Business Analytics & Data Mining Modeling Using R
Dr. Gaurav Dixit
Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture — 43
Pruning Process- Part 11

Welcome to the course business analytics and data mining modeling using R. So, in the
previous lecture, we were discussing classification trees, in particular, we were doing an
exercise in R for the same. So, we did some modeling using the promotional offers data

set. So, we talked about the way we did a modelling, there especially, the pruning part.

So, we were specifically focusing on the pruning part and there; when we try to prune
back the full grown tree to a label where it does not over fit the data or fit the noise the
way, we followed the pruning process that was you know a sequence of pruning was as
per the node number ordering and it was not the nested sequence, right. So, we talked

about a bit about this in previous lecture where we discussed that if this is our root node.
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And in this root node we will have a predictor one and value one. So, predictor value
combination based on which the split would be performed. So, some observation will fall
in this part other observation will fall in this part. Similarly, for next split, we have to see

that whether on this node or this node you know where the reduction performing you



know for the these nodes where the optimum split mole reduction in impurity is going to

take place.

So, let us say; the next you know impurity reduction high impurity reduction happens in
this particular node. So, let us say, this is happens at variable P 2 and V 2 right. So, this is
going to be about a split 1 this is split 2, then after the split is perform some observation
will go to this side other observation will go to this part. Now, again for next split will
have to check between these 3 which on you know which particular node and which
particular predictor value combination will improve the impurity further, right improve

the impurity the improvement reduction and impurity would be highest.

So, let us say now that here at this node the reduction in is impurity is highest, then this
is let us say the predictor value combination for the same is here. So, this is split 3 right
now. So, here again we will have some observation that will go into this part some
observation will go into this part right now for next split. Now, among these 4 nodes will
have to check which one is giving the most reduction in impurity let us say this is the
split this is the node and we have a P 4 V 4 and predictor value combination and it will

be split 4.

So, the pruning sequence. So, from this we wanted to derive the pruning sequence. So,
we look at the pruning sequence, it is going to be this node, right. So, if it is node number
one. So, if we follow the unique you know node numbers that ordering that we discussed
in the previous lecture this is going to be node number one this is going to be 2, this is

going to be 3, then 4, 5, 6, 7.

So, our pruning sequences first node number 1, then the second split happened at node
number 3, then it happened at node number 2, then it happened at node number 6, right.
So, 4 first 4 splits in this is example, if we look at first 4 splits. So, they happen in this
order. So, when we prune back the full grown tree to a certain level will have to follow
this splitting pattern. right ah. So, let us say last know if there are n number of splits ah;
that means, actually this is going to be n number of this is going to be equal to the

decision nodes decision number of decision nodes in full grown tree.

So, therefore, we have to when we start pruning the full grown tree back to the desired
levels will start deleting the you know least important splits; that means, splits which

have done a least amount of reduction in impurity. So, probably we will start from here



and go our way back to the higher up to level. So, that we get to a point where the error
on validation data is minimized. So, essentially the exercise that we had performed in the

previous lecture the pruning that we had that we were following was based on this.

So, we just looked at the road node numbers and you know pruning was based on this.
So, we are following the sequence in the increasing order as per the node numbers the
optimal way of pruning that we want to follow is this one. So, today we will do an
exercise in R, wherein, we will follow this particular pruning sequence and then let will
understand few of the, you know few more points using a particular exercise in R. So, let
us start. So, first let us load this particular package x plus x. So, let us go down. So, all

these things we have already done.
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74 # second split

75 segments(7,0,7,18.8)

76

77 # Final stage

“1 @ clohal 1 nvironment

78 segments(5.8,18.8,5.8,26)

79 segments(5.8,19.5,13,19.5)

80 segments(0,18.2,7,18.2)

81

82 str(df) Files  Plots  Pac Help Vi 0
83 Tibrary(rpart) o] Pos [ el a=
84 [Pmethod="class" for a classification tree & Eporl +

85 #method="anova" for a regression tree

87 mod=rpart(ownership~., method = "class”, data = df, s
¥ (lop level) Rcript &

Console G/ /Sesslon 9/ =0
Type 'contributors()' for more information and g
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()" for an HTML browser interface to help.
Type ‘q()" to quit R,

> library(x1sx)

Loading required package: rlava
Loading required package: xlsxjars
> library(rpart)

In previous lectures, let us load this program package as well we would be requiring this
R part and one more package we would be requiring this one as well R part dot plot.
Now let us move to our data set. So, promo offers dot x 1 s x is the file. So, we would

like to import it here in R environment.
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* Addins v K project (None)

0 gtreesvinx =1 Environment History =0
a M osueonsawe | Q Zel 1 . g | 3 [Fsouce - P E mportiaaet list+
114 ¥ FIrST TAree SpiNts k .
115 modsub2=snip.rpart(nod, toss = c(12:13, 24:25)) R
116 prp(modsub2, type = 1, extra = 1, under = T, varlen = 0, cex = 0.7,
117 compress = T, Margin = 0, digits = 0,
118 split.cex = 0.8, under.cex = 0.8)

120 attributes(mod)
121 summary (mod)

123 # promoffers.x1sx

124 dfl=read.x1sx|file.choose(), 1, header = T)
125 df1=df1(, !apply(is.na(dfl), 2, all)] Fles Plots  Packsges Help Viewsr =0
127 df1(1:20,] B ol «

128 str(dfl)

130 # Grouping categories of PIN.Code

1411 (lop level) & wseript &

Console G/ /Sesslon 9/ =0
Type ‘demo()' for some demos, ‘help()' for on-line help, or g
‘help.start()' for an HTML browser interface to help

Type 'q()" to quit R.

> library(x1sx)
Loading required package: riava

Loading required package: x1sxjars 4
> library(rpart)

> Tibrary(rpart.plot)

warning message:

package ‘rpart.plot’ was built under R version 3.4.1

>

So, let us perform this. So, it will take some time because it has this particular data set

has 5000 observations. So, it will take slightly more time that we have been doing for

other datasets smaller datasets.

So, once this particular data set is loaded we will go through some of the steps that we
had performed in the previous lecture and once that is done. So, once the pruning
specific steps start, then we will discuss what we have covered here. So, you can see all
the observation 5000 observations of 9 variables all of them are loaded in R

environment. Now let us move any columns structure these are the variables.
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118 split.cex = 0.8, under.cex = 0.8)
119 pata
120 attributes(mod) 0dfl
121  summary(mod) o

5000 obs. of 9 variables [

123 # promoffers.xIsx
124 dfl=read.x1sx(file.choose(),
125 dfl=dfl[, 'apply(is.na(dfl),

127 df1[1:20,]
128 str(df1)

1, header = T)
2, all)]

Files Plots Packages Help Viewer
130 # Grouping categories of PIN.Code & Erporl v
131 kPIN=table(as.factor (df15PIN.Code))

132 PINnames=dimnames(tPIN)[[1]]

133 # count of success class for each PIN code g
101 (iop1evel) ¢ Waeript $
Console G/ /Sesslon 9/
> str(dfl)
‘data.frame':

§ Income : num
$ spending : num
§ promoffer . num
§ Age : num
§ PIN.Code : num

=

5000 obs. of 9 variables:
49 35 10 101 45 31 71 23 80 182 .
1622010495273 1
0000000001 ...

25 45 39 35 35 37 53 50 35 34 ...
110057 110092 110036 110095 110081 ...
§ Experience : num 119 1598132724109 ...

§ Family.Size: num 4311442131...

$ Education : Factor w/ 3 levels "Grad","Hsc
§ online cnum 0000011010 ...

> 3

e Ewel™ 22 2 0L

So, some of the steps will have to quickly go through for example, we did grouping of
categories. So, we will have to perform this again. So, that we are able to reach to the
same point. So, let us go through this code we have already discussed this part before.
So, we are just going through this. So, that we are able to create the; so, this is the now
our data frame is ready all the variables are in the appropriate you know types data types

numerical and factors.
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143 umeus Tactor (L_riNcoae) )

144 # Assign count of PIN code as its label

145 # PIN Codes having same count will have same label and will be grouped
146+ for(x in PINnames) {

147 index=which(as.character (df15PIN.Code)==x)

148 dfll[index,]SPIN.Code=rep(c_PINcode [which(PINnames==x)],length(index))
149

151 df1SPIN. Code=as.factor(df 1SPIN.code)
152 dflspromoffer-as. factor (df1Spromoffer)
153 dflSonline=as.factor(df1Sonline)

154 str(dfl)

155

156 # partitioning: Tr:v:Te->2500:1500:1000

157 partidx=sample(1:nrow(df1), 2500, replace = F)
158 dfltrain=df1[partidx,]

159 partidxl=sample((1:nrow(dfl))[-partidx],
1561 (Ioplevel)

1500, replace = F)

Console G/ /Sesslon 9/
> str(df1)
‘data.frame':
§ Income

§ spending
§ promoffer
$ Age

§ PIN.Code

5000 obs. of 9 variables:
: num 49 35 10 101 45 31 71 23 80 182 .
:onum 1.6 2.201 0.495 2.73 1
: Factor w/ 2 levels "0","1"; 1111111112
© num 25 45 39 35 35 37 53 50 35 34
¢ Factor w/ 13 levels "0","1","2",
$ Experience : num 119 159 8 13 27 24 109
$ Famly.Size: num 4311442131
§ education : Factor w/ 3 levels “Grad"
$ online : Factor w/ 2 levels "0","1":

CHSRARS ISR RTACRE RS RO

! tlcsv:"."vasmrad":
LAl 2 A2

£ clobal 1 nvironment =
Data
0dfl
values
C_PINcode int [1:96] 54526361
index int [1:52] 6 56 77 202 238
PINnames  chr [1:96] "110001" "11000
TPIN ‘table’ int [1:96(1d)] 54

5000 obs. of 9 variables (]

Files Plots Packages Help Viewer
B xpor

Rcript &

=0

ARZ0NLNGING




Now, let us do the partitioning already discussed these steps as well. Now let us build the

full grown tree. So, this is the code that we had used before.
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Damax Samp 1@ (LiNrOWLOTL), ¢30U, replnce )
dfltrain=df1[partidx,]
partidxd=sample((1:nrow(df1))[-partidx],
intersect(partidx,partidxl)
dflvalid=dfllpartidxl,]
dfltest=df1[-c(partidxl, partidx),]

1500, replace = F)

modl=rpart(promoffer ~ ., method = "class”, data = dfltrain,
control = rpart.control(cp=0, minsplit = 2, minbucket = 1,
maxcompete = 0, maxsurrogate = 0,
=(0)},

xval
parms = list(split="gini"))

par(mar=c(0,0,0,0), oma=c(0,0,0,0), xpd=Na)
plot(modl, uniform=T, branch = 0.1, compress = T,
margin = 0, nspace = 1)
text(modl, splits = T, use.n = F, all = F, minlength = 0,
(iop | evel) +

Console G/ /Sesslon 9/

> dflt

> partidxl=sample((1:nrow(df1)) [-partidx],

rain=df1(partidx,]
1500, replace = F)

> intersect(partidx,partidxl)
integer(0)

> dflvalid=dflpartidxl,]

> dfltest=df1[-c(partidxl, partidx),]

> modl=rpart(Promoffer ~

+

G

., method = "class", data = dfltrain,

control = rpart.control(cp=0, minsplit = 2, minbucket = 1,
maxcompete = 0, maxsurrogate = 0,
xval = 0),

parms = Tist(split="gim"))

,"hn 5% [ #souie +

=g x

& project (None) ©

=1 Environment  History =
2 3 | B v | f iiwe @
=1 @ clobal 1 nvironment \
Odfltest 1000 obs. of 9 variables [ *
Odfltrain 2500 obs. of 9 variables [}
Odfivalid 1500 obs. of 9 variables [
values
C_PINcode int [1:96) 5452636 L
index int [1:52] 6 56 77 202 238
0 modl List of 15
Files Plots Packages Help Viewer =0

Rcript &

=0

B Byl +

So, you can see here as we have discussed before that x well a value is

0, right, by

default this is 10. So, that is reserved for task validation. So, just we want to pull the full

grown trees let us plot this.
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PIN.Code = 7

So, this is our full grown tree you can see quite messy as we had seen, it in the previous

lecture as well. So, now, let us move to the point where we wanted to where we want to



discuss further. So, the split variable and value combination this particular table we have

already discussed we have gone through this.
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£34 TADIe| ACTUA| ValUe =OTLT@STIPrOMOTTEr, Preqicten Vaiue =moOLTest) e i
245 #classfication accuracy L : |
246 mean(modltest==df ltest$promoffer) Odfltest 1000 obs. of 9 variables [ *
247 */m\s(hss]fv(?tvon error Odfitrain 2500 obs. of 9 variables ()
g:g mean(modltest!=dfltestSpromoffer) Odfivalid 1500 obs. of 9 variables [
250  summary(mod1) values
251 C_PINcode int [1:96] S4 52636 L
252 | pruning Process ~  index int [1:52] 6 56 77 202 238
253 # validation partition: misclassification error vs. no. of decision nodes O modl List of 15

254 # Total no. of nodes in full grown tree

255 nrow(mod1Sframe Fies | Plots Help | Vi
25 # No. of A e i P e P i =G
257 nrow(mod1Ssplits) B zoom | Hegot+ Q) % dubish +
258 # No. of Terminal Nodes

259 nrow(mod1Sframe)-nrow(modlssplits)

260 # Node numbers 3 [ e 1o ]

AN (ioplevel) & Usenpt & Education = HSC

Income < 47.5

Console G/ /Sesslon 3/ =0 /

> 1ntersect(partidx,partidxl) E

integer(0)

> dflvalid=dfl(partidxl,]

> dfltest=dfl[-c(partidxl, partidx),]

> modl=rpart(Promoffer ~ ., method = "class", data = dfltrain,

+ control = rpart.control(cp=0, minsplit = 2, minbucket = 1,
maxcompete = 0, maxsurrogate =
wal = 0),

parms = list(split="gim"))
prp(modl, varlen = 0, cex = 0.7, extra = 0, compress = T,
margin = 0, digits = 0)

TRV

So, we will not do this again performance of full grown tree we have gone through that.
So, let us come back to the pruning process where as I discussed we followed a different

pattern you know different pattern for pruning. Now we will follow the actual pattern the

desired pattern for based on complexity.
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44/ smisclassitication error - 1 Cilobal | vironment = ¢
248 mean(modltest!=dfltestSpromoffer) z el
249 Data |
ggl} summary (mod1) 0dfl 5000 obs. of 9 variables (]
252 # Pruning Process Odﬂ\:ass 1000 obs. of 9 var\:alﬂes a
253 # validation partition: misclassification error vs. no. of decision nodes O dfltrain 2500 obs. of 9 variables ]
254 # Total no. of nodes in full grown tree Odflvalid 1500 obs. of 9 variables (]
255 nrow(mod1$ffame) Valas
256 # No. of Decision Nodes - 3
257 nrow(mod1Ssplits) € PINcode int [1-0R1 S 452 A3 A1
258 # No. of Terminal Nodes Fies Plots Packages Help Viewer
259 nrow(mod1$frame)-nrow(mod1Ssplits) d = =
260 # Node numbers Bzon Hegotr 0 f % pviish +
261 tossl=as.integer (row.names(mod1Sframe)); tossl
262 DFp-data.frame(tossl, modlSframeSvar, modlSframeScomplexity); DFP
263 DFPL=DFP[DFPSmodl frame var!="<leaf",];DFPL : [ oSS ]
T s Education = HSC
751 (lop level) & ILSCript = | Spending < 3302452
omezIE o7 Income < 47.5
Conole G/ /Sesslon 9/ =0

> dflvalid=df1[partidxl,]
> dfltest=df1(-c(partidxl, partidx),]
> modl=rpart(Promoffer ~ ., method = "class", data = dfltrain,

+ control = rpart.control(cp=0, minsplit = 2, minbucket = 1,
+ maxcompete = 0, maxsurrogate = 0,
+ xval = 0),

+ parms = list(split="gini"))

» prp(modl, varlen = 0, cex = 0.7, extra = 0, compress = T,

+ Margin = 0, digits = 0)

> nrow(mod1$frame)
(1] 69
>




So, a pruning process let us look at the number of total nodes in this particular tree as
you can see number of total node number of total nodes 69 and 34 in the 34 decision
nodes and 35 terminal nodes. So, node numbering; so, you would see now certain steps
that we had performed you will see differences now toss one is the argument that we
want to compute at this point which we would be passing on to this snip r part function

now toss one.

So, as we have discussed that r part object it has a flame attribute and within that frame
attribute it has the row numbers. So, this we have discussed in previous lecture. So, we
will get the row numbers will convert it into integer vector. So, that we will have the
these numbers unique node numbers ah, but the ordering is not at for the desired order.
So, now, we will constrain now we will create this data frame where we have the these
node numbers in toss 1 and we will also have the variables write the variables involved
at different nodes. So, whether the decision nodes are leaf nodes for leaf node it would

just mention leaf as we have seen in tables in the previous lecture.
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;;‘i’ summary\mouu =1 @ clobal 1 nvironment
232 # Pruning Process C_PINcode int [1:96) 54526361
253 # validation partition: misclassification error vs. no. of decision nodes index int [1:52] 6 56 77 202 238
254 # Total no. of nodes in full grown tree Z
255 nrow(mod1frane) sl ik 67
256 # no. of Decision Nodes partidx  int [1:2500] 1508 4537 109.
257 nrow(modlisplits) partidxl int [1:1500] 676 2381 644
258 # No. of Terminal Nodes ) PINnanes  chr [1:96) "110001" "11000.
gzg grgzsgn:mgr:e)'"row(modlisphts) S toss1 int [1:69) 12451020 4. -
261 tossl-as.integer(row.names(mod1Sframe)); tossl Files Plots Packages Help Viewer el
262 DFP=data.frame(tossl, modlSframeSvar, mod1$frameScomplexity); OFP » ; =
263 DFP1-DFP[DFPSmodl.frame.var!="<leaf>",];0FP1 P Hegote O f % rovish +
264
265 # Nested sequence of splits based on complexity
266 DFP2=DFPL[order (DFP1Smod] . frame complexity, decreasing = T),]: DFP2 s (] Income <1015 (re
26216 (Iop leve) + tSerpt & spe..umgq;amz Ed"""""‘ Hec
;15“"“ e |ll§
[T]mz; G [Sesslon 9/ =0 spﬁm’mg eI w"dmgd 121
3 Age<
> nrow(mod13splits) mcm “M st 1]

'"i
<339 < I\!IM
e s °‘ .
>tossl as mteger(luw names(modl!flame)) tossl 0f2%"? ™ ageorhaleld <X
G 1 2 5 20 40 80 81 162 163 326 327 654 655 41 @E) @m,,,m@“
07/ 2 11! 3 6 lZ 4 a5 L2 6621 04 L 52 LD A S G2 T & dswmﬁﬁvﬂﬂﬂﬂ
(33 7 14 28 56 112 224 225 450 900 901 451 113 57 114 228 456 ]
(49] 457 914 1828 3656 3657 1829 3658 3659 7318 7319 915 229 115 230 231 29 U @
[65] 58 116 117 59 15 @

>

1] 34 ‘In:omot Onlifipévdi
> nrcw(mcdliframe)-nrnw(mndlisp'l\'ts) [ b‘ o
3

Now, for each node, we will also have complexity value which is also still stored in the
frame attribute and within the frame we have this complexity variable. So, it would be
stored there. So, let us create this data frame you can see here let us scroll through this
particular data frame, as you can see first column is toss one which is nothing, but unique

you know node numbering with respect to rows.



(Refer Slide Time: 11:24)

= __________________________ RTEE

S KT (o0 View IR SRSOR Wala De) ITOme 100 Keip

Q- =i B ndding » K project one) »
0 9meesvinx =1 Environment History =0
M souceonsae  Q /v £ “BRun 5% _HSoue v T H ettt e f list +
;;Y summary\mcm; 1 cilobal L nvironment =
252 # pruning Process QoFp 69 obs. of 3 variables ) i
253 # validation partition: misclassification error vs. no. of decision nodes values
254 # Total no. of nodes in full grown tree C_PINcoda dnt [1:96] 54 5263 6L

. o ecision soes fndex inc [1:52] 6 56 77 202 238
257 nrow(mod1$splits) O modl List of 15

258 # No. of Terminal Nodes partidx  int [1:2500] 1508 4537 109.
partidxl int [1:1500] 676 2381 644

259 nrow(mod1$frame) -nrow(mod1Ssplits)
260 # Node numbers

261 tossl=as.integer(row.names(mod1Sframe)); tossl Fies Plots  Packages Help  Viewer g
262 DFp=data.frame(tossl, modlSframeSvar, mod1SframeScomplexity); DFP

263 DFP1=DFP[DFPSmodl. frame.var!="<leaf>",];DFP1 /'\Z@m Hegol s 0 f % rublish +
264

265 # Nested sequence of splits based on complexity

266 DFP2=DFPL[order (DFP1Smodl. frame.complexity, decreasing = T),]; DFP2 o

211 (op evel) & seripr & spenﬂmg(llﬂ)‘ﬂ Erimrhity

= »;”m(“ Incnme «15
Ll:nnmlt Gyfsedonyy B ) m"mg s Smmng(, éu
> DFP=data.frame(tossl, modl$frameSvar, mod1SframeScomplexity); DFP mcm “U o541 o
tossl modl.frame.var modl.frame.complexity |..Wm.( Onlir 85

il il Income 0.278969957 l"i,‘ '_’
2 2 spending 0.006437768 @ g < 3.3 < mw a 0;
3] 4 <leaf 0.000000000 ode 2 \I‘Z, %9
4 5 Incone 0.006437768 ' 40)
SR spending 0.006437768 ;m',,'vﬂ,ﬁ,:l,,zgmu
6 20 Age 0.006437768 Swndmg
74 Incone 0.005722461 afomst
8 80 <leaf> 0.000000000 @@
9 81 spending 0.005722461
10 162 <leaf> 0.000000000

The ordering of these we have already discussed in the previous class, the previous
lecture that it follow this sequence node numbering we actually discussedn it by showing

the node numbers.

So, 1, then 2 and then 4, § in this fashion these numberings are going to be there. Now
once this data frame is there. Now you would look, you can see that in the second
column, you can see the variables that are involved here and the involved variable have
the you know income is spending, then leaf for each of these nodes whether what
predictor was used if it was a decision node what was the splitting variable for that
decision node and what was leaf node the leaf, it just means the it mentions that this that
particular node is a leaf or terminal node the corresponding complexity value the

complexity parameter concept that we talked about that is used to control the size of the

tree.

So, the corresponding complexity value for that particular node is also mentioned. So,
this is the value at which point the tree will collapse so, based on this. So, we can
perform our pruning so that will give us the you know that will control the our tree size
and will give us the you know best prune tree and minimum error tree. So, we will do

this. So, before that we will like to order this particular data frame.
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In decreasing order of complexity values right. So, the starting nodes from where the
first split and then say onwards other splits happen. So, the starting nodes will have
higher complexity values, right here the complexity value would be much higher that is

why this was the split 1 number 1 here the complexity value would be after this.

So, that is why it was split number 2 followed by you know split number three and spirit
number four. So, we would like to order this particular data frame by complexity values
and once we order this particular data frame that we just saw by complexity values will
also get the this sequence, right because this was the first split and the complexity value
will be higher for this, right. So, this would be first then this was the second split
complexity value for this particular node is going to be the second one after this. So, it

will come here.

So, once we order this particular data frame which is having complexity values for each
node we will get this. So, let us do this execute this code. So, you would see that before
ordering first we are trying to remove the leaf node. So, we do not want to have a leaf
node at this point you would see there are many leaf nodes here. So, we would like to
remove the leaf node because the pruning is basically driven by the decision nodes, right.

So, once we remove the leaf nodes from this data frame, we will get the new one this is

the one were.



So, this is the one this is the new data frame that we can see DFP 1, we have 34
observation which is equal to the number of decision nodes that are there this is this
these particular numbers, we have already seen in the previous output as you can see 34
decision nodes and 35 terminal nodes. So, once we remove the leaf nodes the number of
you know observation that are there in the new data frame the 34 equal to the number of

as you can see in the environment section 34 equal to the number of decision nodes.

Now once this is done we can order as we talked about we want to obtain the nested
sequence of splits based on complex tree. So, we will order this data frame based on the
complexity values and once we order this will get the desired nested sequence, right. So,
let us execute this code now you would see that ordering has been done and if we scroll
back to see this table now the first you know you know first is entry is income variable.
So, this is the split number one and the complexity value is there the second split is also
having the same complexity values, right we will discuss this further what happens if we
the same complexity values are there, then why you know income was the first split and
education was the second split ah. So, considering that what happens when this is the

scenario?

So, family size and then third mode the third spirit is based on this having the third
highest complexity value. So, in this fashion you can see that complexity values are
decreasing. So, this is this is how our trees when we develop the full go grown tree. So,
this is how this sequence determines how the splits are going to take place and how the
tree is going to be built. So, once we start deciding about pruning you know pruning this
full grown tree this is the process that we have to take and therefore, the earlier one that
we did in previous lecture is not the desired process now you would see because we have
sorted this particular data frame the row numbers have changed you can see these were

the original row numbers we present in the original data frame DFP 1.

Now one sorting of that has been performed the row numbers are still same. So, we
would like to change these row numbers to reflect the now DFP 2, let us look at the table
like again you can see now the row numbers row numbers are also sorted. So, 1 to 34; 34
decision nodes, right. So, once this is done, now we can start calculating our toss
argument that we have to pass on to the snip dot r part function. So, toss the 2 argument
can is simple nothing, but in the data frame that we have just you know created the P 2;

the first you know variable toss one that is going to be this argument.



So, let us create this toss two now what we are going to do is we are going to start our
pruning process and as we did in the last lecture after every pruning, we used to record
the model and we used to apply that model to a score on training, you know partition and
other partition validation another part validation partition training and validation

partition. So, that later on we can compare the error rates right.

So, the same thing will follow here what we did in the last lecture, but now this time with
the actual pruning sequence the nested training sequence. So, counter for nodes to be
sniffed off I and once, then we have this mod one split v the same wherever that we use
in the last lecture this is going to you know store all the mod variables then you know
mod 1 train v, these variables are going to store the other things that we will see this

course right mod one mod one train. So, it will its score it will have the that return value

of predictor.

So, it is scored variable right list ah. So, let us initialize them, then we will have these
two vector 0 train v and other valid v. So, these two actors are the important for our
plotting and to identify where the error on validation partition is minimizing. So, let us
initialize these two variables now you can see as we discussed in the previous lecture the
loop is running for all the variables. So, the in the this in this particular case you can see
we are running this loop for all the decision nodes that are there right DFP 2 in this

particular column.
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Now we have only the decision node you can see again that in environment section DFP
2 has just 34 observation that are the number of decision nodes in this particular tree. So,
we will run this loop for the number of decision nodes. So, some of the checks that we
had done in the previous lecture; that code that we were eliminating the leaf now we do
not need to perform because we are dealing with only decision nodes. So, the if if
section, you would see that [; we are comparing with the length of the toss two that is the
total number of nodes and then because we would be pruning a node by node. So, we are
starting this protocol process from i that is one to the full to the final node number that is

the last one.

So, first we start by you know pruning all nodes, then you know from node number 2 do
the last one node number 2, in the sequence not node number 2 actually node number 2
in sequence as a stored in toss 2. So, to show you the toss 2 values you can see toss 2 1 to
34. So, 136. So, node number are actually unique node numbers are 136. So, first we
start by you know first we start by sniffing all the nodes, then we start by sniffing from
this particular node to the remaining nodes then we start from this particular node that is
6 to the remaining nodes in this fashion we will start and then a snip dot for part function
is being called for the for every time the loop is run and you are recording a few more we

are correcting few more things.

For example, CP table; once we create and you know once we do this sniffing, we will
get the new model new sub tree model. So, therefore, we need to correct the CP table and
there. So, the code for the same is there then one CP table is corrected will also have to
correct the variable importance code for that is also there right. So, for this we are using
an importance function which is nothing, but taken from the source code of you know

prune dot r part function. So, there they have written this importance function.
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And we are directly using the same source code here in this our exercise because this
particular function is not available for us to you know call you know is not part of the r
part library, once we load they are they do not have access to this function this is called
internally within r part. So, that is why we have to get that source code here and to be

able and then we are using this particular here.

So, we will have to now create this function here. So, that will do here. So, the you and
you would see that in the environment section function this importance function has been
created. So, we will not go into the detail of this particular function this function is
actually being called to once we create the sub tree model, we would like to we would
like to change the variable importance accordingly right in the sub tree model. So, the
same thing is being done by calling this function. So, then we are storing we keep on
storing these you know; all these all these sub tree models then we score them off score
the training partition and the validation partition as we did in the last lecture and then we
are storing the error rates for training partition and validation partition and this is the

entry look counter.

So, let us execute this code. So, it is done. Now you would see that one thing I would
like to point out here that those we have been storing the models, but we cannot access
all of them you can see this is quite large list and given 3 MB and just having two

elements. So, these this R part object that we were trying to store in list there you know



the size is quite big. So, therefore, it has not stored all the all the you know all the R part
or model sub tree models and therefore, only two are there. So, ah, but; however, we are

interested in only the error rates.

So, let us create this data frame like we did in the previous lecture. So, now, let us look at
these values 4 for decision nodes in this ordering sequence and you can see either
training and validation. So, now, when the for the first decision node this is the training
error and validation error you can see that training error is slightly lower than the
validations you know error when we start and as we perform second split then again the

both are same.

So, there is not no not much decrease in error after second split then third you would see
that further the error has significantly decreased for the training as well as for the
validation. So, in this fashion if you as we did in the last lecture if you scroll down this
these are rates the second column that is error rate for the training part it will keep on
decreasing till it becomes 0, right till it become 0 or close to 0 right and in the in the
validation partition you would see that error will keep on decreasing till one point and

after that it will start in you know increasing.

So, you can see that this is this is the point where the error is minimum, right. So, this is
the point where the error is minimum and then after this particular point it will it will
hold up to for some more nodes and then it will start increasing that it keeps on
increasing. So, with this now we can go to you know we can also we can create this plot

to visualize the same information then information that we saw in table.
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So, this is the plot that we had seen in previous lecture as well now with the correct
pruning sequence you can see that the plot which is this plot this is you know the this
particular is for the validation data the lower plot the upper plot is for the validation data
and the lower a plot is for the training partition. So, for the training partition you would
see that the error you know keeps on decreasing till it becomes 0 for the validation part
you would see the error keeps on decreasing up to some point and after that it will start

you know it will start increasing right.

So, probably here we need to in this particular zone we need to find out the point with
minimum a territory like we did in the last lecture and then within one standard deviation
we will have to find out the best tree. So, let us look at this value minimum error tree is
this, this is the value which we already saw in the table then let us look at the particular
number of decision nodes corresponding to this error value error 8 decision nodes
minimum tree is can we obtain at 8 decision nodes if we look at the graph again. So, 8
decision node would be somewhere around here. So, probably this is this particular
straight link straightening line you see. So, all these you know nodes they are nothing,
but representing the, you know minimum error on validation partition. So, whether they

are 8, 9 or 10.
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So, we can look at these values, if you are interested how many how many of these
decision nodes are having the same or having the same number of same error minimum
error 8, 9 and 10. So, the sub tree models with decision nodes 8 decision nodes and 9
decision nodes and 10 decision nodes; all three of them having the same number of same
amount same amount of error on validation partition, but; however, we will just use the

smallest tree here and then we look at the standard error of you know off error rate.

So, this is the value; now we will look at the range where we need to find the now best
prune tree. So, the best from tree should be having value less than this particular value
error like we did in the last lecture and should be greater than the error that we saw for
the this one minimum error tree, all right. So, this is the code for the same. So, this part
we have already discussed. So, you can see best prune tree is now coming at 5. So, if you
want to confirm this, we can go back to the level table and we can see that node 8, this is
the point where the minimum error tree is there, now within that range, we can see this
particular tree is giving us the best prune trees this is within one standard deviation of

minimum error tree. So, this part we have already discussed.

Now, once this is done once we have identified then we can go ahead and create our min
best prune tree model. So, this is how again BPT we would like to contain we would like

to contain these many number of design nodes. So, we can generate about toss three and



then call this sniff R part and we will have the best prune tree. Now let us plot it. So, this

is our best prune tree let us look at this particular plot.
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Now this particular best prune tree now the earlier one which we did in the previous
lecture because we are following the order of you know shorter order of a node
numbering. So, we were getting the balance tree. Now, we get the right tree would see
that this is not balanced first income then education and then that sequence the it is it
split sequence the optimized split sequence is being followed in this particular example,
right. So, this is the best prune tree that we can have you can see 1, 2, 3, 4, 5 decision
nodes are there you can see important variables of course, it is income education. So,

income education families are spending.

So, all of them figuring here; now we can check the performance of this particular tree
on different partitions; so, you can see the performance 98.56, then on validation 90.9
close number, then on test 97.4, this is also close. So, performance is quite good. So,
there could be another approach to follow this process that we discuss in the previous

lecture as well based on complex tree value.

So, we use the complex tree value for example, we have identified the best prune tree
now following the you know actual order that is the split order. So, in that we can find
the appropriate you know complexity value because we have this pruned function this

which we use in the previous lecture which takes the CP value and cuts the prunes the



tree inter based on that CP value; however, we will understand some of the problems

with this particular function.
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For example, let us find out the complexity value for the best prune tree that we have just
identified which was the tree with 5 decision nodes. So, CP best is this is the
corresponding complexity value and this you can see, we you can see toss 1 is 15, right
and so, this will using this particular value. So, we can go back to the table and find out
how many number of nodes are there here ah. So, let us look at let us look at that table.

So, if we look at the value that we just saw their 0.0515. So, you can see this is the value

0.0515 and we can see that toss 1.
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So, 1, 2, 3, 4, 5; so, this is also 5. So, the same you know corresponding tree is there, but;
however, it might. So, happen that. So, now, we are discussing the problems that would
be there with the prune function now the previous few values sometimes if we run the
same model previous few values might also have the same complexity value in that case
the tree with the smaller size would be selected by in this fashion. So, if we do the you
know pruning using the complexity values, even though we have identified you know

followed that passes minimum error tree and within one standard deviation best prune

tree.

And now instead of the number of decision nodes we use the complexity value to prune
this tree you know the previous you know nodes they also had the not in you know they
also had the same complexity value. So, the pruning will happen will happen at that
level. So, it is might with the tree size might reduce from 5 to 3 or 2 something in some
scenarios in some runs and even in this data itself we do again the same thing, we do it
again, then probably because of the sampling and the different observation that are going
to be selected in the training partition and therefore, the different model that could be

there because of the limitation on the sample size that we have even though this is larger

data set.

So, we can get different prune tree using this particular prune function. So, in this

particular case it comes out to be the same. So, we can use prune function, we pass on



the full grown tree model mod one and then the pruning value till the point where we

would like to prune it. So, we can see this.
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So, this particular tree; 1, 2, 3; you can see 4 nodes are there and here we had 5 nodes.
Now in this particular internal processing that happens in prune function one more node
they spend they spending one it has been removed off. So, that is the tree that we will
have if we follow that complexity value right. So, the tree will collapse at that value
collapse at this value right and only 4 particular decision nodes would be there. Now
further we can we can we can compare this particular case with the minimum error tree.

So, we can plot the minimum error tree as well.
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So, this is going to be the corresponding complexity value. So, this is up following the
prune process prune function process. So, you would see just. So, these are the nodes you
can see this is the value. So, we look at the, we prune it. So, this is the model that we get.

So, you can see minimum error tree model is much bigger, even if we follow the prune

function right.
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You can see 1, 2, 3, 4, 5, 6, 7 nodes; there right. So, we saw that size when the prune

sequence the last one is also removed off. So, we get the 8 size, if you are interested in



looking at other things; for example, CP table and other things. So, this per got aspect,
we have already discussed, right. So, with this we stop here and in the next lecture, we

will start our discussion on regression trees.

Thank you.



