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Lecture — 42
Pruning Process- Part I

Welcome to the course Business Analytics and Data Mining Modeling Using R. So, let
us continue our discussion on classification and regression trees. So, in the previous
lecture, we were talking about the, we were discussing the pruning, the second step of
classification and tree regression tree models. So, we talked about the pruning and
different approaches to control the; to control to avoid over fitting in the full grown tree

model.

So, we talked about pruning approach and two ways validation partition using validation
partition to find out the exact point, where we can stop where we can prune back the tree
to that level or using cost complexity or complexity parameter values to control the tree
length. Now, the next related concept is a minimum error tree. So, as we talked about in
one approach that validation partition can be used to find out the point at which from

where the; error starts to increase.

So, the tree with minimum classification error on validation partition; that is, called the
minimum error tree. So, the point where we achieve the minimum classification error so,
first we build the tree model and then we look at you know first we build the tree model,
then we look at different candidate models. So, the tree as we talked about full grown

tree and if it is being prune back to certain levels.

So, for different levels of you know different pruned models are different prune models
which could be you know which are going to be the candidate models candid tree models
for different off for all those models we can look at the misclassification error, where the
misclassification error is minimum and that particular tree that particular pruned tree is

going to be the minimum error tree.

So, let us move forward another related concept is a best prune tree. So, this is the tree
that I would we would like to find out we would like to determine and then use for and

then use it for our on our; on our new data and for deployment as well. So, what is best



pruned tree? So, best pruned tree can be can be determined, using by adjusting for

sampling error or minimum error tree.
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So, the minimum error tree you know there could be the due to changes do to you know
samples, there could be you know that minimum error tree can move to some extent
because of the sampling error. So, how do we; so how do we certain? How do we how do
we find out the best pruned tree? So, if we are able to adjust for sampling error, if we are
able to identify a range right for the minimum error tree that, this is going to be the best

prune tree is going to be within that range of a minimum error tree.

So, that range would be actually the adjustment for sampling error so, typically, how that
is done? So, is smallest tree in the pruning sequence right? So, we need to find out the
pruning sequence. So, a smallest tree in the pruning sequence which lies within one
standard error of you know minimum error tree. So, we need to find out the; minimum
error tree and in the pruning sequence then within the one standard error of the error rate
we have to check the tree which is going to be there. So, the smallest tree in that

sequence is going to be the best prune tree.

So, typically if we have the pruning sequence and if we have you know, because it says
you can. So, it is going to be sorted. So, therefore, if you know let us say minimum error
is let us say a point 0.1 and this standard is 0.01. So, within the 0.11 you know range we

have to see the tree which is having a smaller number of nodes right. So, that is going to



be the best tree. So, let us try and understand these concepts through an exercise in R to

get more clarity let us open R studio.
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So, let us start our pruning process. So, in when we have already done the modelling in
the previous lecture where we had build the model full grown tree model using the
promo promotional offer data set right. So, you can already see this is about the model

that we had that we had built.
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So, you can see the root node and other nodes of the tree. So, this is a full grown tree you
can see, as we talked about spread messy too many new nodes are there and it is
completely over fitting the data. So, now, we would like to now we would like to prune it
to some level where it is not over fitting the data or where it is not fitting to the noise. So,
let us start our pruning process. So, let us look at the number of the scene nodes number
of total nodes that are there in full grown this particular tree. So, you can see 101 total
nodes are there total number of nodes are there in full green full grown tree let us look at

the number of decision nodes that are there.
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So, you can see 50 decision nodes are there and let us look at the number of terminal
nodes or leaf nodes 51. So, as we talked about in the previous lecture as well; that

because we have been building binary trees.

So, binary tress have the property there the number of leaf nodes R terminal nodes are
always going to be one more than the number of decision nodes. So, that same thing you
can see here number of decision nodes are 50 and the number of leaf nodes or terminal

nodes are 51, one more and the total being the sum of these two numbers 101. Now let us

look at the node numbers.

So, as we talked about the R part object in the; P in the previous lectures and we talked
about one particular attribute frame. So, this particular attribute contains the row names

which are nothing, but the unique node numbers that are being assigned. So, this



particular this particular node you know node names are in in the in I I think in the factor
these are let us look at the class. So, these are stored as a factor variable I guess character

variable ah.

So, this has to be coerced into an integer, because these are actually nothing, but the node
numbers let us look at the first six values of this particular you know attribute row names
youcan see 1, 2,4, 8, 6,7, 16, 17 let us look at the tree model. So, had it been numbered
ah. So, this would be node number one and this would be node number two and this
would be node number four and then 8. So, in this fashion 1, 2, 4 in this fashion you can
see the row names have been recorded here right and. So, this particular this particular
code will give us the all the unique all the unique node numbers that are there in the full

grown tree.

So, let us execute this. So, we will have toss 1. So, if you are interested in looking at the

unique node number. So, you can see here.
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So, we had 101 nodes as we saw total number of nodes were 101. So, there are 101
elements in this particular vector and integer vector and you can see the unique node
numbers right; 1, 2, 4, 8, 16 and you would see all the you know numbers are not code
only the node numbers which are present number a unique node number which are
present in the part of the full grown tree only they are you know recorded here in toss

one.



So, now, we will we would like to sort this particular interior design being we would like
to identify the nodes which we would like to get rid of, because the idea is to remove the
branches right which are not you know decreasing the error for the right. So, let us sort

these values. So, once we sort we will get toss 2 this variable you can see.
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Now, the node numbers have been sorted 1, 2, 3, 4 and up to 915 the last node number
node number though we have just 101 nodes the node numbers are unique. So, therefore,
they take they their range is going to be much higher. So, 1, 2, 915 node numbers are
present in the a full grown tree. Now, once we have done this we can start counter for
nodes to be snipped off as we talked about we would like to prune the tree back to a level
where the error does not increase further. So, first we will initialize the counter for nodes
to be snipped off. So, I one is our counter now this another variable that we are
initializing here is mod 1 is split v and then we have mod 1 mod 1 s train v train training

vector validation vector.

So, in these in these vectors we are essentially storing the; you know storing the models
model objects R part of the model objects, then we have error train vector and error valid
v. So, there they are we are storing the error rate right the overall error the
misclassification error for different level of you know see different level of pruning right.
So, as we keep on removing branches. So, we will get a sub tree for each of those sub

trees we would like to record the error rates.



So, that we are able to compare later on come from those error rate we are able to
identify the point from where the error rates are going to increase a similar kind of
exercise we had done in Canaan to find out the you know optimized value of k. So, let us
do the same thing here. So, let us initialize some of these variables now we would see we

are starting a for loop
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And in this again you would see the x that look for loop counter will take values from
this perfect a variable mod 1 frame a var. So, you would see in the R part object you can
go and look at the elf section and you would see in the frame attribute it also records the
variable variables; which have been used for the splitting. So, the split variables are
recorded in this. So, the counter will run for all the you know split variables right now let

us look at the next line. So, this is if condition here ah.

So, you can see for this particular variable if it is not leaf and if the length of toss 2 right.
So, the toss 2 the series of nodes which you know from which we would like to create
these different pruned models right we talked about different prune model depending on
the labels depending on how we keep on moving the branches and we will get different
sub tree models different prune models. So,. So, this is the counter for the same. So, I is
was the counter. So, it will this is the maximum value for it toss 2 we have already
computed right then for every time and then we have to compute the actual nodes that we

would like to snip off.



The function for sniffing we are already familiar as we have used it in the previous
lectures snip dot R part. So, there we need to pass on the in the second argument is about
the unique node numbers which we would like to get rid off right. So, this toss 3 variable
is essentially to record the same. So, you would see that for counter depending on the
counter value the next node number I plus 1 up to the last node number we would like to

get rid of.

So, we will start from these you know a smallest tree to the; you know full grown tree.
So, in that in that fashion we are trying to create different prune models right smallest
tree to the full grown tree. So, toss three would actually capture this then you would see
the next line is mod one is split so, there here using a snip dot R part and so the velocity
that we have already computed. So, those node numbers are going to be used and we will
get a sub tree model now once that is done. So, that model is going to be recorded in this
vector that we are going to create many more sub tree model for this and later on we will

compare the error rates.

Now once this model has been you know built we are also a scoring the training and
validation partition you can see here this training and validation partition we are trying to
score off and then also you would see later on you know here you would see that we are
also recording the overall error for these two partition training and partition. So, we score
them and then we compute the overall error for training and where validation partition
for all these all of these prunes models. Now after that you would see that counter I
counter is back and then the you know next sub tree is going to be computed and then

performance is going to be recorded

So, let us execute this vertical loop the (Refer Time: 14:40) time is computed. So, now,
we have the list now we are going to create a tabular a table for where we have the you
know that number of split you know and then the error for the training partition and the
validation partition. So, let us look at this particular table. So, this is based on the

computation that we have just done. So, let us look at this.
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So, you can see decision number of decision nodes one and error training and error
validation is; there if number of decision nodes are two, then what was the error and
what was the you know error in the validation partition what was the error in the training
partition. So, that we can see you can see the error in training partition is decreasing and
the same is true for validation partition also the error is decreasing, but the rate of
degrees in the training partition is much more and you would see that these errors keep

on decreasing and you would see that this in the validation partition we are interested in

this 1.16.
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701 (lop 1 evel) &

B oo et 0§ % rubish -

1seript & Spending < 2866492 Education = HSC
7 P

Console G/Sesslon 9/ =l Sundmsl (\z.sanhm!\. t uﬂmlN.,Sl{e < Z.hnomf <15

1 1 U.U9%0 U.UYUbboL/ 120768
2 B 0.0996 0.09066667 T T

3 3 0.0464 0.04333333 o1 o2 ) on (O i s Pucuce 25
4 4 0.0464 0.04333333 AT N

5 5 0.032  0.03066667 L Orvra Crarnan CLCO e U
6 6 0.0260 0.01933333 el MO IMC NN esomomenalla )5
7 7 0.0256 0.01933333 v ) D | I

8 8 0.0232 0.01800000 ,a@m@@‘

9 9 0.0168 0.01600000

10 10 0.0168 0 Mgunoou @’V-"G}‘“ @ ‘@'"9‘
1 1 0.0164  0.01800000 i c0) [t0)

12 12 0.0164 0.01800000

13 13 0.0164 0.01800000 e




So, it has decreased up to this point number of decision nodes 9 and it has decreased up
to 0.016, and for one more node also the same error rate is there and then it just starts to
increase you can see 0.018. So, now, this is the point probably node 9 and 10. So, these
are the two candidates; which are recording the minimum error in the validation partition
you can see this 9 decision nodes model with 9 decision node and model with 10

decision nodes.

So, these are recording the minimum error right and after that the error starts to increase;
however, if we look at the error in the training partition it you know it is you know it still
keeps on decreasing right, because we start to over fit the data now or we start fitting to
the noise. So, therefore, you would see that in the training partition the error is still you
know keeps on decreasing; however, in the validation partition the error starts to increase

right.

Right and as we go down to the full grown tree we go down to the full grown tree levels.
So, you would see that the error in the training partition has reached to 0 and for the
validation partition it has it is much more right much more than the lowest minimum
error that we saw. So, at this point I would also like to tell you that this table that we
have just computed it is actually based on the sequencing of the nodes right the node

numbers you can Se¢€ onc.

So, you can see node number sequence that is one node number 1, 2, 3 in that fashion,
because we had sorted the node numbers right we actually saw that the the sequence that
we are using to snip off the nodes and that is the sorted sequence 1, 2, 4, 8, 16 in this

fashion this was toss 1 this is the toss 2.
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272 modlsplitv=c(nodlsplitv, modlsplit) 0dfl 5000 obs. of 9 variables [
273 Odfltest 1000 obs. of 9 variables [
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modlstrainv=c(modlstrainv, modlstrain : :
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278 Fies Plots Packiges Help Viewer =0
2719 ErrTrain=mean(modlstrain!=dfltrainspromoffer) 3 7
280 ErrTrainv=c (ErrTrainv, ErrTrain) B oo Hegpate 0§ % rubish -
281 errvalid=mean(modlsvalid!=dflvalidspromoffer)
282 errvalidv=c(Errvalidv, Errvalid)
Z I 1015
283 ) rcome <1013 ()
JRIA (lop 1 evel) & RAcript 2 Spending < 2.866492 Education = HSC
S TR
Console G/Sesslon 9/ =0 Summuxz.m:&m"unmwy.suuz.hnomum.s
LL) cnaracter - 7L X X i ‘ by
> head(rew names (mod1$frame)) 7
Dt g A i 7 m‘-a m 2%

> tossl=as.integer (row.names (mod1$frame))

> tossl
(1]

[61]
(101]

PRI TRR VAT 69 138 139 35 9 18 36 72 73 146 147 294

[21] 295 37 74 75 19 5 10 20 40 80 81 162 163 326 652 653 327 41 82 83
[41) 21 11 22 44 45 90 91182 183 23 46 92 93 47 94 188 189 378 379 95
S I 2 2 N 1 1 S B2 6 5 28 3 2 7 1 2 € S 6 R 1 22 2 4922 5% 45 0]
[81) 451 113 226 227 57 114 228 456 457 914 915 229 458 459 115 29 58 116 117 59

15

> toss2=sort(tossl)

> 10552
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So, the this is sorted sequence of node numbers. So, the snipping or the branches that we
are removing in this particular example is actually in that sorted sequence; however,
what is expected is that we should be you know snipping of the branches based on the
pruned sequence right order in which the complex tree for example, based on the
complexity parameter values right. So, for once so, first split has been created ah. So, we
need to understand whether the second you know the split on node number 2 is going to

be the optimum or an x split on node number 3 is going to be optimum right let us

understand here.
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So, for a root node we need to understand that once a particular split has been performed
predictor 1, value 1 at root node right and then we reach here. So, we have two options
now or where. So, the next split we perform here or here we can always find a and a
optimum split for the node number 2 and we can also find an optimum is spread for node

number three. So, which should be the next split?

So, that is going to be determined by the impurity reduction right so, P 2, V 2 here and P
3, V 3 here ah. So, therefore, if the impurity reduction on this particular half for the right
sub tree is more than the split number 1 is this split number 2 is this and then again
further we will have to compare for the third split between these nodes which one is
giving further reduction. So, that is going to be the; that is called the pruned sequence ah.

So, rather a better term is the nested sequence.

So, the most important split and the second most important split and in that sequence, the
sequence of splits in terms of based on importance right importance means impurity
reduction. So, that is the sequence that we. So, that we should be using actually to
remove the branches, but what we are doing in our exercises we are just going in the
sorted order fashion. So, first node number 1, then node number 2, then node number 3,

node number 5. So, we are in our exercise, what we are doing is?

We are following this sorted order this is not actually same as the sequence of splits
based on importance. So, this exercise you can do ah; however, what we are trying to do
here is? We are just following the node order of the node numbers and that is not actually
the; sequence the nested sequence or this you can based on the importance right. So, the
least important the split should be moved first right and; that is, how we need to prune

the tree; however, we are following the order based on the node numbers.

So, even with that we can understand the process right how the how the tree can be
pruned back to some levels using the using different function available in R. So, based
on that so, based on that we can move further, we can also look at the tree order last last
snipping that we did how I will like to move further and we would like to plot the error

rates that we have just created. So, let us look at this the plot so.
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290 # Tree after Last snip Omodlsub  List of 15
gg% Drv(z:g;::h:b v:‘l_-;::siob)cex = 0.7, extra = 0, compress = T, modlsvalid Factor w/ 2 levels "0","1"
293 nrnw(mndlspht%frame) O modlsvali. Large integer (75000
modltest  Factor w/ 2 levels "

294 nrow(modlsplitSsplits)

295 nrow(modlsplit$frame)-nrow(modlsplitSsplits) modltrain Factor w/ 2 levels
29 : modlvalid Factor w/ 2 levels "0","1"
297 # plot of error rate vs. no. of splits nsplits int [1:501 12345678, -
298 nsplits=1:nrow(modl$splits)
299 plot(smooth.spline(nsplits, 100%ErrTrainv), type = “1", T Fies Plots | Packages | Help | Viewsr e
300 xlab = "Number of splits", ylab = "Error Rate") = -
301 Tines(smooth.spline(nsplits, 100°€rrvalidv)) Bz Bogots 0] f % rubish «
302
- I
303 # Minimum error tree & Best pruned tree
304 min(Errvalidv) . (iue] Income <1015 )
91 (lop 1 evel) Rseript ¢ Spending < 2866492 Education = HSC
s A
Console G/Sesslon 9/ =0 Sundmsl x\z.mnum!\. : unmw.,su{e < Z.hcomf <115
41 41 0.0024 0.02066667 - @mm
42 42 0.0016 0.02000000 e A ARG /
[E] [E] 0.0012 0.02000000 v-ﬂ‘ \ (1o ” a(1)aps pmmen - 25
44 44 0.0008 0.02066667 u c(cn @(I

45 45 0.0008 0.02066667

£ 4w o i
48 48 0.0004 0.02200000 “@ ‘®®‘

49 o 0.0000 002266667 @ G}. @ 5@“",,
50 0.0000 0.02266667

> nsphts il nrow(modl%sph‘s)

So, these are the this is the plot for the error rate versus number of splits that we have

just computed.
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However, they did these computation are based on the node numbers ordering and not on
the based on the importance right. So, that I have just discussed. So, even from this
computation we can see that the error for thee this is the validation this is the training
partition you can see. So, this goes like this. So, the error keeps on decreasing right. So,

keeps on decreasing here for the training partition, if we look at the validation partition



the error decreases, but at some point it starts to increase right. So, at some point starts in
case we go back to the table that we had generated right in this table; if you look at the

number where it was minimum we can look at the number of decision node 10 and

number of decision node 9.

So, they had this lowest error values out of all these points. So, node number 10 and 9
and node number 10 and 9 are going to be here somewhere here and you can see the
validation error value is also minimum somewhere at this point. So, probably this is the
point which is going to be the point with respect to minimum error tree and within one
standard deviation of this point, we can actually determine the best prune tree. So, after

this we can see clearly the remaining partition.

So, after 9th and 10th splits all the remaining splits about 50 splits although all of them
are actually fitting to the noise or over fitting to the data. So, with this with this let us
move forward. So, what we try to do now is we will try to identify the minimum error
tree and then best prune tree as well. So, we can simply use the find the, we can simply
use the min function to find the value of the you know the error of the minimum error

tree this is the error 0.016.
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303 # Minimum error tree & Best pruned tree
304 min(errvalidv)

305 MET=min(nsplits[which(Errvalidv==min(Errvalidv))]); MET modlstrain Factor w/ 2 levels "0","1"
306 # std. err Omodlstrai.. Large integer (125000 elem
307 sqrt(var(Errvalidv)/length(Errvalidv)) (el (6 o 1

Omodlsplitv Large 1ist (748 elements,
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310 metlstd=mip(Errvalidv)+sqre(var(Errvalidv)/length(Errvalidv)); metlstd 5 -
3 P Pron Hepatr 9 f % ruish ¢
312 sPT=0F [which(Errvalidv:min(Errvalidv) &
313 Errvalidv-metlstd &

314 nsplits-MET),][1,1]; BPT
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Console G:/Sesslon 9/

50 50 0.0000 0.02266667

> nsplits=1:nrow(modl$splits)

> plot(smooth.spline(nsplits, 100*€rrTrainv), type = "1",
+ xlab = "Number of splits", ylab = "Error Rate")

> lines(smooth.spline(nsplits, 100*Errvalidv))

» min(Errvalidv) o
(s8] &0%6 - _ i - o T T T T T T
> MET=/ t Errvalidv==min(Errv ; MET

;1T min(nsplits [which(Errvalidv==min(Errvalidv))]) 0 10 20 30 40 50
> sqrt(var(errvalidv)/length(errvalidv))

[1] 0.002072952 Number of splits

>

Error Rate

4
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Which we find out looking at the table as well, now we are interested in finding out the
number of nodes that are going to be in this particular tree. So, that we can also find out

you can look at the code number of splits and we are trying to identify the error value



where it is minimum and that number of nodes will get as this was you can see nine. So,
we had two values in a 2 you know rows 10 and 9 both having the same, but the

minimum, but the first one of them has been selected.

So, minimum of that has been selected, because this main function on any split has been
applied. So, out of 9th and the 9th is small number. So, that has been recorded here. So,
the minimum error tree will have will have actually 9 decision nodes ah. So, let us look
at the standard error that we talked about ah. So, we need to find out the best pruned tree
i1s going to be one standard error within this one standard error of the minimum error

tree. So, this is how we can compute the standard.

So, variance of error validation vectors that error rate vector that we had and divided by
the length of the same vector and taking the square root of the same will give us the
standard error. So, this is the error now to find out the best prune tree let us compute
another error. So, as we talked about because this is a kind of sequence right. So, we
have to go to the left side. So, therefore, the trees that we have to look at the; in this is
going to be within this range the minimum error plus this standard deviation and then

with this standard deviation we can compute this value.

So, our best prune tree will have will be the smallest tree having error value less than this
particular value m e t 1 s t d. So, this value, our best prune tree is going to have the error
on validation partition less than this. So, how do we find out that particular tree. So, this
is a slightly still the table we have already computed. So, from the table also we can find
out. So, let us do this exercise using table first. So, 0.0180 is the number that we would

like to compare with.

So, we have to go to the left side. So, the smaller number of nodes so, we can see we go
to the left side the first number the d ¢ number the 8th row where number of decision
nodes are eight. So, this is the tree that is going to be the selected as best prune tree from
looking at this number right, because this particular value 0.108 is smaller than the value
that we are looking for one standard deviation. So, within the one standard deviation or

minimum error tree, the best prune tree would actually have eight decision nodes right.

So, the same thing we can also compute using this particular code you can see we are
looking at the range. So, which of the rows are having error less than the minimum value

and then greater than the minimum value, but less than the that at particular range that



we have just computed using met 1 s t d and also the number of nodes there should be
less than the minimum error tree and so, there could be you know more rows here. So,
we would like to identify the first one, because that will have a smaller number of nodes
once we compute this you can see we got eight had this table been a bit you know a bit

longer still we would get the right answer.

There had been two three candidates we would get the right answer, now once we know
that eight decision nodes are required. So, we can again follow the same process that we
did earlier the toss variable that we require to sniff the tree we can use we can remove all
the remaining nodes. So, again here also we are doing the; we are following that node

number sequence.

So, we are keeping the nodes from 1 to 8 and from 9 to other nodes we would like to
sniff off; however, this is not the substrate way of doing this would actually follow the
we should actually remove the splits which are least important and that sequence has to
be followed rather than these sorted sequence as we are doing in this example. So, let us
do this for an exercise. So, we compute this toss three then we call this sniff dot R walled
function and pass this argument and we will get the sub tree and then we can print this

sub tree here you would see. So, this is the sub tree that we have.
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Generated through our exercise; however, this is not the desired result that we wanted

just for an exercise we have done this we have used the node numbers you can see. So,



the way we have that of course, that we have taken we are always going to get this kind
of tree which is going to be fairly balanced right. So, because we are not following the
that important splits criteria. So, would see this tree is always going to look like this now

this 1s. So, this tree is much smaller than the full grown tree that we had earlier right.
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So, now it has been pruned to this level and we can also see the important variables and

value combinations and other things. Now, we can apply once this particular tree has

been build we can apply.
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322 bmodtrainl=predict(modlbest, dfltrain[,-c(3)], type = "class")

323 table("predicted value"=bmodtrainl, "Actual value"=dfltrainSPromoffer)
324 #classfication accuracy

325 mean(bmotitrainl==df1trainSpromoffer)

326 #misclassification error

Files Plots Packages Help Viewer =0
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327 mean(bmodtrainl!=dfltrainspromoffer)
328 . (] neome <1015 )
VK1 (lop level) ¢ W seript &
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Console G:/Sesslon 9/ =0 Spending < 2866482 Education = HSC.
> metlstd=min(errvalidv)+sqrt(var(errvalidv)/length(Errvalidv)); metlstd :
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> toss3=toss2[(BPT+1):length(toss2)]
> modlbest=snip.rpart(modl, toss = toss3)

894 1358 014 242 1043 428 0181

> prp(modlbest, type = 1, extra = 1, under = T, varlen = 0, cex = 0.7, a7 2
+ conpress = T, Margin = 0, digits = 0, @ @
+ split.cex = 0.8, under.cex = 0.8) R

>




This particular tree on our training and other partitions to look at the performance of this
program model so, again predict function we can use and let us score the training
partition look at the accuracy number 0.97, 0.4 right, then let us test it on validation

partition. Now, you would see that religion partition is also part of the modelling

exercise.

(Refer Slide Time: 31:04)

(] Roiuio a3
Vo b (o Vew e Sccoon K b e ok Kep
Q- I G vl adding v K project (None)
O] ytresei % =[] Environment History =0
a M oSouconsoe | Q el L] v g | 59 [Fsoue + T H ot f list »
320 SPINT.CeX = U.5, UNger.cex = U.3) B
321 2 clobal 1 nvironment =
322 bmodtrainl=predict(modlbest, dfltrain[,-c¢(3)], type = "class") values
g: Ea?'le(;wed\cud value"=bmodtrainl, "Actual value"=dfltrainSpromoffer) bmodtrainl Factor w/ 2 levels "0","1"
classfication accuracy buodvalidl Fi 2 Jevels "0" "1"
325 mean(bmodtrainl==dfltrainSpromoffer) u:: el ai(mr W 8 1A g
326 #misclassification error 3
327 mean(bmodtrainl!=dfltrainspromoffer) %"“Wd’ s [}-96] 54526361
328 9

329 bmodvalidl=predict(modlbest, dflvalid[,-c(3)], type = "class") ErrTrain 0

330 table("actual value"=dflvalidSpromoffer, "predicted value"=bmodvalidl)

331 #classfication accuracy Fies Plots Packages Help Viewer =
332 mean(bmodvalidi==dfivalidSpromoffer) —
333 Pmisclassification error

334 mean(bmodvalidl!=dfilvalidSpromoffer)
335

Paon Hegals 0 % pbiish +

336 bmodtestl=predict(modlbest, dfltest[,-c(3)], type = "class") . [iza] Vncome <1015 ()
W (loplevel) & Reript +
29 6

Console G/Sesslon 9/ =0 Spending < 1866492 Education = HSC

[1) 0.974

Elr;eaor‘\glz)gnd(minl‘=df1train$vmmoffer) P A
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Performance is slightly better than the training partition you can see the in the full grown
the performance was continuously decreasing, but here we would be surprised we should
not be surprised that the model, because now it is pruned model. So, it is giving much
better performance in comparison to the training partition ; however, the performance
what we expect is performance to remain a bit stable; however, is still even with the
prune tree or best prune tree we expect that our performance on new data. Test partition
another partition should actually we expect that to go down; however, it should be you

know stable for any new observation that we would like to predict.

So, if we look at the; test partition and the performance on test partition, that is; 98 point
that is even better. So, you can see the best prune tree is performing quite good on new
data; however, again [ would like to remind we have not followed the actual process to
arrive at this best prune tree. So, this that actual process will do in a later lecture let us a
another few other important concepts that I would like to cover here is the complexity

parameter. So, complexity parameter, the particular function R part that we use. So, I



already discussed this that the it some of the by default, it reserves some of the
observations for cross validation purpose and based on those observations on those
observation the model the remaining observation are used to build the model and these
observation reserved observation or then used to test those models tree models to look at

the same process, what we did to look at the performance you know performance.

On those observations and the number office number of and the particular number of
splits where the performance is on the lower side that could be one of the you know; so
candidate to get the prune tree. So, we will stop here and we will continue our exercise in
the next section where we will see the inbuilt complexity parameter that is there in R part

that can be how that can be used to you know achieve the prune tree.

Thank you.



