
Business Analytics & Data Mining Modeling Using R
Dr. Gaurav Dixit

Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture – 43
Pruning Process- Part II

Welcome to the course business analytics and data mining modeling using R. So, in the

previous lecture, we were discussing classification trees, in particular, we were doing an

exercise in R for the same. So, we did some modeling using the promotional offers data

set. So, we talked about the way we did a modelling, there especially, the pruning part.

So, we were specifically focusing on the pruning part and there; when we try to prune

back the full grown tree to a label where it does not over fit the data or fit the noise the

way, we followed the pruning process that was you know a sequence of pruning was as

per the node number ordering and it was not the nested sequence, right. So, we talked

about a bit about this in previous lecture where we discussed that if this is our root node.

(Refer Slide Time: 01:16)

And in this root node we will have a predictor one and value one. So, predictor value

combination based on which the split would be performed. So, some observation will fall

in this part other observation will fall in this part. Similarly, for next split, we have to see

that whether on this node or this node you know where the reduction performing you

know for the these nodes where the optimum split mole reduction in impurity is going to

take place.

So, let us say; the next you know impurity reduction high impurity reduction happens in

this particular node. So, let us say, this is happens at variable P 2 and V 2 right. So, this is

going to be about a split 1 this is split 2, then after the split is perform some observation

will go to this side other observation will go to this part. Now, again for next split will

have to check between these 3 which on you know which particular node and which

particular predictor value combination will improve the impurity further, right improve

the impurity the improvement reduction and impurity would be highest.

So, let us say now that here at this node the reduction in is impurity is highest, then this

is let us say the predictor value combination for the same is here. So, this is split 3 right

now. So, here again we will have some observation that will go into this part some

observation will go into this part right now for next split. Now, among these 4 nodes will

have to check which one is giving the most reduction in impurity let us say this is the

split this is the node and we have a P 4 V 4 and predictor value combination and it will

be split 4.

So, the pruning sequence. So, from this we wanted to derive the pruning sequence. So,

we look at the pruning sequence, it is going to be this node, right. So, if it is node number

one. So, if we follow the unique you know node numbers that ordering that we discussed

in the previous lecture this is going to be node number one this is going to be 2, this is

going to be 3, then 4, 5, 6, 7.

So, our pruning sequences first node number 1, then the second split happened at node

number 3, then it happened at node number 2, then it happened at node number 6, right.

So, 4 first 4 splits in this is example, if we look at first 4 splits. So, they happen in this

order. So, when we prune back the full grown tree to a certain level will have to follow

this splitting pattern. right ah. So, let us say last know if there are n number of splits ah;

that means, actually this is going to be n number of this is going to be equal to the

decision nodes decision number of decision nodes in full grown tree.

So, therefore, we have to when we start pruning the full grown tree back to the desired

levels will start deleting the you know least important splits; that means, splits which

have done a least amount of reduction in impurity. So, probably we will start from here

and go our way back to the higher up to level. So, that we get to a point where the error

on validation data is minimized. So, essentially the exercise that we had performed in the

previous lecture the pruning that we had that we were following was based on this.

So, we just looked at the road node numbers and you know pruning was based on this.

So, we are following the sequence in the increasing order as per the node numbers the

optimal way of pruning that we want to follow is this one. So, today we will do an

exercise in R, wherein, we will follow this particular pruning sequence and then let will

understand few of the, you know few more points using a particular exercise in R. So, let

us start. So, first let us load this particular package x plus x. So, let us go down. So, all

these things we have already done.

(Refer Slide Time: 06:16)

In previous lectures, let us load this program package as well we would be requiring this

R part and one more package we would be requiring this one as well R part dot plot.

Now let us move to our data set. So, promo offers dot x l s x is the file. So, we would

like to import it here in R environment.

(Refer Slide Time: 06:36)

So, let us perform this. So, it will take some time because it has this particular data set

has 5000 observations. So, it will take slightly more time that we have been doing for

other datasets smaller datasets.

So, once this particular data set is loaded we will go through some of the steps that we

had performed in the previous lecture and once that is done. So, once the pruning

specific steps start, then we will discuss what we have covered here. So, you can see all

the observation 5000 observations of 9 variables all of them are loaded in R

environment. Now let us move any columns structure these are the variables.

(Refer Slide Time: 07:38)

So, some of the steps will have to quickly go through for example, we did grouping of

categories. So, we will have to perform this again. So, that we are able to reach to the

same point. So, let us go through this code we have already discussed this part before.

So, we are just going through this. So, that we are able to create the; so, this is the now

our data frame is ready all the variables are in the appropriate you know types data types

numerical and factors.

(Refer Slide Time: 08:00)

Now, let us do the partitioning already discussed these steps as well. Now let us build the

full grown tree. So, this is the code that we had used before.

(Refer Slide Time: 08:19)

So, you can see here as we have discussed before that x well a value is 0, right, by

default this is 10. So, that is reserved for task validation. So, just we want to pull the full

grown trees let us plot this.

(Refer Slide Time: 08:44)

So, this is our full grown tree you can see quite messy as we had seen, it in the previous

lecture as well. So, now, let us move to the point where we wanted to where we want to

discuss further. So, the split variable and value combination this particular table we have

already discussed we have gone through this.

(Refer Slide Time: 09:11)

So, we will not do this again performance of full grown tree we have gone through that.

So, let us come back to the pruning process where as I discussed we followed a different

pattern you know different pattern for pruning. Now we will follow the actual pattern the

desired pattern for based on complexity.

(Refer Slide Time: 08:36)

So, a pruning process let us look at the number of total nodes in this particular tree as

you can see number of total node number of total nodes 69 and 34 in the 34 decision

nodes and 35 terminal nodes. So, node numbering; so, you would see now certain steps

that we had performed you will see differences now toss one is the argument that we

want to compute at this point which we would be passing on to this snip r part function

now toss one.

So, as we have discussed that r part object it has a flame attribute and within that frame

attribute it has the row numbers. So, this we have discussed in previous lecture. So, we

will get the row numbers will convert it into integer vector. So, that we will have the

these numbers unique node numbers ah, but the ordering is not at for the desired order.

So, now, we will constrain now we will create this data frame where we have the these

node numbers in toss 1 and we will also have the variables write the variables involved

at different nodes. So, whether the decision nodes are leaf nodes for leaf node it would

just mention leaf as we have seen in tables in the previous lecture.

(Refer Slide Time: 11:54)

Now, for each node, we will also have complexity value which is also still stored in the

frame attribute and within the frame we have this complexity variable. So, it would be

stored there. So, let us create this data frame you can see here let us scroll through this

particular data frame, as you can see first column is toss one which is nothing, but unique

you know node numbering with respect to rows.

(Refer Slide Time: 11:24)

The ordering of these we have already discussed in the previous class, the previous

lecture that it follow this sequence node numbering we actually discussedn it by showing

the node numbers.

So, 1, then 2 and then 4, 8 in this fashion these numberings are going to be there. Now

once this data frame is there. Now you would look, you can see that in the second

column, you can see the variables that are involved here and the involved variable have

the you know income is spending, then leaf for each of these nodes whether what

predictor was used if it was a decision node what was the splitting variable for that

decision node and what was leaf node the leaf, it just means the it mentions that this that

particular node is a leaf or terminal node the corresponding complexity value the

complexity parameter concept that we talked about that is used to control the size of the

tree.

So, the corresponding complexity value for that particular node is also mentioned. So,

this is the value at which point the tree will collapse so, based on this. So, we can

perform our pruning so that will give us the you know that will control the our tree size

and will give us the you know best prune tree and minimum error tree. So, we will do

this. So, before that we will like to order this particular data frame.

(Refer Slide Time: 12:54)

In decreasing order of complexity values right. So, the starting nodes from where the

first split and then say onwards other splits happen. So, the starting nodes will have

higher complexity values, right here the complexity value would be much higher that is

why this was the split 1 number 1 here the complexity value would be after this.

So, that is why it was split number 2 followed by you know split number three and spirit

number four. So, we would like to order this particular data frame by complexity values

and once we order this particular data frame that we just saw by complexity values will

also get the this sequence, right because this was the first split and the complexity value

will be higher for this, right. So, this would be first then this was the second split

complexity value for this particular node is going to be the second one after this. So, it

will come here.

So, once we order this particular data frame which is having complexity values for each

node we will get this. So, let us do this execute this code. So, you would see that before

ordering first we are trying to remove the leaf node. So, we do not want to have a leaf

node at this point you would see there are many leaf nodes here. So, we would like to

remove the leaf node because the pruning is basically driven by the decision nodes, right.

So, once we remove the leaf nodes from this data frame, we will get the new one this is

the one were.

So, this is the one this is the new data frame that we can see DFP 1, we have 34

observation which is equal to the number of decision nodes that are there this is this

these particular numbers, we have already seen in the previous output as you can see 34

decision nodes and 35 terminal nodes. So, once we remove the leaf nodes the number of

you know observation that are there in the new data frame the 34 equal to the number of

as you can see in the environment section 34 equal to the number of decision nodes.

Now once this is done we can order as we talked about we want to obtain the nested

sequence of splits based on complex tree. So, we will order this data frame based on the

complexity values and once we order this will get the desired nested sequence, right. So,

let us execute this code now you would see that ordering has been done and if we scroll

back to see this table now the first you know you know first is entry is income variable.

So, this is the split number one and the complexity value is there the second split is also

having the same complexity values, right we will discuss this further what happens if we

the same complexity values are there, then why you know income was the first split and

education was the second split ah. So, considering that what happens when this is the

scenario?

So, family size and then third mode the third spirit is based on this having the third

highest complexity value. So, in this fashion you can see that complexity values are

decreasing. So, this is this is how our trees when we develop the full go grown tree. So,

this is how this sequence determines how the splits are going to take place and how the

tree is going to be built. So, once we start deciding about pruning you know pruning this

full grown tree this is the process that we have to take and therefore, the earlier one that

we did in previous lecture is not the desired process now you would see because we have

sorted this particular data frame the row numbers have changed you can see these were

the original row numbers we present in the original data frame DFP 1.

Now one sorting of that has been performed the row numbers are still same. So, we

would like to change these row numbers to reflect the now DFP 2, let us look at the table

like again you can see now the row numbers row numbers are also sorted. So, 1 to 34; 34

decision nodes, right. So, once this is done, now we can start calculating our toss

argument that we have to pass on to the snip dot r part function. So, toss the 2 argument

can is simple nothing, but in the data frame that we have just you know created the P 2;

the first you know variable toss one that is going to be this argument.

So, let us create this toss two now what we are going to do is we are going to start our

pruning process and as we did in the last lecture after every pruning, we used to record

the model and we used to apply that model to a score on training, you know partition and

other partition validation another part validation partition training and validation

partition. So, that later on we can compare the error rates right.

So, the same thing will follow here what we did in the last lecture, but now this time with

the actual pruning sequence the nested training sequence. So, counter for nodes to be

sniffed off I and once, then we have this mod one split v the same wherever that we use

in the last lecture this is going to you know store all the mod variables then you know

mod 1 train v, these variables are going to store the other things that we will see this

course right mod one mod one train. So, it will its score it will have the that return value

of predictor.

So, it is scored variable right list ah. So, let us initialize them, then we will have these

two vector 0 train v and other valid v. So, these two actors are the important for our

plotting and to identify where the error on validation partition is minimizing. So, let us

initialize these two variables now you can see as we discussed in the previous lecture the

loop is running for all the variables. So, the in the this in this particular case you can see

we are running this loop for all the decision nodes that are there right DFP 2 in this

particular column.

(Refer Slide Time: 19:34)

Now we have only the decision node you can see again that in environment section DFP

2 has just 34 observation that are the number of decision nodes in this particular tree. So,

we will run this loop for the number of decision nodes. So, some of the checks that we

had done in the previous lecture; that code that we were eliminating the leaf now we do

not need to perform because we are dealing with only decision nodes. So, the if if

section, you would see that I; we are comparing with the length of the toss two that is the

total number of nodes and then because we would be pruning a node by node. So, we are

starting this protocol process from i that is one to the full to the final node number that is

the last one.

So, first we start by you know pruning all nodes, then you know from node number 2 do

the last one node number 2, in the sequence not node number 2 actually node number 2

in sequence as a stored in toss 2. So, to show you the toss 2 values you can see toss 2 1 to

34. So, 136. So, node number are actually unique node numbers are 136. So, first we

start by you know first we start by sniffing all the nodes, then we start by sniffing from

this particular node to the remaining nodes then we start from this particular node that is

6 to the remaining nodes in this fashion we will start and then a snip dot for part function

is being called for the for every time the loop is run and you are recording a few more we

are correcting few more things.

For example, CP table; once we create and you know once we do this sniffing, we will

get the new model new sub tree model. So, therefore, we need to correct the CP table and

there. So, the code for the same is there then one CP table is corrected will also have to

correct the variable importance code for that is also there right. So, for this we are using

an importance function which is nothing, but taken from the source code of you know

prune dot r part function. So, there they have written this importance function.

(Refer Slide Time: 21:53)

And we are directly using the same source code here in this our exercise because this

particular function is not available for us to you know call you know is not part of the r

part library, once we load they are they do not have access to this function this is called

internally within r part. So, that is why we have to get that source code here and to be

able and then we are using this particular here.

So, we will have to now create this function here. So, that will do here. So, the you and

you would see that in the environment section function this importance function has been

created. So, we will not go into the detail of this particular function this function is

actually being called to once we create the sub tree model, we would like to we would

like to change the variable importance accordingly right in the sub tree model. So, the

same thing is being done by calling this function. So, then we are storing we keep on

storing these you know; all these all these sub tree models then we score them off score

the training partition and the validation partition as we did in the last lecture and then we

are storing the error rates for training partition and validation partition and this is the

entry look counter.

So, let us execute this code. So, it is done. Now you would see that one thing I would

like to point out here that those we have been storing the models, but we cannot access

all of them you can see this is quite large list and given 3 MB and just having two

elements. So, these this R part object that we were trying to store in list there you know

the size is quite big. So, therefore, it has not stored all the all the you know all the R part

or model sub tree models and therefore, only two are there. So, ah, but; however, we are

interested in only the error rates.

So, let us create this data frame like we did in the previous lecture. So, now, let us look at

these values 4 for decision nodes in this ordering sequence and you can see either

training and validation. So, now, when the for the first decision node this is the training

error and validation error you can see that training error is slightly lower than the

validations you know error when we start and as we perform second split then again the

both are same.

So, there is not no not much decrease in error after second split then third you would see

that further the error has significantly decreased for the training as well as for the

validation. So, in this fashion if you as we did in the last lecture if you scroll down this

these are rates the second column that is error rate for the training part it will keep on

decreasing till it becomes 0, right till it become 0 or close to 0 right and in the in the

validation partition you would see that error will keep on decreasing till one point and

after that it will start in you know increasing.

So, you can see that this is this is the point where the error is minimum, right. So, this is

the point where the error is minimum and then after this particular point it will it will

hold up to for some more nodes and then it will start increasing that it keeps on

increasing. So, with this now we can go to you know we can also we can create this plot

to visualize the same information then information that we saw in table.

(Refer Slide Time: 25:45)

So, this is the plot that we had seen in previous lecture as well now with the correct

pruning sequence you can see that the plot which is this plot this is you know the this

particular is for the validation data the lower plot the upper plot is for the validation data

and the lower a plot is for the training partition. So, for the training partition you would

see that the error you know keeps on decreasing till it becomes 0 for the validation part

you would see the error keeps on decreasing up to some point and after that it will start

you know it will start increasing right.

So, probably here we need to in this particular zone we need to find out the point with

minimum a territory like we did in the last lecture and then within one standard deviation

we will have to find out the best tree. So, let us look at this value minimum error tree is

this, this is the value which we already saw in the table then let us look at the particular

number of decision nodes corresponding to this error value error 8 decision nodes

minimum tree is can we obtain at 8 decision nodes if we look at the graph again. So, 8

decision node would be somewhere around here. So, probably this is this particular

straight link straightening line you see. So, all these you know nodes they are nothing,

but representing the, you know minimum error on validation partition. So, whether they

are 8, 9 or 10.

(Refer Slide Time: 27:16)

So, we can look at these values, if you are interested how many how many of these

decision nodes are having the same or having the same number of same error minimum

error 8, 9 and 10. So, the sub tree models with decision nodes 8 decision nodes and 9

decision nodes and 10 decision nodes; all three of them having the same number of same

amount same amount of error on validation partition, but; however, we will just use the

smallest tree here and then we look at the standard error of you know off error rate.

So, this is the value; now we will look at the range where we need to find the now best

prune tree. So, the best from tree should be having value less than this particular value

error like we did in the last lecture and should be greater than the error that we saw for

the this one minimum error tree, all right. So, this is the code for the same. So, this part

we have already discussed. So, you can see best prune tree is now coming at 5. So, if you

want to confirm this, we can go back to the level table and we can see that node 8, this is

the point where the minimum error tree is there, now within that range, we can see this

particular tree is giving us the best prune trees this is within one standard deviation of

minimum error tree. So, this part we have already discussed.

Now, once this is done once we have identified then we can go ahead and create our min

best prune tree model. So, this is how again BPT we would like to contain we would like

to contain these many number of design nodes. So, we can generate about toss three and

then call this sniff R part and we will have the best prune tree. Now let us plot it. So, this

is our best prune tree let us look at this particular plot.

(Refer Slide Time: 29:21)

Now this particular best prune tree now the earlier one which we did in the previous

lecture because we are following the order of you know shorter order of a node

numbering. So, we were getting the balance tree. Now, we get the right tree would see

that this is not balanced first income then education and then that sequence the it is it

split sequence the optimized split sequence is being followed in this particular example,

right. So, this is the best prune tree that we can have you can see 1, 2, 3, 4, 5 decision

nodes are there you can see important variables of course, it is income education. So,

income education families are spending.

So, all of them figuring here; now we can check the performance of this particular tree

on different partitions; so, you can see the performance 98.56, then on validation 90.9

close number, then on test 97.4, this is also close. So, performance is quite good. So,

there could be another approach to follow this process that we discuss in the previous

lecture as well based on complex tree value.

So, we use the complex tree value for example, we have identified the best prune tree

now following the you know actual order that is the split order. So, in that we can find

the appropriate you know complexity value because we have this pruned function this

which we use in the previous lecture which takes the CP value and cuts the prunes the

tree inter based on that CP value; however, we will understand some of the problems

with this particular function.

(Refer Slide Time: 31:08)

For example, let us find out the complexity value for the best prune tree that we have just

identified which was the tree with 5 decision nodes. So, CP best is this is the

corresponding complexity value and this you can see, we you can see toss 1 is 15, right

and so, this will using this particular value. So, we can go back to the table and find out

how many number of nodes are there here ah. So, let us look at let us look at that table.

So, if we look at the value that we just saw their 0.0515. So, you can see this is the value

0.0515 and we can see that toss 1.

(Refer Slide Time: 31:55)

So, 1, 2, 3, 4, 5; so, this is also 5. So, the same you know corresponding tree is there, but;

however, it might. So, happen that. So, now, we are discussing the problems that would

be there with the prune function now the previous few values sometimes if we run the

same model previous few values might also have the same complexity value in that case

the tree with the smaller size would be selected by in this fashion. So, if we do the you

know pruning using the complexity values, even though we have identified you know

followed that passes minimum error tree and within one standard deviation best prune

tree.

And now instead of the number of decision nodes we use the complexity value to prune

this tree you know the previous you know nodes they also had the not in you know they

also had the same complexity value. So, the pruning will happen will happen at that

level. So, it is might with the tree size might reduce from 5 to 3 or 2 something in some

scenarios in some runs and even in this data itself we do again the same thing, we do it

again, then probably because of the sampling and the different observation that are going

to be selected in the training partition and therefore, the different model that could be

there because of the limitation on the sample size that we have even though this is larger

data set.

So, we can get different prune tree using this particular prune function. So, in this

particular case it comes out to be the same. So, we can use prune function, we pass on

the full grown tree model mod one and then the pruning value till the point where we

would like to prune it. So, we can see this.

(Refer Slide Time: 33:43)

So, this particular tree; 1, 2, 3; you can see 4 nodes are there and here we had 5 nodes.

Now in this particular internal processing that happens in prune function one more node

they spend they spending one it has been removed off. So, that is the tree that we will

have if we follow that complexity value right. So, the tree will collapse at that value

collapse at this value right and only 4 particular decision nodes would be there. Now

further we can we can we can compare this particular case with the minimum error tree.

So, we can plot the minimum error tree as well.

(Refer Slide Time: 34:30)

So, this is going to be the corresponding complexity value. So, this is up following the

prune process prune function process. So, you would see just. So, these are the nodes you

can see this is the value. So, we look at the, we prune it. So, this is the model that we get.

So, you can see minimum error tree model is much bigger, even if we follow the prune

function right.

(Refer Slide Time: 34:56)

You can see 1, 2, 3, 4, 5, 6, 7 nodes; there right. So, we saw that size when the prune

sequence the last one is also removed off. So, we get the 8 size, if you are interested in

looking at other things; for example, CP table and other things. So, this per got aspect,

we have already discussed, right. So, with this we stop here and in the next lecture, we

will start our discussion on regression trees.

Thank you.

