, 1 divided by 3; 2 divided by 3 and then 1.

So, these could be the four values for the ordinal classes, now the values that could be

there in the variable, they will have to mapped to these four values right. And we have to

change the variable type as ordinal and have these values. So, the scale will again be 0 to

1, and since this is going to be anyway ordinal variable. So, so the values are also going

to be in this range and it can be used here.

So, these transformations can be performed or are actually  recommended for in your

work to achieve either the conversion of the network, conversion of the model or to even

improve the performance.  There are  few more considerations  more discussions  point

about artificial neural network, that we will discuss in the next lecture. So, we will stop

here.

Thank you.


