
Business Analytics & Data Mining Modeling Using R Dr. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee

Lecture – 43 Pruning Process- Part II

Welcome to the course business analytics and data mining modeling using R. So, in the previous lecture, we were discussing classification trees, in particular, we were doing an exercise in R for the same. So, we did some modeling using the promotional offers data set. So, we talked about the way we did a modelling, there especially, the pruning part.

So, we were specifically focusing on the pruning part and there; when we try to prune back the full grown tree to a label where it does not over fit the data or fit the noise the way, we followed the pruning process that was you know a sequence of pruning was as per the node number ordering and it was not the nested sequence, right. So, we talked about a bit about this in previous lecture where we discussed that if this is our root node.

(Refer Slide Time: 01:16)

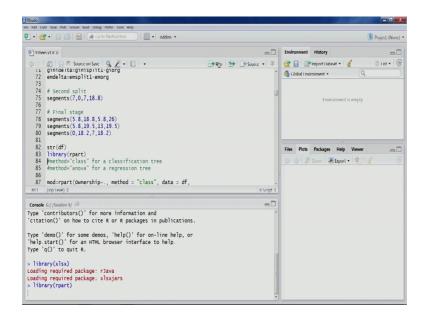
And in this root node we will have a predictor one and value one. So, predictor value combination based on which the split would be performed. So, some observation will fall in this part other observation will fall in this part. Similarly, for next split, we have to see that whether on this node or this node you know where the reduction performing you

know for the these nodes where the optimum split mole reduction in impurity is going to take place.

So, let us say; the next you know impurity reduction high impurity reduction happens in this particular node. So, let us say, this is happens at variable P 2 and V 2 right. So, this is going to be about a split 1 this is split 2, then after the split is perform some observation will go to this side other observation will go to this part. Now, again for next split will have to check between these 3 which on you know which particular node and which particular predictor value combination will improve the impurity further, right improve the impurity the improvement reduction and impurity would be highest.

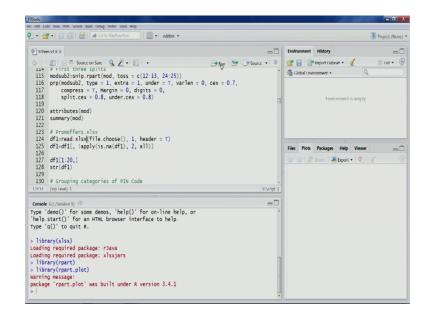
So, let us say now that here at this node the reduction in is impurity is highest, then this is let us say the predictor value combination for the same is here. So, this is split 3 right now. So, here again we will have some observation that will go into this part some observation will go into this part right now for next split. Now, among these 4 nodes will have to check which one is giving the most reduction in impurity let us say this is the split this is the node and we have a P 4 V 4 and predictor value combination and it will be split 4.

So, the pruning sequence. So, from this we wanted to derive the pruning sequence. So, we look at the pruning sequence, it is going to be this node, right. So, if it is node number one. So, if we follow the unique you know node numbers that ordering that we discussed in the previous lecture this is going to be node number one this is going to be 2, this is going to be 3, then 4, 5, 6, 7.


So, our pruning sequences first node number 1, then the second split happened at node number 3, then it happened at node number 2, then it happened at node number 6, right. So, 4 first 4 splits in this is example, if we look at first 4 splits. So, they happen in this order. So, when we prune back the full grown tree to a certain level will have to follow this splitting pattern. right ah. So, let us say last know if there are n number of splits ah; that means, actually this is going to be n number of this is going to be equal to the decision nodes decision number of decision nodes in full grown tree.

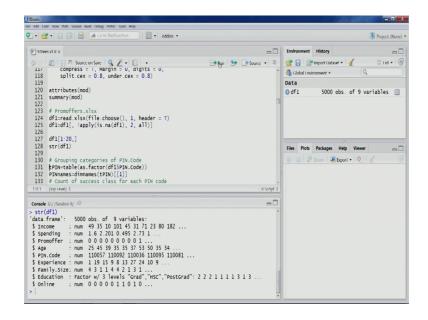
So, therefore, we have to when we start pruning the full grown tree back to the desired levels will start deleting the you know least important splits; that means, splits which have done a least amount of reduction in impurity. So, probably we will start from here

and go our way back to the higher up to level. So, that we get to a point where the error on validation data is minimized. So, essentially the exercise that we had performed in the previous lecture the pruning that we had that we were following was based on this.


So, we just looked at the road node numbers and you know pruning was based on this. So, we are following the sequence in the increasing order as per the node numbers the optimal way of pruning that we want to follow is this one. So, today we will do an exercise in R, wherein, we will follow this particular pruning sequence and then let will understand few of the, you know few more points using a particular exercise in R. So, let us start. So, first let us load this particular package x plus x. So, let us go down. So, all these things we have already done.

(Refer Slide Time: 06:16)

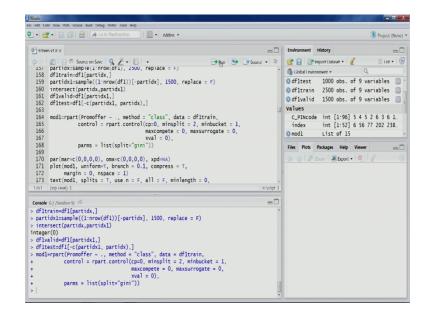
In previous lectures, let us load this program package as well we would be requiring this R part and one more package we would be requiring this one as well R part dot plot. Now let us move to our data set. So, promo offers dot x l s x is the file. So, we would like to import it here in R environment.


(Refer Slide Time: 06:36)

So, let us perform this. So, it will take some time because it has this particular data set has 5000 observations. So, it will take slightly more time that we have been doing for other datasets smaller datasets.

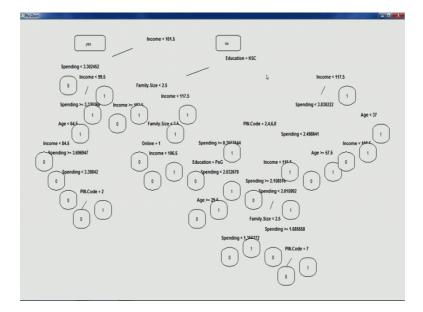
So, once this particular data set is loaded we will go through some of the steps that we had performed in the previous lecture and once that is done. So, once the pruning specific steps start, then we will discuss what we have covered here. So, you can see all the observation 5000 observations of 9 variables all of them are loaded in R environment. Now let us move any columns structure these are the variables.

(Refer Slide Time: 07:38)


So, some of the steps will have to quickly go through for example, we did grouping of categories. So, we will have to perform this again. So, that we are able to reach to the same point. So, let us go through this code we have already discussed this part before. So, we are just going through this. So, that we are able to create the; so, this is the now our data frame is ready all the variables are in the appropriate you know types data types numerical and factors.

(Refer Slide Time: 08:00)

9 Trees v1.R x		- 0	Environment Histor	ny i
🗇 🔿 🙍 📄 🗖 Source on Save 🔍 💆 📲	31 ·	📑 Byn 💽 📑 Source 🔹 🛎	😭 🔒 📑 Import	Dataset • 🧹 📃 List •
145 TADIE(AS.TACTOR(C_PINCODE)) 144 # Assign count of PIN Code as	its labol		🕯 💧 Global Lovironment	· Q,
145 # PIN Codes having same count		will be grouped	Data	
146 - for(x in PINnames) {				00 obs. of 9 variables
147 index=which(as.character(df1	PIN.Code)==x)		Values	00 003. 01 5 Variables
148 df1[index,]\$PIN.Code=rep(C_F	[Ncode[which(PINnames==x)]	,length(index))		
149 }				nt [1:96] 5 4 5 2 6 3 6 1
150 151 dflSPIN.Code=as.factor(dflSPIN	a. 1.)			nt [1:52] 6 56 77 202 23
151 df1%Pin.code=as.factor(df1%Pin 152 df1%Promoffer=as.factor(df1%Pin				nr [1:96] "110001" "1100
153 df1Sonline=as.factor(df1Sonlin			tPIN 't	able' int [1:96(1d)] 54
154 str(df1)	·)		Files Dista Darta	ges Help Viewer
155			Files Plots Packa	ges Help Viewer
156 # Partitioning: Tr:V:Te->2500:			🔶 🧅 🔎 Zoom	差 Export 🔹 🍳
<pre>157 partidx=sample(1:nrow(df1), 25</pre>	10, replace = F)			
158 dfltrain=dfl[partidx,]				
<pre>159 partidxl=sample((l:nrow(dfl))[</pre>	partidx], 1500, replace =			
156:1 (lop Level) \$	-	R Script \$		
Console G://Session 9/		-0		
<pre>str(df1)</pre>			•	
'data.frame': 5000 obs. of 9 varia				
\$ Income : num 49 35 10 101 45				
\$ Spending : num 1.6 2.201 0.495				
<pre>\$ Promoffer : Factor w/ 2 levels "C \$ Age : num 25 45 39 35 35 3</pre>	","1": 1 1 1 1 1 1 1 1 1 2	4		
)","1","2","3",: 8 4 5 5	\$ 3 7 6 8 5 3		
\$ Experience : num 1 19 15 9 8 13 2		, , , , , , , , , , , , , , , , , , , ,		
§ Family.Size: num 4 3 1 1 4 4 2 1				
<pre>\$ Family.Size: num 4 3 1 1 4 4 2 1 \$ Education : Factor w/ 3 levels "G</pre>		21111313		


Now, let us do the partitioning already discussed these steps as well. Now let us build the full grown tree. So, this is the code that we had used before.

(Refer Slide Time: 08:19)

So, you can see here as we have discussed before that x well a value is 0, right, by default this is 10. So, that is reserved for task validation. So, just we want to pull the full grown trees let us plot this.

(Refer Slide Time: 08:44)

So, this is our full grown tree you can see quite messy as we had seen, it in the previous lecture as well. So, now, let us move to the point where we wanted to where we want to

discuss further. So, the split variable and value combination this particular table we have already discussed we have gone through this.

(Refer Slide Time: 09:11)

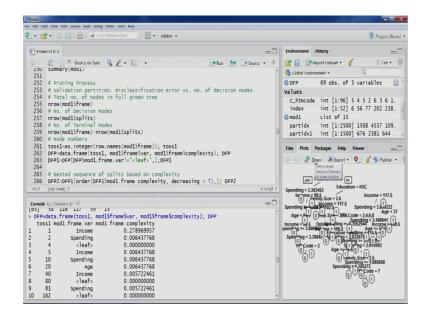
	An	-0	Environment	History		
9 trees v						-
018	🗈 📄 🗏 Source on Save 🔍 🖉 + 🗐 🔹 💿 Sour	cc • 🗦	😭 🔒 🖃 🖬	mport Dataset *		≣ list •
	able(Actual value =otitest)promotter, predicted value =moditest)	•	Global Loviro	oment *	Q	
	classfication accuracy		0 df1test		s. of 9 vari	ablac
<pre>246 mean(modltest==dfltest\$Promoffer) 247 #misclassification error</pre>						
			Odf1train	2500 obs	s. of 9 vari	ables
	mean(modltest!=dfltest\$Promoffer)		O df1valid	1500 obs	s. of 9 vari	ables
249 250 s	(values			
250 S	ummary(mod1)			ine [1.0	96] 5 4 5 2	6 2 6 1
	Pruning Process					
	Funding process Validation partition: misclassification error vs. no. of decision nodes		index		52] 6 56 77	202 238.
	total no. of nodes in full grown tree		0 modl	List of	15	
	now(mod1\$frame)					
255 nrow(mod1Sframe) 256 # No. of Decision Nodes				Packages H	elp Viewer	=
	nrow(mod1splits)			and and the second	al • 🧿 🧹	C. Dublich
	No. of Terminal Nodes		24120	John Marchipe		S rubisti
	nrow(modlfframe)-nrow(modlfsplits)					
	Node numbers		Ves	Income < 101.	5 00	
	Ing level) \$	R Script \$		- 54	ucation = HSC	
	ngri Pver) +	п.м.пра ч	Spending < 3.30	99.5	Inco	me < 117.5
nsole G	://Session 9/ 🛱	-0	0/1	mily.Size < 2.5 Income < 11	75	10
	ect(partidx,partidx1)		Spending to the	203-3102.5	Spending	< 3.85d222 Age < 3
teger(Age <	0)tmy.size-3	EN.Code = 2,4,6,1	in the second
	id=df1[partidx1.]			Onlinge ding	>=4,3552544 (ncome / 10
	t=df1[-c(partidx1, partidx),]		ipending >= 3.696	Home < 106.	5 1 Age	250
	<pre>part(Promoffer ~ ., method = "class", data = dfltrain,</pre>		Spenning < 3.3	984z (1)	g < 2,032679 1)	112
iou1=1	control = rpart.control(cp=0, minsplit = 2, minbucket = 1,		PrCode	=2 0 00	S 1 1 0 0g < 2.0	5992
			U.A	Age	101010	
	<pre>maxcompete = 0, maxsurrogate = 0, xval = 0).</pre>		00	0	ramily.Size 2.	Serere
				Sper	spending < 355272	000000
						= 7
	parms = list(split="gini")) odl, varlen = 0, cex = 0.7, extra = 0, compress = T,					
				Sper	nding 355272	

So, we will not do this again performance of full grown tree we have gone through that. So, let us come back to the pruning process where as I discussed we followed a different pattern you know different pattern for pruning. Now we will follow the actual pattern the desired pattern for based on complexity.

(Refer Slide Time: 08:36)

	💌 🔒 🔒 🇀 Go to file/function 🔡 📲 🖌 Addins 🔹		Project: (Non
🥑 9 tree	S VI R H		Environment History
001	□ □ Source on Save Q 2 - □ - → Run → Cource	. 2	🞯 🔒 🖙 Import I Jataset 🔹 🧃 🗐 I ist 🔹
24/	<pre>#misclassification error mean(modltest!=dfltest\$Promoffer)</pre>	•	🕼 Global I nvironment 🔹 🔍 🔍
249			Data
250	<pre>summary(mod1)</pre>		0 df1 5000 obs. of 9 variables
251			odfltest 1000 obs. of 9 variables
	# Pruning Process		odfltrain 2500 obs. of 9 variables
	# Validation partition: misclassification error vs. no. of decision nodes # Total no. of nodes in full grown tree		
254	nrow(modl5ffame)		odflvalid 1500 obs. of 9 variables
	# No. of Decision Nodes	- U	Values
	<pre>nrow(modlSsplits)</pre>		C PINcode int [1-96] 5 4 5 2 6 3 6 1
258	# No. of Terminal Nodes		Files Plots Packages Help Viewer
	<pre>nrow(mod1\$frame)-nrow(mod1\$splits)</pre>		
	# Node numbers		💿 🧼 🔎 Zoom 📲 Export 🔹 🍳 🔮 Publish 🤹
	<pre>toss1=as.integer(row.names(mod1%frame)); toss1</pre>		
262 263	DFP=data.frame(toss1, modl\$frame\$var, modl\$frame\$complexity); DFP DFP1=DFP[DFP\$modl.frame.var!=" <leaf>",];DFP1</leaf>		yes Income < 101.5 no
		script \$	Spending < 3.302452 Education = HSC
7.84.1	(nepresent) e n	acripa v	Income / 1975
Console	G://Session 9/ 🔗	-0	0 / 1 Lacome < 117.5
df1v	alid=df1[partidx1.]		Spending 2
	est=dfl[-c(partidx1, partidx),]		Age < 6.8 0 hmy. Size 328N.Code = 2,4,6,8 Spending < 2,498641 1
mod1	<pre>=rpart(Promoffer ~ ., method = "class", data = dfltrain,</pre>		Income < 4.5 Online + ding >= 0.3552544 Income < 4.6 pending >= 3.896147 mg < 106.5 (1) Age >= 5.5 (1) I I Edwardson + 466me = 415.5 - 0
	<pre>control = rpart.control(cp=0, minsplit = 2, minbucket = 1,</pre>		0 0 Edwation wisome 15.5 0 Spenning < 3.39842 Si 1 Jung < 2.032679 1 1
	<pre>maxcompete = 0, maxsurrogate = 0,</pre>		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	xval = 0),		Age >=>=
-	<pre>parms = list(split="gini")) mod1, varlen = 0, cex = 0.7, extra = 0, compress = T,</pre>		0 ramity Size 2.5 Spending >= 1.685658
	moor, varien = 0, cex = 0.7, extra = 0, compress = 1, Margin = 0, digits = 0)		Spending < 355272
	(modlSframe)		() Unicode = 7
[1] 69			
		1	U U

So, a pruning process let us look at the number of total nodes in this particular tree as you can see number of total node number of total nodes 69 and 34 in the 34 decision nodes and 35 terminal nodes. So, node numbering; so, you would see now certain steps that we had performed you will see differences now toss one is the argument that we want to compute at this point which we would be passing on to this snip r part function now toss one.


So, as we have discussed that r part object it has a flame attribute and within that frame attribute it has the row numbers. So, this we have discussed in previous lecture. So, we will get the row numbers will convert it into integer vector. So, that we will have the these numbers unique node numbers ah, but the ordering is not at for the desired order. So, now, we will constrain now we will create this data frame where we have the these node numbers in toss 1 and we will also have the variables write the variables involved at different nodes. So, whether the decision nodes are leaf nodes for leaf node it would just mention leaf as we have seen in tables in the previous lecture.

(Refer Slide Time: 11:54)

Construmery(mol) Construmery(mol) Statistics Final construction Construction Statistics Final construction Final constructin Statin	Construmery(mod1) Construmery(mod1) 251 # Validation partition: misclassification error vs. no. of decision nodes 253 # Validation partition: misclassification error vs. no. of decision nodes 254 # Validation partition: misclassification error vs. no. of decision nodes 255 mrow(mod1sframe) 256 # road nodes in full grown tree 257 mrow(mod1sframe) 258 # node for terrinal Nodes 259 mrow(mod1sframe)-nrow(mod1sframe)); toss1 250 # Noted nodes frame(som1sframe)); toss1 257 # nove(mod1sframe)-nrow(mod1sframe); toss1 258 # nove(mod1sframe)-nrow(mod1sframe); toss1 259 mrow(mod1sframe)-nrow(mod1splits) 260 DPF1-OPF10FP10rdef(DrP1mod1.frame.complexity) 261 DPF1-OPF10FP10rdef(DrP1mod1.frame.complexity) 262 PP1-OPF10FP10rdef(DrP1mod1.frame.complexity) 263 PP1-OPF10FP10rdef(DrP1mod1.frame.complexity) 264 PP1-OPF10FP10rdef(DrP1mod1.frame.complexity) 265 # noted not prove for printing starse for the prove for printin	<pre>cub summary(mod1) 251 # Validation partition: misclassification error vs. no. of decision nodes 254 # Validation partition: misclassification error vs. no. of decision nodes 254 # Validation partition: misclassification error vs. no. of decision nodes 255 # Validation partition: misclassification error vs. no. of decision nodes 256 # No. of Decision Nodes 257 mrow(mod15fmme). 256 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 # No. of Terminal Nodes 259 # No. of Terminal Nodes 250 # Pi-Derpide/Defpendid.frame(conflexity); DFP 265 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 # No. of Terminal Nodes 259 # No. of Ter</pre>	200 SUM		0				Environment	listory	-
course summary(mod1) 252 # Punding Process 253 # Validation partition: misclassification error vs. no. of decision nodes 254 # Total no. of podes in full grown tree 255 # No. of Decision Nodes 256 # No. of Decision Nodes 257 more(mod1Splits) 258 # No. of Decision Nodes 259 # No. of Decision Nodes 250 # No. of Decision Nodes 257 mrow(mod1Splits) 258 # No. of Decision Nodes 259 # No. of Decision Nodes 250 # No. of Decision Nodes 250 # No. of Decision Nodes 250 # No. of Decision Nodes 251 # No. of Decision Nodes 252 # No. of Decision Nodes 253 # No. of Decision Nodes 254 # No. of Decision Nodes 255 # No. of Decision Miliframe's nonliframe's nonliframe	course seminary(mod1) 252 # Punding Process 253 # Validation partition: misclassification error vs. no. of decision nodes 254 # Total no. of nodes in full grown tree 255 # No. of Decision Nodes 256 # No. of Decision Nodes 257 more(mod15rame) 258 # No. of Decision Nodes 259 # No. of Decision Nodes 250 # No. of Decision Nodes 257 more(mod15rame) 258 # No. of Decision Nodes 259 # No. of Decision Nodes 250 # No. of Decision Nodes 250 # No. of Decision Nodes 250 # No. of Decision Nodes 251 # No. of Decision Nodes 252 # No. of Decision Nodes 253 # No. of Decision Nodes 256 # No. of Decision Nodes 250 Depi-Depi/Depi Indol.frame .compl	<pre>cou summary(mod1) 252 # Vunifiation partition: misclassification error vs. no. of decision nodes 253 # Validation partition: misclassification error vs. no. of decision nodes 254 # Votal no. of nodes in full grown tree 255 mrow(mod1sframe) 256 # No. of Decision Nodes 255 # No. of Decision Nodes 255 # No. of Decision Nodes 255 # No. of Terminal Nodes 255 # No. of Terminal Nodes 256 # Node numbers 256 # Node numbers 256 # Node numbers 256 # Node integer(row.names(mod1sframe)); toss1 256 # Node numbers 256 # Node numbers 256 # Node numbers 256 # Node numbers 256 # Node integer(row.names(mod1sframe)); toss1 257 # Node numbers 256 # Node sinteger(row.names(mod1sframe)); toss1 256 # Node integer(row.names(mod1sframe)); toss1 256 # Node integer(row.names(mod1sframe)); toss1 257 # Node integer(row.names(mod1sframe)); toss1 257 # Node integer(row.names(mod1sframe)); toss1 258 # Node integer(row.names(mod1sfra</pre>	200 SUM			Pure Pure	Se Courre	. 2		mort ()atacet *	of ≡ List •
<pre>242 2 # Pruning Process 2 # Validation partition: misclassification error vs. no. of decision nodes 3 # Validation partition: misclassification error vs. no. of decision nodes 3 # Validation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation partition: misclassification error vs. no. of decision nodes 3 # Votation error(modilsplits) 3 # No. of terminal Nodes 3 # Votation error(modilsplits) 3 # Votation error(modilsplits) 1 3 # Votation error(modilsplits)</pre>	231 # Pruning Process 232 # Validation partition: misclassification error vs. no. of decision nodes 233 # Validation partition: misclassification error vs. no. of decision nodes 234 # Total no. of nodes in full grown tree 235 mrow(modlStframe) 236 # Total nodes 237 mrow(modlStframe) 238 # No. of torminal Nodes 239 # Total nodes 230 # Total nodes 230 # Total nodes 230 # Total nodes 230 # Total nodes 241 # State and sequence of splits based on complexity 245 # Nord 246 # Nord 245 # Nord 246 # Nord 247 # State andegraphic state sequence of splits based on complexity </td <td><pre>24 24 25 25 25 26 25 25 25 25 25 25 25 25 25 25 25 25 25</pre></td> <td>251</td> <td>imary(modi)</td> <td></td> <td>C. Null</td> <td>C C P Source</td> <td></td> <td></td> <td></td> <td>-</td>	<pre>24 24 25 25 25 26 25 25 25 25 25 25 25 25 25 25 25 25 25</pre>	251	imary(modi)		C. Null	C C P Source				-
233 # Validation partition: misclassification error vs. no. of decision nodes 235 # Total no. of nodes in full grown tree 235 # Total no. of nodes in full grown tree 235 # No. of Pocksion Nodes 237 # Total no. of nodes in full grown tree 237 # Total no. of nodes in full grown tree 237 # Total nodes 237 # Total nodes 238 # No. of terminal Nodes 239 # Noted Sequence of splits hased on complexity. 246 # Noted Sequence of splits hased on complexity. 246 # Noted Sequence of splits hased on complexity. 246 # Noted Sequence of splits hased on complexity. 247 # Noted Sequence of splits hased on complexity. 248 # Noted Sequence of splits hased on complexity. 259 # Noted Sequence of splits hased on complexity. 250 # Noted Sequence of splits hased on complexity. 251 103 113 12 4 104 107 113 12 4 108 108 108 108 113 12 4 102 105 106	233 # Validation partition: misclassification error vs. no. of decision nodes 235 # Total no. of nodes in full grown tree 235 # Total no. of nodes in full grown tree 235 # Total no. of nodes in full grown tree 236 # Total no. of nodes in full grown tree 237 # Total no. of nodes in full grown tree 236 # No. of treminal Nodes 237 from (modlSplits) 239 # No. of treminal Nodes 230 # Note Infection 230 # Note Infection 230 # Note Infection 230 # Note Infection 231 # Note Infection 232 # Note Infection 235 # Note Infection 235 # Note Infection 230 # Note Infection 230 # Note Infection 241 # Note Infection 242 # Note Infection 244 # Note Infection 255 # Note Infection 256 # Note Infection 250 # Note Infection 250 # Note Infectin 250	233 ¥ validation partition: misclassification error vs. no. of decision nodes 234 # total no. of nodes in full grown tree 255 nrow(modlSframe) 256 # No. of Terminal Nodes 257 nrow(modlSframe) 258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 nrow(modlSplits) 250 # No. of Terminal Nodes 250 # No. of Terminal Nodes 250 # Node numbers 260 # Pole numbers 260 prelimetry or windlSplits) 270 prelimetry or periodic frame/sorp. 270 prelimetry or periodic frame. 270 prelimetry or periodic frame. 271 prelimetry or periodic frame. 272 prelimetry or periodic frame. 273 prelimetry or periodic frame. 275 # Nested sequence of splits based on complexity. 275 # Not of Periodic frame. 275 # Not of Complexity frame. 275 # Not of Complexity frame. 275 # Not of Complexity frame.							Giobal I nviror	iment *	4
253 # Validation partition: misclassification error vs. no. of decision nodes 254 # Total no. of nodes in full grown tree 255 nrow(modlSrfame) 256 # No. of Partial Nodes 257 nrow(modlSplits) 259 # No. of Partial Nodes 250 # No. of Nodes Nodes 250 # No. of Partial Nodes 251 # No. of Old Frame(Sign) 252 Depediate Name (Control Frame); toss1 255 # No. of Old Frame (Control Frame Complexity) 256 Dep2-Dep[Order(OFP]Smdl.frame.omplexity, decreasing = T),]; DFP2 257 Il 66 258 # No. of Old Splits) 11 2 4 11 2 4 100 200 250 Dep2-dep2 Politic Note * 100 Appreciation # 100 250 Dep2-dep2 Politic Note * 100 <td>253 # Validation partition: misclassification error vs. no. of decision modes 254 # Total no. of nodes in full grown tree 255 nrow(modlSframe) 256 # No. of Pocksin Nodes 257 nrow(modlSplits) 259 # No. of Pocksin Nodes 257 nrow(modlSplits) 259 # No. of Portsin Nodes 259 # No. of Porminal Nodes 259 # No. of Porminal Nodes 250 Dependent frame(toss), mouther 250 Dependent frame(toss), model frame(complexity); DFP 255 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 260 Dependent frame(toss), mouther 261 Dependent frame(toss), mouther 262 Dependent frame(toss), mouther 264 Dependent frame(toss), mouther 200 Mouther</td> <td>233 # Validation partition: misclassification error vs. no. of decision nodes 235 # Validation partition: misclassification error vs. no. of decision nodes 255 none of nodes 256 # No. of nodes 257 nrow(modlSplits) 258 # No. of romeis 259 # No. of romeis 259 # No. of romeis 259 # No. of romeinal Modes 250 # No. de numbers 260 # Node numbers 261 tosslas.integer(row.names(modlSframe)); tossl 262 perp-data.frame(tossl, modlSframe); tossl 263 perp-data.frame(tossl, modlSframe); tossl 264 perp-data.frame(tossl, modlSframe); tossl 265 # Nested sequence of splits based on complexity 266 perp-DipFilond(.frame.complexity, decreasing = T),]; DFP2 w/m (molww) 2 Education # #2 200 # Eucone <105.5</td> 201 # Norme 1 202 # Norme 1 203 # Norme 1 204 # Norme 1 205 # Norme 1 206 # Norme 1 207	253 # Validation partition: misclassification error vs. no. of decision modes 254 # Total no. of nodes in full grown tree 255 nrow(modlSframe) 256 # No. of Pocksin Nodes 257 nrow(modlSplits) 259 # No. of Pocksin Nodes 257 nrow(modlSplits) 259 # No. of Portsin Nodes 259 # No. of Porminal Nodes 259 # No. of Porminal Nodes 250 Dependent frame(toss), mouther 250 Dependent frame(toss), model frame(complexity); DFP 255 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 256 Dependent frame(toss), mouther 260 Dependent frame(toss), mouther 261 Dependent frame(toss), mouther 262 Dependent frame(toss), mouther 264 Dependent frame(toss), mouther 200 Mouther	233 # Validation partition: misclassification error vs. no. of decision nodes 235 # Validation partition: misclassification error vs. no. of decision nodes 255 none of nodes 256 # No. of nodes 257 nrow(modlSplits) 258 # No. of romeis 259 # No. of romeis 259 # No. of romeis 259 # No. of romeinal Modes 250 # No. de numbers 260 # Node numbers 261 tosslas.integer(row.names(modlSframe)); tossl 262 perp-data.frame(tossl, modlSframe); tossl 263 perp-data.frame(tossl, modlSframe); tossl 264 perp-data.frame(tossl, modlSframe); tossl 265 # Nested sequence of splits based on complexity 266 perp-DipFilond(.frame.complexity, decreasing = T),]; DFP2 w/m (molww) 2 Education # #2 200 # Eucone <105.5	252 # P	Pruning Process					C PINcode	int [1:96]	54526361
234 # Total no. of nodes in full grown tree 235 mrow(modifspitrame) 236 # No. of Decision Nodes 237 mrow(modifspitrame) 238 # No. of Terminal Nodes 239 mrow(modifspitrame) 230 # No. of Terminal Nodes 230 # No. of Terminal Nodes 231 tossl-as.integer(row.names(modiframe)); tossl 236 # No. of Terminal Nodes 230 # Pol-data.frame(cossl.modiframe)); tossl 231 before 232 before 232 before 233 before 236 # No. of Terminal Nodes 230 # Pol-data.frame(cossl.modiframe)); tossl 235 # Note of Spits 236 # No. of Terminal Nodes 235 # Node numbers 240 # Node numbers 250 # Note numbers 250 # Note numbers 260 # P2-DerPloreFindl.frame.encomplexity.decreasing = T).]; DFP2 11 10 # Note 11 30 13 11 3 6 12 20 10 8 10 2 16 3 326 327 654 655 41 11 3 6 12 4 2 13 326 52 104 105 210 211	234 # Total no. of notdes in full grown tree 235 movimedifismae) 256 # No. of Decision Nodes 256 # No. of Decision Nodes 257 movimedifismae) 258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 movimedifismae) 260 # No. of Decision Nodes 250 # No. of Terminal Nodes 250 # Node numbers 261 tossl=as.integer(row.names(modliframe)); tossl 262 DeP-data.frame(cossl_modliframe), integer(source of splits based on complexity); DFP 265 # Noted numbers 266 DeP2-DeP[OrPF]modl.frame.encomplexity, decreasing = T).]; DFP2 267 movimedifismae) 268 Dep2-data.frame(cossl_modliframe); tossl 269 Dep2-data.frame(cossl_modliframe); tossl 260 B PP2-Depr[Order(DFP]modl.frame.complexity, decreasing = T).]; DFP2 270 movimedifismae) 280 movimedifismae) 281 movimedifismae) 281 movimedifismae) 281 movimedifismae) 281 movimedifismae) 282 movimedifismae) 283 movimedifismae) 284 movimedifismae) 284 movimedifismae) 284 movimedifismae) 284 movimedifismae) 284 movimedifismae<	234 # Total no. of nodes in full grown tree 235 mrowined/israme) 236 # No. of Decision Nodes 237 mrowined/isplits) 238 # No. of Terminal Nodes 238 # No. of Terminal Nodes 239 mrowined/israme)-nrow(modilsplits) 230 mrowined/israme)-nrow(modilsplits) 230 mrowined/israme)-nrow(modilsplits) 230 mrowined/israme)-nrow(modilsplits) 230 prelioPeriodif.rame.nrow(modilsplits) 230 prelioPeriodif.rame.nrow(modilsplits) 230 prelioPeriodif.rame.nrow(modilsplits) 235 # Nested sequence of splits based on complexity 236 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 237 mrow(modilsplit) 230 mrow(modilsplit) 230 mrow(modilsplit) 241 mrow(modilsplit) 255 # Nested sequence of splits based on complexity 256 mrow(modilsplit) 257 mrow(modilsplit) 258 mrow(modilsplit) 259 mrow(modilsplit) 250 mrow(modilsplit) 250 mrow(modilsplit) 251 mrow(modilsplit) 252 mrow(modilsplit) 253 mrow(modilsplit) 255 mrow(modilsplit) 250 mrow(modilsplit) 251 mrow(mo				vs. no. of deci	sion nodes				
233 movimulation modes 235 # No. of Decision Nodes 237 nrow(modifsplits) 237 nrow(modifsplits) 239 # No. of Decision Nodes 237 nrow(modifsplits) 239 # No. of Decision Nodes 230 # No. of Decision Nodes 241 # No. of Decision Nodes 255 # No. of Decision Nodes 256 Decision Nodes 250 Decision Nodes 250 Decision Nodes 250 Decision Nodes	239 mrow(modilsprame) 239 mrow(modilsprame) 237 mrow(modilsprame) 238 # No. of Freminal Nodes 237 mrow(modilsprame) 238 # No. of Freminal Nodes 239 mrow(modilsprame) 239 mrow(modilsprame) 239 mrow(modilsprame) 239 mrow(modilsprame) 239 mrow(modilsprame) 239 mrow(modilsprame) 230 # Node 239 mrow(modilsprame) 230 # Node 231 # Node 232 # Node 233 # Node 235 # Node 230 # Node 2314 # Node 232 # Node 233 # Node 234 # Node 235 # Node 236 # Node 235 # Node <td< td=""><td>235 # No. of Decision Nodes 237 nrow(modLSplits) 238 # No. of Perminal Nodes 237 nrow(modLSplits) 238 # No. of Perminal Nodes 239 nrow(modLSplits) 250 # Node numbers 261 # Node numbers 262 DPPdfar frame(cost) modIframe(complexity); DFP 263 # Node numbers 264 PSD=DFPLOFP[OrPfimodI.frame.var!="<left>",]; DFP1 265 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 266 # Node (CPMend) # Ø</left></td><td></td><td></td><td>grown tree</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	235 # No. of Decision Nodes 237 nrow(modLSplits) 238 # No. of Perminal Nodes 237 nrow(modLSplits) 238 # No. of Perminal Nodes 239 nrow(modLSplits) 250 # Node numbers 261 # Node numbers 262 DPPdfar frame(cost) modIframe(complexity); DFP 263 # Node numbers 264 PSD=DFPLOFP[OrPfimodI.frame.var!=" <left>",]; DFP1 265 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 266 # Node (CPMend) # Ø</left>			grown tree						
257 rncv(modlisplits) 258 #No.of Transhal Nodos 259 #No.of Transhal Nodos 259 #No.of Transhal Nodos 259 #No.of Transhal Nodos 250 #No.of Transhal Nodos 251 #No.of Transhal Nodos 252 DefPidata Frame(tossi), modliframe); tossi 253 DEPLOPP[OPF]OPF]OPFINdl.frame.complexity, 256 DEP2:DEP[OPF]OPFICIFS 256 DEP2:DEP[OPFICIFS]indl.frame.complexity, 256 DEP2:DEP[OPFICIFS]indl.frame.complexity, 256 DEP2:DEP1[order(OFPIsmoll.frame.complexity, 256 DEP2:DEP1[order(OFPIsmoll.frame); tossi 251 10 250 DEP2:DEP1[order(OFPIsmoll.frame); tossi 251 10 251 DEP2:DEP1[order(OFPIsmoll.frame); tossi 251 DEP2:DEP1[order(OFPIsmoll.frame); tossi 210 DEP2:DEP1[order(OFPIsmoll.frame); tossi 211 24 10 20	257 prov(modLisplits) 258 #No.of Transinal Noolas 259 #No.of Transinal Noolas 259 #No.of Transinal Noolas 259 #No.of Transinal Noolas 250 #No.of Transinal Noolas 251 #No.of Transinal Noolas 252 D#Protect Argenticas I, noodifframevicouplexity); DEP 256 DEP2=DEP1[orPe[OrPeFSmodl.frame.complexity 256 DEP2=DEP1[order(DFPIsmodl.frame.complexity, decreasing = T),]; DEP2 256 DEP2=DEP1[order(DFPIsmodl.frame.complexity, decreasing = T),]; DEP2 257 #Nome 258 #No.off 259 #Nome 250 DEP2=DEP1[order(DFPIsmodl.frame), momes 250 DEP2=DEP1[order(DFPIsmodl.frame), momes 250 DEP2=DEP1[order(DFPIsmodl.frame), momes 250 DEP2=DEP1[order(DFPIsmodl.frame), momes 210 D #No.off 211 24 State State 2	257 mrow(modlSplits) 258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 mrow(modlSplits) 260 # Node numbers 260 # Node numbers 261 toss1as.integer(row.names(modlSframe)); toss1 262 prP=data.frame(toss1, modlSframe); toss1 263 prD=DerD[Proindl.frame.var!~'(=1647); J); PDF2 264 Spell-perD[Proindl.frame.complexity, decreasing = T),]; DFP2 265 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 266 DP2-DPF1[order(DFPIsmodl.frame.complexity, decreasing = T),]; DFP2 267 (mode (DFPIsmodl.frame.complexity, decreasing = T),]; DFP2 276 (mode (DFPIsmodl.frame.complexity, decreasing = T),									
258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 mrow(modlfsrame)-nrow(modlfsplits) 260 # Node numbers 261 tossl-as.integer(row.names(modlframe)); tossl 262 # Node numbers 263 DPTL-DPF(DFF)modl,frame-varie 264 # Note of splits based on complexity; 265 # Note of splits based on complexity 265 # Note of splits based on complexity; 266 # Note of splits based on complexity; 267 # Note of splits based on complexity; 268 # Note of splits based on complexity; 269 # Note of splits based on complexity; 260 # Note of splits; 21 10 # 0 270 # Note of splits; 281 # Note of splits; 281 # Note of splits; 2	258 # No. of Terminal Nodes 258 # No. of Terminal Nodes 259 mrow(modIframe)-nrow(modIsplits) 260 # Node numbers 261 tossl-as.integer(row.names(modIframe)); tossl 262 # Node numbers 263 DPPL-DPPLoPFImodI.frame.varie 264 # Noted numbers 265 # Noted numbers 265 # Noted numbers 266 DPPL-DPPLoPFImodI.frame.complexity; DPP 265 # Noted numbers 265 # Noted numbers 266 DPPL-DPPLorPerImodI.frame.complexity, decreasing = T),]; DPP2 267 mrow(modISsplits) 11 69 11 1 2 4 12 4 5 10 20 4 0 80 81 162 163 326 327 654 655 41 13 7 21 1 1 3 6 112 2 4 2 5 10 20 4 0 80 81 162 163 326 327 654 655 41 21 21 1 3 6 122 4 2 5 13 2 6 5 2 104 105 210 21 15 3 7	258 # No. of Terminal Nodes 259 nrow(modlSrame)-nrow(modlSplits) 259 nrow(modlSrame)-nrow(modlSplits) 250 # Node numbers 261 toss1=as.integer(row.names(modlSframe)); toss1 262 DPF-data.frame(toss1, modlSframeScomplexity); DFP 263 DEPL-DFP[DFPSmodl.frame.varl=" <leaf>",]; DFP1 264 255 # Nosted sequence of splits based on complexity. 266 DFP2-DFP[order(DFPISmodl.frame.complexity, decreasing = T),]; DFP2 xm (morew) :: 260 dec/Science / Ø</leaf>									
259 nrow(modliframe)-nrow(modliframe); toss1 250 # Node numbers toss1 251 toss1-as.integer(row.names(modliframe)); toss1 250 # Node numbers toss1 250	259 nrow(modliframe)-nrow(modliframe); toss1 250 # Node numbers 251 toss1=as.integer(row.names(modliframe)); toss1 252 Dependents.frame(toss1, nodliframe); toss1 253 Dependents.frame(toss1, nodliframe); toss1 254 Pixed and difframe); toss1 255 # Noted Sequence of splits based on complexity. 256 Dependents.frame.complexity. 257 Dependents.frame.complexity. 258 I 106 258 Dependents.frame.complexity. 258 Dependents.frame.complexits.frame.comple	259 nrow(modliframe)-nrow(modlisplits) 260 # Node numbers 261 tossi int [1:69] 1 2 4 5 262 # Node numbers 263 periodry(Drimodi,frame,var); tossi 264 # Node numbers 265 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 276 (nonew) 2 266 DP2-DFP1[order(OFP1isnod1.frame.complexity, decreasing = T),]; DFP2 276 (nonew) 2							partidx1		
260 # Node numbers 261 0ss1ass.integer(row.names(modliframe)); toss1 262 0FP-data.frame(uss1, modliframe);); toss1 263 0FP1oFP(0FF)modl.frame.var!='<(eaf>'',)DFP1 264 0FP:data.frame(uss1, modliframe); toss1 265 # Nested sequence of splits based on complexity; decreasing = T),); DFP2 266 0FP2.oFP1[order(DFP1]modl.frame.complexity, decreasing = T),]; DFP2 276/2000 # Device (C)/Fasebox % (P) 285 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 286 DFP2.oFP1[order(DFP1]modl.frame.complexity, decreasing = T),]; DFP2 287 Million (Differme)); DFP 288 DFP1 289 DFP1 289 DFP1 280 DFP2	260 # Node numbers 100 # Node numbers 261 tossilas.integer(row.names(modifframe)); tossil 110 210 200 262 DPP-data.frame(ussil_modifframe)); tossil 110 210 200 263 DPP-data.frame(ussil_modifframe)); tossil 110 210 200 264 DPP-data.frame(ussil_modifframe)); tossil 110 200 265 # Nested sequence of splits based on complexity, decreasing = T), j; DFP2 11 Sopring 2000 265 DPP2.DPP1[order(DPP1]modi.frame.complexity, decreasing = T), j; DFP2 11 Sopring 2000 266 DPP2.DP1[order(DPP1]modi.frame.complexity, decreasing = T), j; DFP2 11 Sopring 2000 266 DP2.DP1[order(DPP1]modi.frame.complexity, decreasing = T), j; DFP2 11 Sopring 2000 266 DP2.DP1[order(DPP1]modi.frame.complexity, decreasing = T), j; DFP2 11 Sopring 2000 266 DP2.DP1[order(DPP1]modi.frame); tossil 10 Sopring 2000 267 DP1 10 Sopring 2000 2000 268 DP1 2000 2000 269 DP1 2000 2000 260 DP2.DP1 2000 2000 260 DP2.DP1 2000 2000 260 DP2.DP1 2000 2000 260 DP2.DP1 2000 2000 2000 260 DP2.DP1 2000 2000 2000	260 # Node numbers 261 toss1=as.integer(row.names(mod1)frame)); toss1 262 DFP=data.frame(toss1, mod1)frames(arn, mod1)frame(scomplexity); DFP 263 DFP1=DFP[DFP[DFP]mod1.frame.var!="(leafs",]; DFP1 264 265 # Nested sequence of splits based on complexity 266 DFP2=DFP1[order(DFP1]mod1.frame.complexity, decreasing = T),]; DFP2 mst (uprime) mst (uprime) 266 DFP2=DFP1[order(DFP1]mod1.frame.complexity, decreasing = T),]; DFP2 mst (uprime) 266 DFP2=DFP1[order(DFP1]mod1.frame.complexity, decreasing = T),]; DFP2 mst (uprime) 266 DFP2=DFP1[order(DFP1]mod1.frame.complexity, decreasing = T),]; DFP2 mst (uprime) 275 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 mst (uprime) 275 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 mst (uprime) 275 # Nested sequence of splits based on complexity, decreasing = T),]; DFP2 mst (uprime) Education = NSC mst (uprime) Education = NSC mst (uprime) Mst (uprime) 275 # Nested Sequence of splits based on complexity Mst (uprime) 275 # Nested Sequence of splits based on complexity Mst (uprime) 275 # Nested							PINnames	chr [1:96]	"110001" "11000
221 1053:las.integer(row.names(mod)fframe)::051 220 DPP-data.frame(toss).mod)fframe:omplexity); DFP 223 DPP-data.frame(toss).mod)fframe:omplexity); DFP 224 DFP-data.frame(toss).mod)fframe:omplexity); DFP 225 PF-data.frame.integer(row.names(mod)fframe):n:toss1 226 DFP2-DPP[OPF]order(0FP]imod).frame.complexity. 226 DFP2-DPP[oPF]order(0FP]imod).frame.complexity. 226 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 226 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 226 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 230 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 231 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 230 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 230 DFP2-DPP[oPfer(ofP]order(0FP]imod).frame.complexity. 230 DFP2-DPP[oPfer(ofP]order(0FP)order(0FP]order(0FP)order(0FP)order(0FP]order(0FP	261 tossi-as.integer(row.names(modifframe)); tossi 262 DFP-data.frame(tossi, nodifframe); tossi 263 DFP-lossi-as.integer(row.names(modifframe); tossi 264 PAsadas 265 # Nexted sequence of splits based on complexity. 266 DFP2-DPF[order(OFP]imodi.frame.complexity. 266 DFP2-DPF[order(OFP]imodi.frame.complexity. 266 DFP2-DPF[order(OFP]imodi.frame.complexity. 266 DFP2-DPF[order(OFP]imodi.frame.complexity. 266 DFP2-DPF[order(OFP]imodi.frame.complexity. 271 Tossi-as.integer(row.names(modifframe)); tossi 11 1 2 1 272 11 3 61 162 163 326 327 654 655 41 273 11 1 2 42 25 177 26 177 26 177 <td>261 tossi-as.integer(row.names(mod)fframe); tossi 262 DFP-data.frame(tossi, mod)fframe/sar, modlifframe(complexity); DFP 263 DFP1-DPF1modi.frame.vari="<left">Left"/Left">Left">Left"/Left"/Left<td></td><td></td><td>plits)</td><td></td><td></td><td>-</td><td>toss1</td><td>int [1:69]</td><td>1 2 4 5 10 20 4</td></left"></td>	261 tossi-as.integer(row.names(mod)fframe); tossi 262 DFP-data.frame(tossi, mod)fframe/sar, modlifframe(complexity); DFP 263 DFP1-DPF1modi.frame.vari=" <left">Left"/Left">Left">Left"/Left"/Left<td></td><td></td><td>plits)</td><td></td><td></td><td>-</td><td>toss1</td><td>int [1:69]</td><td>1 2 4 5 10 20 4</td></left">			plits)			-	toss1	int [1:69]	1 2 4 5 10 20 4
262 DPP-udata.frame(toss].modliframe(var.modliframe)complexity); DFP 263 DPP-udata.frame.var!=' <leaf>'',); DFP1 264 Particleaf>'',); DFP1 265 # Nested sequence of splits based on complexity, decreasing = T),); DFP2 266 DP2.DFP1[order(DFP1]smdl.frame.complexity, decreasing = T),]; DFP2 267 # Income < 101.</leaf>	262 DPP-data.frame(toss1, modliframe(var, modliframe(scomplexity); DPP 263 DPP-data.frame(toss1, modliframe(var, modliframe(scomplexity); DPP 264 265 # Nested sequence of splits based on complexity, decreasing = T),]; DPP 265 # Nested sequence of splits based on complexity, decreasing = T),]; DPP If variable 266 DP2.DPP[OPFIQFIGHT_frame.org) If variable 10 60 mode (J/Jself) If variable 11 1 2 4 5 10 11 1 2 4 5 10 26 27 654 655 11 11 1 2 4 25 25 20 10	262 DFP-data.frame(toss1, mod1śframešvar, mod1śframešcomplexity); DFP 263 DFPI-DPF(DFPImod1.frame.var!=" <leaf",]; dfp1<br="">264 265 # Nested sequence of splits based on complexity 266 DFP2-DFPI[order(DFPIsmod1.frame.complexity, decreasing = T),]; DFP2 with [uptime]; anothe Er/Sedom % @ anothe Er/Sedom % @</leaf",];>									
263 DEP1-DEP[DEPSimod1.frame.var!=" <leaf>",;DEP1 264 264 Xom Epuot • 0 Image: Complexity 265 DEP2-DEP[Order(OFP]imod1.frame.complexity Enderston HSC 266 DEP2-DEP[Order(OFP]imod1.frame.complexity Enderston HSC 267 DEP2-DEP[Order(OFP]imod1.frame.complexity Enderston HSC 268 DEP2-DEP[Order(OFP]imod1.frame.complexity Enderston HSC 269 Display to the temp Image: Complexity 260 DE2-DEP2-DEP[Order(OFP]imod1.frame.complexity Enderston HSC 260 DE2-DEP2-DEP[Imod1.frame.complexity Enderston HSC 261 DE3-DEP2-DEP[Imod1.frame.complexity Enderston HSC 261 DE3-DEP2-DEP[Imod1.frame.complexity Enderston HSC 261 DE3-DEP2-DEP2 Enderston HSC 261 DE3-DE3-DE3-DE3 Enderston HSC 261 DE3-DE3-DE3 Enderston HSC 261 DE3-DE3-DE3 Enderston HSC 261 DE3-DE3-DE3 Enderston HSC 261 DE3-DE3-DE3 Enderston HSC 262 DE3-DE3-DE3-DE3 Enderston HSC 263 DE3-DE3-DE3</leaf>	263 DPP1-DPF[DPF]mod1.frame.varl=" <leaf>",];DPP1 264 265 # Nested sequence of splits based on complexity. 265 DPP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 266 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 267 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 268 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 269 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 260 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 261 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 261 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 261 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 262 DP2-DPF[Order(OPF]imod1.frame.complexity. Berning 1.30451 213 12 4 5 102 162 163 263 27 654 655 41 201 13 6 12 25 12 12 27 17/17992 201 13 6 12 25 12 <td< td=""><td>263 DPPI-DPP[OPP]oPP[OPP]modl.frame.vari="<leaf>",];DPP1 265 # Nested sequence of splits based on complexity 266 DPP2-DPP1[order(DPP]smodl.frame.complexity, decreasing = T),]; DFP2 276 (Uprive) 2 Bending 1302482 Education + HSC Biorder (JPS) 2000 ■ Educa</leaf></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Files Plots I</td><td>Packages Help</td><td>Viewer</td></td<></leaf>	263 DPPI-DPP[OPP]oPP[OPP]modl.frame.vari=" <leaf>",];DPP1 265 # Nested sequence of splits based on complexity 266 DPP2-DPP1[order(DPP]smodl.frame.complexity, decreasing = T),]; DFP2 276 (Uprive) 2 Bending 1302482 Education + HSC Biorder (JPS) 2000 ■ Educa</leaf>							Files Plots I	Packages Help	Viewer
264 265 # Nosted sequence of splits based on complexity. 266 DFP2=DFP1[order(DFP1]smd1.frame.complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T),]; DFP2 III sequence of splits based on complexity, decreasing = T,]; DFP2 III sequence of splits based on complexity, decreasing = T,]; DFP2 III sequence of splits based on complexity, decreasing = T,]; DFP2 III sequence of splits based on complexity, decreasing = T,]; DFP2 III sequence of splits based on splits ba	264 265 # Nested sequence of splits based on complexity. 266 DFP2=DFP1[order(DFP1]mod1.frame.complexity, decreasing = T),]; DFP2 mode C//sealon N/ ○ 11 69 mrow(mod1Splits) 13 4 11 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 11 3 6 112 2 4 25 113 26 52 104 105 210 211 53 27 0 mode 22 2 2 2 15 2 65 2 104 105 210 211 53 27 0 mode 22 2 2 2 15 2 65 2 104 105 2 10 211 53 27 0 mode 22 2 2 5 115 2 65 2 104 105 2 10 211 53 27 0 mode 22 2 2 5 115 2 65 2 104 105 2 10 211 53 27 0 mode 22 2 2 5 115 2 65 2 104 105 2 10 2 11 53 27 0 mode 22 2 2 2 5 115 2 5 2 104 105 2 10 2 10 53 27 0 mode 22 2 2 2 5 105 2 5 2 104 105 2 10 2 10 53	264 265 # Nested sequence of splits based on complexity 266 DPP2-DPP1[order(0FP1Smdl.frame.complexity, decreasing = T),]; DFP2 mode (uprew): anoth (uprew)				escomplexity); D)FP		A A 8 7	The second se	0 de num
255 # Nested sequence of splits based on complexity 256 DF22-DF21 256 DF22-DF21 256 DF22-DF21 256 DF22-DF21 256 DF22-DF22 266 DF22-DF22 276 DF22	265 # Nested sequence of splits based on complexity. 265 # Nested sequence of splits based on complexity. 267 # Nested Sequence of splits based on complexity. 266 DF22-DF21Order(DFP1]order(DF	265 # Nested sequence of splits based on complexity. 266 DFP2=DFP1(order(DFP1Smod).frame.complexity, decreasing = T),]; DFP2		"I=DFP[DFP3mod1.Trame.var:	= <leat> ,J;DFP1</leat>				20	om Me Export •	. Al a
266 DP2-D5P1[order(D5P1]sndl.frame.complexity, decreasing = T),]; DFP2 IN complexity 01 00 IN complexity IN complexity 01 00 00 IN complexity IN complexity 01 00 00 00 IN complexity IN complexity 01 00 00 00 00 IN complexity IN complexity 01 00 00 00	266 DF2-DF2[order(DFP]imod].frame.complexity, decreasing = T),]; DFP2 IN complexity, decreasing = T),]; DFP2 01 Import (top):www.is IN complexity, decreasing = T),]; DFP2 Import (top):www.is 01 04 Import (top):www.is	266 DFP2=DFP1[order(DFP1\$mod1.frame.complexity, decreasing = T),]; DFP2 Income < 101.5 (m)		locted company of colite	hacad on complexity						
Image: Note (up: (up) = 0.0000000000000000000000000000000000	Construction Construction<	And (uppring) Starters (Constant) Constant (Co				· ((T - pairsea	0502		Ves I	ncome < 101.5	0
Conside Cr/fsetdon %/ P Income <17.	annole Cr/fsesdon 19 100 mm C 117. 11 69 mm C 117. 13 64 mm C 118 mm C 11	Income \$95.5 Incom			ame.comprexity, deci	reasing = 1/, J,		W Scrint 1		Educat	
Spending / Point Spending / Point 19 69 nrow(mod1Splits) 34 13 34 11 1 12 4 13 61 13 24 13 35 13 13 13 12 13 12 13 13 13 13 13 13 13 12 13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 12 13 13 13 12 13 13 13 12 13 13 13 13 13 12 13 12 14 105 <td>nonce c2/pression yr 0° Spending 1 Jugtongs 117.5 Spending 1 Jugtongs 117.5 13 60 nrow(modl\$splits) Are Are 13 4 nrow(modl\$frame)-nrow(modl\$frame)); toss1 Spending 1 Jugtongs 2000000000000000000000000000000000000</td> <td>ansale G//Session 9/ 🔗</td> <td>artic (mp)</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Income < 117.5</td>	nonce c2/pression yr 0° Spending 1 Jugtongs 117.5 Spending 1 Jugtongs 117.5 13 60 nrow(modl\$splits) Are Are 13 4 nrow(modl\$frame)-nrow(modl\$frame)); toss1 Spending 1 Jugtongs 2000000000000000000000000000000000000	ansale G//Session 9/ 🔗	artic (mp)		-						Income < 117.5
11 69 Specimical Statution 11 7 Age < Lim (Shift)	11 69 nrow(mod1Ssplits) 11 34 nrow(mod1Ssplits) 13 34 tosslas.integer(row.names(mod1Sframe)); tossl 11 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 11 3 6 12 2 4 25 113 26 52 104 105 210 211 53 27 0 1 1 1 1 2 1 2 1 1 3 6 12 2 12 5 10 2 10 5 10 2 10 5 10 2 10 5 10 1 5 10 1 1 1 1 1 1 1 1 1 1 1 1							-0	0/11	Income < 117.5	·
inrow(modlSsplits) 134 Adg < 10 m/s lst = 74.85 mesot	income(mod1Splits) income(mod1Splits) i) 34 income(mod1Splits) i) 35 income(mod1Splits) i) 35 income(mod1Splits) i) 35 income(mod1Splits) i) 37 income(mod1Splits) i) 38 income(mod1Splits) i) 37 income(mod1Splits) i) 37 income(mod1Splits) i) 13 income(mod1Splits) i) 13 income(mod1Splits) i) 13 income(mod1Splits) i) 13 income(mod1Splits) ii) 13 income(mod1Splits) iii) 13 iiii) 14 iii) 13 iiiii) 12 iii) 13 iiiii) 12 iiii) 13 iiiii) 12 iiii) 13 iiiiii) 12 iiii) 13 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	11 69	onsole G://	Session 9/ 🛱					11/2	1102.5	Age < 3
1] 34 nrow(mod15frame)-nrow(mod15splits) 1] 35 tossl=as.integer(row.names(mod15frame)); tossl 11] 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 0] 0 40 40 80 81 162 163 326 327 654 655 41 0] 0 40 40 51 0 0 40 40 51 10 40 40 51 0 0 40 40 51 10 40 40 51 0 0 40 40 51 10 40 51 10 40 51 0 0 40 40 51 10 40 51 10 40 51 1	1] 34 nrow(mod15frame)-nrow(mod15splits) 1] 35 tossl=as:integer(row:mames(mod15frame)); tossl 11] 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 10] 7 2 L1 L1 3 6 12 24 25 13 26 52 104 105 210 211 53 27			Session 9/ 🛱							Code = 2,4,6.8
Incom(mod15frame)-nrow(mod15frame); toss1 13 5 10 24 5 10	Incom(modl5frame)-nrow(modl5frame)); toss1 toss2 toss1 toss2 toss1 toss2	Income < a.5. Online + ding >= 0.3552544 i	L] 69						Age	Jimy. Star Jean.	
1] 35 tossl=as.integer(row.names(mod15frame)); tossl 1] 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 0] Jan 2 4 5 10 20 40 80 81 162 163 163 163 163 163 163 163 163 163 163	1] 35 tossi=as.integer(row.names(modifframe)); tossi 1] 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 0] √mm, sine-15 √mm, sine-15 0] √mm, sine-15	prow(modlStrame)-prow(modlStraine)	l] 69 nrow(mod						Income < ar.5	Online ding >7	Spending < 2.498641 1 0,3552544 Income / 100
Tossl=as.integer(row.names(mod15frame)); tossl Super 2000000 Super 20000000 Super 2000000000 Super 200000000 Super 2000000000 Super 20000000000 Super 20000000000 Super 20000000000000 Super 2000000000000000000000000000000000000	tossl=as.integer(row.names(mod15frame)); tossl 11 2 4 5 10 2 10 2 10 </td <td></td> <td>[] 69 nrow(mod [] 34</td> <td>ll\$splits)</td> <td>)</td> <td></td> <td></td> <td></td> <td>Income < 54.5 pending >= 3.696</td> <td>Online ding >=</td> <td>Spending < 2.498641 [1] 9.3552544 Income + 10 1 Age >= 5-5 [1] wisGme + 115.5 [0]</td>		[] 69 nrow(mod [] 34	ll\$splits))				Income < 54.5 pending >= 3.696	Online ding >=	Spending < 2.498641 [1] 9.3552544 Income + 10 1 Age >= 5-5 [1] wisGme + 115.5 [0]
11 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 17 21 11 3 6 12 24 25 13 26 52 104 105 210 211 53 27	11 1 2 4 5 10 20 40 80 81 162 163 326 327 654 655 41 [7] 21 11 3 6 12 24 25 13 26 52 104 105 210 211 53 27		[] 69 nrow(mod [] 34 nrow(mod	ll\$splits))				Income < 54.5 pending >= 3.696	Online ding >=	Spending < 2.498641 [1] - 3552544 Income (16 - 4.552544 Income (16 - 4.55254 Income (16 - 4
17] 21 11 3 6 12 24 25 13 26 52 104 105 210 211 53 27	17] 21 11 3 6 12 24 25 13 26 52 104 105 210 211 53 27		[] 69 nrow(mod [] 34 nrow(mod [] 35	ll\$splits) ll\$frame)-nrow(modl\$splits					Income < 0.5 pend g >= 3.6961 Spending < 3.39	Online of ding >= 0 Eco-cation = 842 0 0 0 0 0 0 0 0 0	Spending < 2.498641 [1]
			[] 69 nrow(mod [] 34 nrow(mod [] 35 toss1=as	llSsplits) llSframe)-nrow(modlSsplits .integer(row.names(modlSf	rame)); tossl	163 326 327	654 655	*	Income < 0.5 pend g >= 3.6961 Spending < 3.39	Online of ding >= 0 Eco-cation = 842 0 0 0 0 0 0 0 0 0	Spending < 2.498641 [1]
33] / 14 28 56 112 224 225 450 900 901 451 113 5/ 114 228 456		17 21 11 3 6 12 24 25 13 26 52 104 105 210 211 53 27	<pre>L] 69 nrow(mod L] 34 nrow(mod L] 35 tossl=as [1] 1</pre>	llSsplits) llSframe)-nrow(modlSsplits .integer(row.names(modlSf 2 4 5 10 20	rame)); tossl 40 80 81 162			41	Income < 0.5 pend g >= 3.6961 Spending < 3.39	Online transformer to the second seco	Spending < 2.498641 (1) Age >= 525 (1) Age >= 525 (1) 2.032674 (1) 2.032674 (1) 1) * 0 (2.075992 >= 0 (1) >= 0 (1) = 0 (1) >= 0
			L] 69 nrow(mod L] 34 nrow(mod L] 35 tossl=as [1] 1 L7] 21	11\$splits) 11\$frame)-nrow(modl\$splits : integer(row.names(modl\$f 2 4 5 10 20 11 3 6 12 24	rame)); tossl 40 80 81 162 25 13 26 52	104 105 210	211 53	41 27	Income < 0.5 pend g >= 3.6961 Spending < 3.39	Online transformer to the second seco	$\begin{array}{c} spending < 2.498641 \ (1) \\ 4.552544 \ (1) \\552544 \ (1) \\552544 \ (1) \\552544 \ (1) \\552544 \ (1) \\552547 \ (1) \\5525772 \ (1) \\55558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5558 \ (1) \\5588 \ (1) \ $
			L] 69 nrow(mod L] 34 nrow(mod L] 35 tossl=as [1] 1 L7] 21	11\$splits) 11\$frame)-nrow(modl\$splits : integer(row.names(modl\$f 2 4 5 10 20 11 3 6 12 24	rame)); tossl 40 80 81 162 25 13 26 52	104 105 210	211 53	41 27	Income < 0.5 pend g >= 3.6961 Spending < 3.39	Online transformer to the second seco	Spending < 2,498641 ,3552544 Income + 1 3552541 Income + 1 3552541 Income + 1 3552541 Income + 1 3552541 Income + 1 3552571 Income + 1 355271 Income + 1

Now, for each node, we will also have complexity value which is also still stored in the frame attribute and within the frame we have this complexity variable. So, it would be stored there. So, let us create this data frame you can see here let us scroll through this particular data frame, as you can see first column is toss one which is nothing, but unique you know node numbering with respect to rows.

(Refer Slide Time: 11:24)

The ordering of these we have already discussed in the previous class, the previous lecture that it follow this sequence node numbering we actually discussed it by showing the node numbers.

So, 1, then 2 and then 4, 8 in this fashion these numberings are going to be there. Now once this data frame is there. Now you would look, you can see that in the second column, you can see the variables that are involved here and the involved variable have the you know income is spending, then leaf for each of these nodes whether what predictor was used if it was a decision node what was the splitting variable for that decision node and what was leaf node the leaf, it just means the it mentions that this that particular node is a leaf or terminal node the corresponding complexity value the complexity parameter concept that we talked about that is used to control the size of the tree.

So, the corresponding complexity value for that particular node is also mentioned. So, this is the value at which point the tree will collapse so, based on this. So, we can perform our pruning so that will give us the you know that will control the our tree size and will give us the you know best prune tree and minimum error tree. So, we will do this. So, before that we will like to order this particular data frame.

(Refer Slide Time: 12:54)

RStudie	2				
ic Edit	Code View	Plots Session Ruld Debug I	nohle Tools Help		
2.	C • {	🔒 🔒 🚔 🛛 🏕 Gata	file/function Addins •		Project: (None)
0	trees v1.R a	c		-0	Environment History
	101	Source on Save	Q / · E ·	ource • =	😭 🔒 🖙 Import i Jataset 🔹 🧃 🗐 🖉
2:		nary(mool)		ource -	
2					Global I nvironment • Q
25	52 # Pr	runing Process			OFP 69 obs. of 3 variables
2		alidation partitio	n: misclassification error vs. no. of decision node:	s	values
2			in full grown tree		C_PINcode int [1:96] 5 4 5 2 6 3 6 1
2		w(mod1%frame)			index int [1:52] 6 56 77 202 238
2		o. of Decision Nod	es		
		w(modl\$splits)			<pre>omodl List of 15</pre>
		o. of Terminal Nod			partidx int [1:2500] 1508 4537 109
2!		v(modl%frame)-nrow	(modl)spints)	-	partidx1 int [1:1500] 676 2381 644
		ode numbers			
			names(mod1Sframe)); toss1		Files Plots Packages Help Viewer
			<pre>modlSframeSvar, modlSframeScomplexity); DFP me.var!="<leaf>",];DFP1</leaf></pre>		💿 🍏 🔎 Zoom 🖉 Export + 🔍 🕑 🥩 Publish •
20		L=DFF[DFF5moul.ifa	me.var:= <reat> ,j,DFP1</reat>		
20		stad saguanca of	splits based on complexity		
20			modl.frame.complexity, decreasing = T),]; DFP2		yes Income < 101.5 no
263			inder. Traile. comprexity, decreasing = 1), j, or pr	R Script \$	Education = HSC
70.5	a (iop i	evel) =	-	n script +	Spending < 3.302452
		ession 9/ 🛱		-0	0 / Family.Size < 2.5
					Spending to 020 1025 Spending < 3.0 222
		dl.frame.var modl			
	tossl mo			•	Age < 1 0 11 3EBN.Code = 2,4,6,8 Age < 37
1	tossl mo	Income	0.278969957		Age < 64.5 0 tmy. Size 3BN.Code = 2,4,6,8 Spending < 2,498641 (1)
1	tossl mo	Income Spending	0.278969957 0.006437768		Age < 64-3 (0) thirdy. Size - 389N.Code = 2,4,6,8 Spending < 2,498641 (1)
1 2 3	1 2 4	Income Spending <leaf></leaf>	0.278969957 0.006437768 0.000000000		Age (45) (0) they, Spar (38) (Code = 24,68 1) Spending (2,498641 (1) Income (45,5) (0) information = 0,552544 (1) (1) pending > 3,656144 (ma) (10,511 (1) (10,511 (1) (1) (10,511 (1) (1) (1) (1) (1) (1) (1) (1) (1) (
1 2 3 4	1 2 4 5	Income Spending <leaf> Income</leaf>	0.278969957 0.006437768 0.00000000 0.006437768		Age CA-1 (0) they S14-23811 Code = 2,48,8 Separiting < 2,49844 (1) Income < v4.5 Online-writing > 0,592544 (ncome < v4.5 pentry g > 3,9664 ms < (0,5) (1) Age > 2,52(1) Sperring < 3,3984 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1 2 3 4 5	1 2 4 5 10	Income Spending <leaf> Income Spending</leaf>	0.278969957 0.006437768 0.000000000 0.006437768 0.006437768		Age < A= (0+m), Star 3281.Code = 2.4.5.8 Income < vis 0. Onlinetexting =
1 2 3 4	1 2 4 5 10 20	Income Spending <leaf> Income Spending Age</leaf>	0.278960957 0.006437768 0.00000000 0.006437768 0.006437768		Age CAL (b)(x)(3)(-7)(3)(Cole 2,7,4,8)(3,80)(-1)(5,90)(-
1 2 3 4 5 6 7	1 2 4 5 10 20 40	Income Spending <leaf> Income Spending Age Income</leaf>	0.278960957 0.006437768 0.0006437768 0.006437768 0.006437768 0.006437768		Age < (4) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
1 2 3 4 5 6 7 8	1 2 4 5 10 20 40 80	Income Spending <leaf> Income Spending Age Income <leaf></leaf></leaf>	0.278960957 0.006437768 0.00000000 0.006437768 0.006437768 0.006437768 0.006437768 0.006437768 0.005722461 0.0007000000		Age CAT (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
1 2 3 4 5 6 7 8 9	1 2 4 5 10 20 40 80 81	Income Spending <leaf> Income Spending Age Income <leaf> Spending</leaf></leaf>	0.278960957 0.006437768 0.006437768 0.006437768 0.006437768 0.006437768 0.006437768 0.00522461 0.005722461		Age < 44 (1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-
1 2 3 4 5 6 7 8	1 2 4 5 10 20 40 80	Income Spending <leaf> Income Spending Age Income <leaf></leaf></leaf>	0.278960957 0.006437768 0.00000000 0.006437768 0.006437768 0.006437768 0.006437768 0.006437768 0.005722461 0.0007000000		Age < 44 (1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-

In decreasing order of complexity values right. So, the starting nodes from where the first split and then say onwards other splits happen. So, the starting nodes will have higher complexity values, right here the complexity value would be much higher that is why this was the split 1 number 1 here the complexity value would be after this.

So, that is why it was split number 2 followed by you know split number three and spirit number four. So, we would like to order this particular data frame by complexity values and once we order this particular data frame that we just saw by complexity values will also get the this sequence, right because this was the first split and the complexity value will be higher for this, right. So, this would be first then this was the second split complexity value for this particular node is going to be the second one after this. So, it will come here.

So, once we order this particular data frame which is having complexity values for each node we will get this. So, let us do this execute this code. So, you would see that before ordering first we are trying to remove the leaf node. So, we do not want to have a leaf node at this point you would see there are many leaf nodes here. So, we would like to remove the leaf node because the pruning is basically driven by the decision nodes, right. So, once we remove the leaf nodes from this data frame, we will get the new one this is the one were.

So, this is the one this is the new data frame that we can see DFP 1, we have 34 observation which is equal to the number of decision nodes that are there this is this these particular numbers, we have already seen in the previous output as you can see 34 decision nodes and 35 terminal nodes. So, once we remove the leaf nodes the number of you know observation that are there in the new data frame the 34 equal to the number of as you can see in the environment section 34 equal to the number of decision nodes.

Now once this is done we can order as we talked about we want to obtain the nested sequence of splits based on complex tree. So, we will order this data frame based on the complexity values and once we order this will get the desired nested sequence, right. So, let us execute this code now you would see that ordering has been done and if we scroll back to see this table now the first you know you know first is entry is income variable. So, this is the split number one and the complexity value is there the second split is also having the same complexity values, right we will discuss this further what happens if we the same complexity values are there, then why you know income was the first split and education was the second split ah. So, considering that what happens when this is the scenario?

So, family size and then third mode the third spirit is based on this having the third highest complexity value. So, in this fashion you can see that complexity values are decreasing. So, this is this is how our trees when we develop the full go grown tree. So, this is how this sequence determines how the splits are going to take place and how the tree is going to be built. So, once we start deciding about pruning you know pruning this full grown tree this is the process that we have to take and therefore, the earlier one that we did in previous lecture is not the desired process now you would see because we have sorted this particular data frame the row numbers have changed you can see these were the original row numbers we present in the original data frame DFP 1.

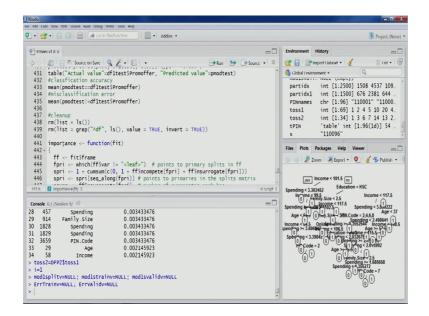
Now one sorting of that has been performed the row numbers are still same. So, we would like to change these row numbers to reflect the now DFP 2, let us look at the table like again you can see now the row numbers row numbers are also sorted. So, 1 to 34; 34 decision nodes, right. So, once this is done, now we can start calculating our toss argument that we have to pass on to the snip dot r part function. So, toss the 2 argument can is simple nothing, but in the data frame that we have just you know created the P 2; the first you know variable toss one that is going to be this argument.

So, let us create this toss two now what we are going to do is we are going to start our pruning process and as we did in the last lecture after every pruning, we used to record the model and we used to apply that model to a score on training, you know partition and other partition validation another part validation partition training and validation partition. So, that later on we can compare the error rates right.

So, the same thing will follow here what we did in the last lecture, but now this time with the actual pruning sequence the nested training sequence. So, counter for nodes to be sniffed off I and once, then we have this mod one split v the same wherever that we use in the last lecture this is going to you know store all the mod variables then you know mod 1 train v, these variables are going to store the other things that we will see this course right mod one mod one train. So, it will its score it will have the that return value of predictor.

So, it is scored variable right list ah. So, let us initialize them, then we will have these two vector 0 train v and other valid v. So, these two actors are the important for our plotting and to identify where the error on validation partition is minimizing. So, let us initialize these two variables now you can see as we discussed in the previous lecture the loop is running for all the variables. So, the in the this in this particular case you can see we are running this loop for all the decision nodes that are there right DFP 2 in this particular column.

(Refer Slide Time: 19:34)


🔹 🚰 📲 🔚 🛛 🚔 🛛 🌈 Go to file/function 🔄 🛛 🔛 🔹 Addins 🔹	Project: (Noni
9 traves v1.8 x	Environment History
Sol 2 R In Source on Save Q 🖉 - 🗐 - 🕀 Run 😏 🕞 Source - 🤍	😭 🕞 🖙 Import Dataset 🔹 🥑 📃 List 🔹 🗍
2/0 1=1	Global Livironment • Q
271 modlsplitv=NULL; modlstrainv=NULL; modlsvalidv=NULL	HOULSVELT. NOLL (CHIPCY)
272 ErrTrainv=NULL; ErrValidv=NULL	partidx int [1:2500] 1508 4537 109
273 - for(x in DFP2Smod1.frame.var) {	partidx1 int [1:1500] 676 2381 644
274 · if (i<=length(toss2)) {	PINnames chr [1:96] "110001" "11000
275 toss3=toss2[i:length(toss2)]	
276	toss1 int [1:69] 1 2 4 5 10 20 4
<pre>277 modlsplit=snip.rpart(modl, toss = toss3)</pre>	toss2 int [1:34] 1 3 6 7 14 13 2
278 ## Now cut down the CP table	tPIN 'table' int [1:96(1d)] 54
<pre>279 temp=pmax(modl%cptable[,1], DFP2\$modl.frame.complexity[i])</pre>	x "110096"
280 keep±match(unique(temp), temp)	
<pre>281 modlsplitScptable=modlScptable[keep, , drop = FALSE]</pre>	Files Plots Packages Help Viewer
<pre>282 mod1splitScptable[max(keep),1]=DFP2Smod1.frame.complexity[i]</pre>	A A BA TAL A A CAN
283 # Reset the variable importance mod1split\$variable.importance(mod1split)	💿 🍈 🖉 Zoom 📲 Export 🔹 🍳 🔮 Publish 🔹
<pre>285 286 modlsplitv=list(modlsplitv, modlsplit) .</pre>	yes Income < 101.5 no
and the second s	Education = HSC
281.9 (Iop Level) © R Script ©	Spending < 3.302452
Console G://Session 9/ 🔗	income < 55.5 income < 117.5
	Spending to man 102.5 Spending < 3.000222
8 457 Spending 0.003433476	Age < 1 () 1 Size 389N.Code = 2.4.6.8 Age < 37
9 914 Family.Size 0.003433476	Income < 04.5 Online of 1 Spending >= 0.3552544 Income < 03
0 1828 Spending 0.003433476	ipending >= 3.696 Horne < 106.5 (1) Age >= 52.5 (1)
1 1829 Spending 0.003433476	Spenning < 3.3984z 51 1 m 9g < 2.032679 1 1
2 3659 PIN.Code 0.003433476	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 29 Age 0.002145923	0/ Age > 550 / 0
4 58 Income 0.002145923	(0) (0) ramity Size 2.5
toss2=DFP2\$toss1	Spending >= 1.685658 Spending <-355272
i=1	0 1 Code = 7
modlsplitv=NULL; modlstrainv=NULL; modlsvalidv=NULL	0 - U(1)
ErrTrainv=NULL; ErrValidv=NULL	010

Now we have only the decision node you can see again that in environment section DFP 2 has just 34 observation that are the number of decision nodes in this particular tree. So, we will run this loop for the number of decision nodes. So, some of the checks that we had done in the previous lecture; that code that we were eliminating the leaf now we do not need to perform because we are dealing with only decision nodes. So, the if if section, you would see that I; we are comparing with the length of the toss two that is the total number of nodes and then because we would be pruning a node by node. So, we are starting this protocol process from i that is one to the full to the final node number that is the last one.

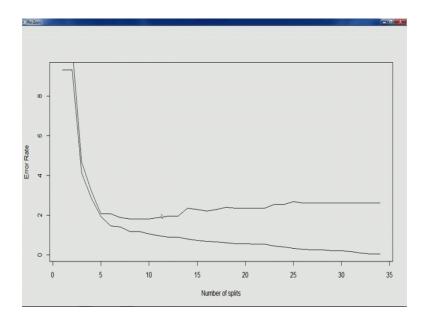
So, first we start by you know pruning all nodes, then you know from node number 2 do the last one node number 2, in the sequence not node number 2 actually node number 2 in sequence as a stored in toss 2. So, to show you the toss 2 values you can see toss 2 1 to 34. So, 136. So, node number are actually unique node numbers are 136. So, first we start by you know first we start by sniffing all the nodes, then we start by sniffing from this particular node to the remaining nodes then we start from this particular node that is 6 to the remaining nodes in this fashion we will start and then a snip dot for part function is being called for the for every time the loop is run and you are recording a few more we are correcting few more things.

For example, CP table; once we create and you know once we do this sniffing, we will get the new model new sub tree model. So, therefore, we need to correct the CP table and there. So, the code for the same is there then one CP table is corrected will also have to correct the variable importance code for that is also there right. So, for this we are using an importance function which is nothing, but taken from the source code of you know prune dot r part function. So, there they have written this importance function.

(Refer Slide Time: 21:53)

And we are directly using the same source code here in this our exercise because this particular function is not available for us to you know call you know is not part of the r part library, once we load they are they do not have access to this function this is called internally within r part. So, that is why we have to get that source code here and to be able and then we are using this particular here.

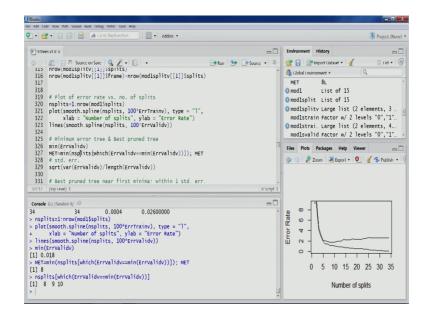
So, we will have to now create this function here. So, that will do here. So, the you and you would see that in the environment section function this importance function has been created. So, we will not go into the detail of this particular function this function is actually being called to once we create the sub tree model, we would like to we would like to change the variable importance accordingly right in the sub tree model. So, the same thing is being done by calling this function. So, then we are storing we keep on storing these you know; all these all these sub tree models then we score them off score the training partition and the validation partition as we did in the last lecture and then we are storing the error rates for training partition and validation partition and this is the entry look counter.


So, let us execute this code. So, it is done. Now you would see that one thing I would like to point out here that those we have been storing the models, but we cannot access all of them you can see this is quite large list and given 3 MB and just having two elements. So, these this R part object that we were trying to store in list there you know

the size is quite big. So, therefore, it has not stored all the all the you know all the R part or model sub tree models and therefore, only two are there. So, ah, but; however, we are interested in only the error rates.

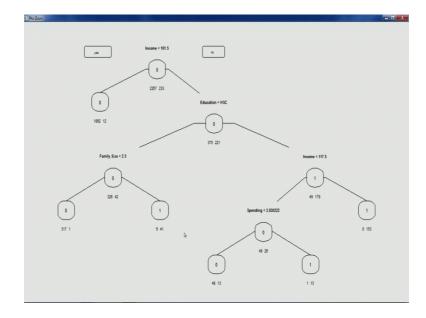
So, let us create this data frame like we did in the previous lecture. So, now, let us look at these values 4 for decision nodes in this ordering sequence and you can see either training and validation. So, now, when the for the first decision node this is the training error and validation error you can see that training error is slightly lower than the validations you know error when we start and as we perform second split then again the both are same.

So, there is not no not much decrease in error after second split then third you would see that further the error has significantly decreased for the training as well as for the validation. So, in this fashion if you as we did in the last lecture if you scroll down this these are rates the second column that is error rate for the training part it will keep on decreasing till it becomes 0, right till it become 0 or close to 0 right and in the in the validation partition you would see that error will keep on decreasing till one point and after that it will start in you know increasing.


So, you can see that this is this is the point where the error is minimum, right. So, this is the point where the error is minimum and then after this particular point it will it will hold up to for some more nodes and then it will start increasing that it keeps on increasing. So, with this now we can go to you know we can also we can create this plot to visualize the same information then information that we saw in table.

So, this is the plot that we had seen in previous lecture as well now with the correct pruning sequence you can see that the plot which is this plot this is you know the this particular is for the validation data the lower plot the upper plot is for the validation data and the lower a plot is for the training partition. So, for the training partition you would see that the error you know keeps on decreasing till it becomes 0 for the validation part you would see the error keeps on decreasing up to some point and after that it will start you know it will start increasing right.

So, probably here we need to in this particular zone we need to find out the point with minimum a territory like we did in the last lecture and then within one standard deviation we will have to find out the best tree. So, let us look at this value minimum error tree is this, this is the value which we already saw in the table then let us look at the particular number of decision nodes corresponding to this error value error 8 decision nodes minimum tree is can we obtain at 8 decision nodes if we look at the graph again. So, 8 decision node would be somewhere around here. So, probably this is this particular straight link straightening line you see. So, all these you know nodes they are nothing, but representing the, you know minimum error on validation partition. So, whether they are 8, 9 or 10.


(Refer Slide Time: 27:16)

So, we can look at these values, if you are interested how many how many of these decision nodes are having the same or having the same number of same error minimum error 8, 9 and 10. So, the sub tree models with decision nodes 8 decision nodes and 9 decision nodes and 10 decision nodes; all three of them having the same number of same amount same amount of error on validation partition, but; however, we will just use the smallest tree here and then we look at the standard error of you know off error rate.

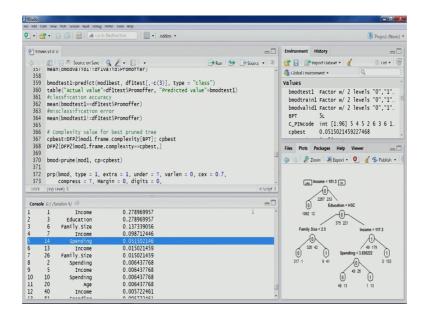
So, this is the value; now we will look at the range where we need to find the now best prune tree. So, the best from tree should be having value less than this particular value error like we did in the last lecture and should be greater than the error that we saw for the this one minimum error tree, all right. So, this is the code for the same. So, this part we have already discussed. So, you can see best prune tree is now coming at 5. So, if you want to confirm this, we can go back to the level table and we can see that node 8, this is the point where the minimum error tree is there, now within that range, we can see this particular tree is giving us the best prune trees this is within one standard deviation of minimum error tree. So, this part we have already discussed.

Now, once this is done once we have identified then we can go ahead and create our min best prune tree model. So, this is how again BPT we would like to contain we would like to contain these many number of design nodes. So, we can generate about toss three and then call this sniff R part and we will have the best prune tree. Now let us plot it. So, this is our best prune tree let us look at this particular plot.

(Refer Slide Time: 29:21)

Now this particular best prune tree now the earlier one which we did in the previous lecture because we are following the order of you know shorter order of a node numbering. So, we were getting the balance tree. Now, we get the right tree would see that this is not balanced first income then education and then that sequence the it is it split sequence the optimized split sequence is being followed in this particular example, right. So, this is the best prune tree that we can have you can see 1, 2, 3, 4, 5 decision nodes are there you can see important variables of course, it is income education. So, income education families are spending.

So, all of them figuring here; now we can check the performance of this particular tree on different partitions; so, you can see the performance 98.56, then on validation 90.9 close number, then on test 97.4, this is also close. So, performance is quite good. So, there could be another approach to follow this process that we discuss in the previous lecture as well based on complex tree value.


So, we use the complex tree value for example, we have identified the best prune tree now following the you know actual order that is the split order. So, in that we can find the appropriate you know complexity value because we have this pruned function this which we use in the previous lecture which takes the CP value and cuts the prunes the tree inter based on that CP value; however, we will understand some of the problems with this particular function.

(Refer Slide Time: 31:08)

Kude		
Hie Hitt Lade View Plots Session Ruld Debug Profile Loois Help		
🝳 🔹 🖶 🔒 🔚 🦾 Ko to file/function 🔤 🛯 🔛 🖌 Addins 🔹		Project: (None)
O 9 Trees v1.R x	-0	Environment History
	🍽 🕒 Source 🔹 🛎	🞯 🔒 🖃 Import I Jataset 🔹 🎻 📃 List 💌 🌀
357 mean(bmodvalid1!=df1valid5Promoffer)	•	Global I nvironment • Q
358		values
359 bmodtestl=predict(modlmest, dftest[c(3)], type = 'class') 360 table('Actual value"=dftestSPromoffer, 'Predicted value"=bmodtes 361 #classfication accuracy 362 mean(bmodtestl==dftlestSPromoffer) 363 #misclassfication error	st1)	bmodtest1 Factor w/ 2 levels "0","1" bmodtrain1 Factor w/ 2 levels "0","1" bmodvalid1 Factor w/ 2 levels "0","1" BPT SL
<pre>363 #misclassification error 364 mean(bmodtestl=dfltest\$Promoffer) 365 366 # Complexity value for best pruned tree</pre>		C_PINcode int [1:96] 5 4 5 2 6 3 6 1. ErrTrain 4e-04
<pre>367 cpbest=DFP2\$mod1.frame.complexity[BPT]; cpbest 368 DFP2[DFP2\$mod1.frame.complexity==cpbest,] 369</pre>	n	Files Plots Packages Help Viewer
370 bmod=prune(modl, cp=cpbest) 371 372 372 prp(bmod, type = 1, extra = 1, under = T, varlen = 0, cex = 0.7, 10/14 (top:rew) ±	* R Script \$	(ass.) income < 101.5 (20)
Console G://Session 9/ 🔗	-0	2267 233
<pre>tunne 0/mozevy == tune 0/mozevy ==</pre>		(a) Eduction - HIC 1802 12

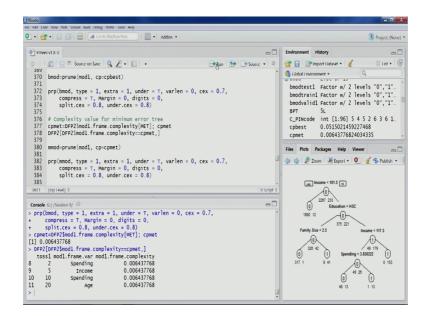
For example, let us find out the complexity value for the best prune tree that we have just identified which was the tree with 5 decision nodes. So, CP best is this is the corresponding complexity value and this you can see, we you can see toss 1 is 15, right and so, this will using this particular value. So, we can go back to the table and find out how many number of nodes are there here ah. So, let us look at let us look at that table. So, if we look at the value that we just saw their 0.0515. So, you can see this is the value 0.0515 and we can see that toss 1.

(Refer Slide Time: 31:55)

So, 1, 2, 3, 4, 5; so, this is also 5. So, the same you know corresponding tree is there, but; however, it might. So, happen that. So, now, we are discussing the problems that would be there with the prune function now the previous few values sometimes if we run the same model previous few values might also have the same complexity value in that case the tree with the smaller size would be selected by in this fashion. So, if we do the you know pruning using the complexity values, even though we have identified you know followed that passes minimum error tree and within one standard deviation best prune tree.

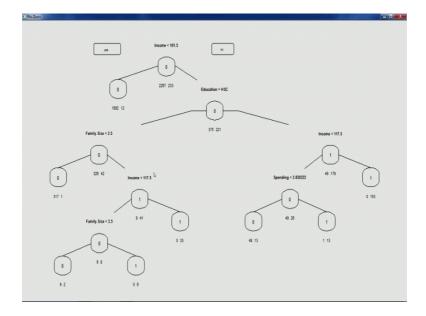
And now instead of the number of decision nodes we use the complexity value to prune this tree you know the previous you know nodes they also had the not in you know they also had the same complexity value. So, the pruning will happen will happen at that level. So, it is might with the tree size might reduce from 5 to 3 or 2 something in some scenarios in some runs and even in this data itself we do again the same thing, we do it again, then probably because of the sampling and the different observation that are going to be selected in the training partition and therefore, the different model that could be there because of the limitation on the sample size that we have even though this is larger data set.

So, we can get different prune tree using this particular prune function. So, in this particular case it comes out to be the same. So, we can use prune function, we pass on


the full grown tree model mod one and then the pruning value till the point where we would like to prune it. So, we can see this.

(Refer Slide Time: 33:43)

Ristudio			- C <mark>-</mark>
	View Plots Session Ruild Debug Plothic Loois Help		
2. 3	• 🔒 🔒 📇 🖌 Go to file/function 🔡 • 🛛 Addins •		None)
9 trees	×1.8.1	-0	Environment History
	🙍 📄 🗖 Source on Save 🔍 🖉 📲 🔹	📑 Run 📑 📑 Source 🔹 🛎	🞯 🔒 🖃 Import Dataset 🔹 🧹 👘 List 💌 🎯
	<pre>#misclassification error mean(bmodtest1!=dfltest\$Promoffer)</pre>		Global Linvironment • Q
365	mean (billoucesci) - of icescispionorier)		values
366 367 368 369 370 371	<pre># complexity value for best pruned tree cpbest=OFP2imod1.frame.complexity[@FT]; cpbest DFP2[DF2imod1.frame.complexity==cpbest,] bmod=prume(mod1, cp=cpbest) prp(bmod, type =1, extra = 1, under = T, varlen = 0, compress = T, Marqin = 0, digits = 0,</pre>	cex = 0.7,	bmod List of 15 bmodtest1 Factor w/ 2 levels "0","1" bmodtrain1 Factor w/ 2 levels "0","1" bmodvalid1 Factor w/ 2 levels "0","1" BPT SL C_PINcode int [1:96] 5 4 5 2 6 3 6 1
374	split.cex = 0.8, under.cex = 0.8)		Files Plots Packages Help Viewer
377 378 379	<pre># Complexity value for minimum error tree cpmet=0FP25mod1.frame.complexity(MET]; cpmet DFP2[DFP25mod1.frame.complexity==cpmet,]</pre>		Normal Second Content of Conte
3761 ((lop i evel) 0	R Script \$	
28 45 29 91 30 182 31 182 32 365 33 2 34 5 > bmod= > prp(bt + ct	4 Family size 0.003433476 8 Spending 0.003433476 9 Spending 0.003433476 9 PIN Code 0.003433476 9 Age 0.002145523	• • ••••••••••••••••••••••••••••••••••	2217 233 0 Education + HBC 1002 12 00 135 221 Family Size + 25 Income + 117 5 0 0 0 0 0 177 0 0 0 0 0 10 107 1 9 41 0 9 25 0 153


So, this particular tree; 1, 2, 3; you can see 4 nodes are there and here we had 5 nodes. Now in this particular internal processing that happens in prune function one more node they spend they spending one it has been removed off. So, that is the tree that we will have if we follow that complexity value right. So, the tree will collapse at that value collapse at this value right and only 4 particular decision nodes would be there. Now further we can we can we can compare this particular case with the minimum error tree. So, we can plot the minimum error tree as well.

(Refer Slide Time: 34:30)

So, this is going to be the corresponding complexity value. So, this is up following the prune process prune function process. So, you would see just. So, these are the nodes you can see this is the value. So, we look at the, we prune it. So, this is the model that we get. So, you can see minimum error tree model is much bigger, even if we follow the prune function right.

(Refer Slide Time: 34:56)

You can see 1, 2, 3, 4, 5, 6, 7 nodes; there right. So, we saw that size when the prune sequence the last one is also removed off. So, we get the 8 size, if you are interested in

looking at other things; for example, CP table and other things. So, this per got aspect, we have already discussed, right. So, with this we stop here and in the next lecture, we will start our discussion on regression trees.

Thank you.