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Welcome to the course business analytics and data mining modelling using R. So, in the

previous lecture, we were discussing classification and regression trees; and specifically

we were talking about the data set on the promotional offers. We were looking at the

variables of those data sets, and we identified the pin code particular variable which is

going  to  be  categorical  variable,  this  is  a  categorical  variable  and  then  too  many

categories 96 of them which we saw in the previous lecture. And we wanted to find out

phase where we can actually reduce the number of categories to a fewer number, so that

the dimensionality problem is solved there.

(Refer Slide Time: 01:08)

So, we generated a bar plot which you can see here, and we were we wanted to analyze

this particular  bar plot to understand whether some of the categories can be grouped

together. So, if we look at this particular graphic we can see that some of the bars having

zero values right, some of the pin codes and they have zero values, so that therefore, zero

offers have been accepted in those locations here and here. So, of course, when the task

is to predict the class of you know this our outcome variable promotional offer, so with



respect  to  that  we  can  club  these  two locations  in  one  group.  Because  the  level  of

acceptance or rejection in these two particular locations two or three, and depending on

because this is quite a you know big plot.

So, all those locations which have similar acceptance level, we probably can group them.

So, for example, other bars we can see for example, this one first bar and the third bar

they also have the similar acceptance level five, so probably we can group them. So, we

can also identify many other you know locations for this one right. So, many other bars

which are at the similar acceptance level, and probably we can group them. We can also

group  them  by  having  a  different  range  right.  So,  depending  on  the  exercise  and

depending on the suitability of that particular grouping with respect to our model and its

performance we can start grouping.

(Refer Slide Time: 02:52)

So, for example the pin codes with 0 to 5, you know acceptance count probably we can

group them, then you know 5 to let us say 8 group 2, then 8 to 12 group 3. So, in this

fashion also we can group these locations. So, we look at this particular scenario then

will end up with this three groups. However, what we are going to perform here in this

our exercises depending on the acceptance whether it is 0 or 1 or 2 because we have only

you know maximum value is 12. So, for each of the acceptance level, we are going to

create you know different groups. So, as you can see rather it is 13, yes, so depending on



the different grouping strategy can be done. So, we can have we can also do this range

based you know grouping, we can also do this.

So, this one seems less suitable, but in our exercise we are going to perform this and this

could be another grouping mechanism. So, but however, we will have to justify we will

have to try and understand why this range and the why this particular range, we will have

to understand probably these locations are having lower levels of acceptance. Probably

these locations are having medium level of acceptance of promotional offers. Probably

these locations having these acceptance numbers they are having slightly higher in our

data set as per our data sets slightly higher level of acceptance.

So, in this fashion also we can perform grouping. However, for our exercise we would

like to have you know so as you can understand we started from 96-pin locations pin

codes right. So, for 96 we can have a this situation also three groups, and we can also

have this one as well where we end up with thirteen groups. So, for our exercise we are

going to perform this one; however, this can also be done. So, once this is understood we

will have to a do few more computations, so that we are able to group all those records in

appropriate category, new categories that we are going to create.

So, what we are going to do is the count of a pin code, the count that we have computed

all right, the count of pin code that will treat as a level. So, if a particular pin code has

zero acceptance count, so that becomes its level 0. If the pin code has a particular pin

codes or number of pin codes which have one acceptance count, so that could be their

level one. And if they have 5 or 10 or 12 acceptance count, so that is going to be level.

So,  all  the  locations  depending  on  the  acceptance  counts  that  they  have,  so  that  is

something that we are going to treat as the level of that particular location. This is mainly

to simplify our coding and simplify our computation, so that we can easily group them.

Later on we want we can give them appropriate name instead of saying 1, 2, 3 or 13 or 0,

we can also say group 0, group 1. So, later on that kind of transformation can be done,

but for our purpose, we will stick to 0, 1 and up to 13 these thirteen levels and we will

later on convert it into a factor variable with thirteen groups.
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So, this particular loop as you can see. So, what we are trying to do here is a assign count

of pin code as its  level.  So,  pin codes having same count will  have same level,  and

therefore that is how they will be grouped. So, loop you can see x and pin names, so for

all the pin names all the pin codes that are there. So, loop will run for those many pin

names for each of them. And first we try to compute the index where this particular you

know x values they are same. So, first we select all the records, all the records having the

same pin code. And once those records indices of those records is known with using

index  variable,  then  pin  code  of  you  know pin  code  of  those  indices  that  is  being

assigned  this  number  which  is  nothing  but  the  count  of  you  know  pin  code,  the

acceptance count for that particular pin code.

You can see C pin code where we had the counts we are trying to identify again you

know the pin code indices where the same pin code is there; and once it is known the

length of index that we already know, so that is going to be repeated. So, C pin code

count of all the locations, all the records where same you know the same pin name is

appearing same pin code is appearing. So, for all those you know we are going to give

that count rep is the function, so it is going to repeat. So, this is going to be equal to the

indices that we have already computed right. So, let us execute this particular code and

then it will be more clear.
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Once it is done, you would see that d f 1 pin code, you can also look at the environment

section as well.

(Refer Slide Time: 09:03)

But if you compute this, you would see all the this particular variable different records

that we had 5000s of them. So, all the records in the pin code variable, now we have the

count right. So, 7, 3, 4, 4 these counts actually represent the acceptance level of those

third particular location. So, because if the count is same, so they are again in the same

level, so they can be easily grouped. So, in this fashion, we are trying to group them.



Now, once we convert this variable into a factor variable. So, now, if we again look at the

values of this variable once it has been converted, so you can see levels you can easily

see 0 to 12, so 12 levels are there. And now this particular variable has been converted

into  a  factor  variable.  So,  other  variables  that  we wanted  to  a  transform into  factor

variables for education. So, three levels we had. So, let us convert it the promotional

offer and also online.

(Refer Slide Time: 10:18)

So, let  us look at  this  structure now. However, education was I  think already it  was

factor, so we repeated the exercise. So, in this fashion, you can see now the promotional

offers factor variable appropriately mentioned here. The pin code now you can see 13

levels. So, we drop down the dimensionality from 96 to 13. So, one of them is going to

be taken as the reference category. Now, the education and online or so 3 and 2 levels

respectively. So, now, all the variables are in their desired variable type.

Now, we can go ahead and start without partitioning exercise. So, in this particular data

set, we have 5000 observations; out of this 5000 observation, we will take the 50 percent

of them that  is  2500 observation in the training partition;  out of the remaining 2500

observation,  we  will  take  first  1500  observation  in  the  validation  partition  and  the

remaining 100o observation in the test partition.

So, let us sample. So, the partitioning in this particular exercise slightly different, as you

have been watching that in the previous other techniques, other lectures when we did



partitioning we just  created two partition  training  and test  partition.  So, they are the

training the sample and indices be we computed using the sample function randomly

drawn indices and that were the part of the training partition, the remaining indices they

were assigned to the test partition. Now, if you look at this these four-five lines of code

for partitioning, first we are trying to randomly draw 2500 observation from the sample

part any partition.

(Refer Slide Time: 12:03)

So, let us do this. So, you can see part index has been created in the environment section

integer vector of 2500 observation. So, now, these observation can be safely assigned to

the training partition.  So, this  is  done training partition is  created with the randomly

drawn 2500 observations of all nine variables. Now, the second we again you know call

sample function. And, now in this case, you would see that all the observations which are

remaining now you can see this vector indices vector. And the remaining observation we

do minus part idx. So, the remaining observations, so remaining indices, now, out of

those  indices,  we  can  again  randomly  draw 50,  1500  you  know further  observation

observations for our validation partition right. So, in this fashion that is again create this

index.
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Now, to because the way we have a randomly drawn these indices right replacement is

also set to false. So, there is no overlapping observation in the training and the validation

partition.  If you want to check the same, you can check using intersect function. So,

intersect function will give us if there are any if there are any similar rows similar values,

so part idx and part idx 1. If we run intersect function here you would see we see no

values. So, these are two different you know two different set of indices. So, now we can

safely create our validation partition by selecting the 1500 randomly drawn indices. And

the remaining indices, so remaining ones which is the where we part idx and part idx 1

both of them once we remove them out, the remaining one are going to be the part of the

test partition. So, in this fashion we can actually go we can actually do our partitioning.

Now, we come to the next part that is once our partisans have been created we can use

the training partition to build our model. So, if similar you know exercise that we did for

the sedan car owner that sedan car dataset. So, here our outcome variable is we are using

r  part  function  within  the  r  part  function,  the  first  argument  is  the  formula.  In  the

formula, you can see promo offer is our outcome variable and this is being modelled

against all other variables which are predictors. Method is class for classification model.

The data is appropriately mentioned as df1 train the training partition.  R part control

function which we talked about in the previous lecture took control a certain aspect of

our tree model right; it is complexity parameter is 0, because we want to grow full you

know full grown tree and we. So, minimum is split this two observations in min bucket



the bucket one observation and so all these parameters we have already talked about x

value 0.

So, if we do not particularly you know I specify this value zero the default value is 10.

So, some observation is going to be used for cross validation by r part function, which

we do not want to do. So, we would like to use all the observations just for the training

you know building the model. And the validation we have the validation partition for

validate to form the validation. So, we do not want to make any we do not want to use

any observation for this cross validation exercise that is inbuilt in the r part function. So,

x value has to be 0. Other parameters are split this the gini metric that we have discussed

in previous lectures. So, let us execute this code and will build the model.

So, now mod one is created as you can see in the environmental section. Now, let us look

at the tree. So, let us set the parameters graphics parameters, margin outer margin. And x

p d you can look at the parameter function par function for more detail.  So, this is a

basically x p d is basically to a you know generate your plot in the device region. So, you

can if you are interested in more detail, you can find out from the help section. Now,

once the pyramorphix parameter are set then we can generate the plot.

(Refer Slide Time: 16:40)

So, this is our basic plot. Let us add the information. Now, you can see the part is quite

messy here. So, this is what we were talking about. If we have very large data set and we

you know generate full grown tree, so it is going to be quite messy. So, you can see the



number of splits too many splits are there because as we talked about in the full grown

tree, we also did the exercise where we were partitioning the observations right. In this

(Refer Time: 17:13) dataset and we kept on partitioning till the all the observations were

classified correctly.

So, the same kind of thing happens in a full grown tree where we continue to build our

tree model till all the observations are classified till all the partitions that we create are

your homogenous partition; that means, all the observations belong to the same class. So,

because of that too many partitions and the full grown tree is going to be quite big as you

can see here. If you want the nicer version or pretty version of this particular plot, so as

we have been doing as we have done previously prp is the function that can be used. The

relevant package we have already talked about.

(Refer Slide Time: 17:59)

So, we can generate this. And you would see that this is the another way of representing

this full grown tree. So, this is slightly better version, but again because the tree is quite

big, so because of that this one also looks messy, but however, we can look at few things

for example, first split is done using income variable and this is value is 101.5. And then

the if you can look at other splits right, the spending and education, right then further

spending here, income here, family size and income. So, you can also see pin code and

you would see the different categories of pin codes, they have been used using comma.

Had we used pin code as an ordinal variable right, then we have would have seen some



numeric  kind of value right.  We the budget I  would have been treated  as you know

because it  already had too many categories.  So, we could have treated it  as numeric

variable.  And  then  it  would  have  some  numeric  value,  because  we  have  treated  its

categorical variable we can see specific categories as part of different sub trees.

So, we will  discuss more on this  as we go along, let  us come back. So, the sniping

exercise that we had done in with using the previous data set something similar we will

have to perform in this particular case because this is quite a you know large tree and the

full grown tree is quite large in this case. So, if we want to this, if we want to see just

first  four  levels,  so  that  we are  able  to  understand what  are  the  rules,  what  are  the

important variables, and how the split is happening if you want to visualize that. So, first

four levels how we can go about this. So, first we need to do the node numbering as we

talked about in the previous data set.

So, you can see node numbering has been done. So, all the nodes have been numbered

now 1, 2, 3, starting 4, 5. So, because this tree is quite large, so you can see most of the

node numbers visible in this case right the earlier some of the numbers were missing, but

now you would see 1, 2, 3 is all the initial all the initial node numbers are there right up

to 13, 14, 15. So, quite you know in a sequence any node numbers can be seen here. So,

let us using these node numbers, we can always snip off the tree part that we are not

interested.
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So, toss was one of the argument, the second argument that we use in the snip are r

function as you can see here in this particular line. So, we need to compute this we need

to create this particular you know argument right variable the number of node actual

node numbers which we want to snip off. So, lets first k toss 1. So, this is the function

mod one and the frame. So, we talked about r part dot object, and one of the element

there one of the attribute was frame. So, within frame we also have row names. So, row

names will actually have these node numbers. So, more detail you can always find using

the using the r part, this upper curve, you can see r part object. You can see it look at this

page in the help section, you can see frame.

(Refer Slide Time: 21:40)

So, for any r part object there is going to be a frame attribute which will be actually a

data frame with one row for each node in the tree. And the row dot names of frame

contain the unique node numbers that follow a binary ordering indexed by node depth.

So,  these  are  the  node numbers  that  we actually  shown in  the  tree.  The same node

numbers are stored in this particular in this particular attribute frame. So, from this we

row, row dot names we are trying to extract that information and then those number

those names and we are trying to convert it into integer variable.

So, let us compute this toss one. So, you can see toss one having 109, since we have 109

total nodes that tree the full grown tree that we had with it has 109 you know nodes. So,

all  those nodes the node numbers the unique node numbers that  are assigned by the



algorithm, so that has that has been captured. Once these numbers have been captured,

we can sort them. So, all this we are doing, so that we are able to identify the nodes

which we want to snip off.

So, once we solved, so these numbers might not be in order. So, if you want to have a

look at  this  you would see that  1,  2,  4,  8,  16,  17,  then is  suddenly 34.  So, the this

numbering is slightly the way this is recorded in row names is slightly different right.

You can see 1, 2, and 4, 8. So, you can see the row names they are recorded in this

fashion 1, 2, 4, 8, and then 16, 17 then 34, 68 right. So, in this fashion these row numbers

are recorded. So, this is slightly different. So, therefore, we will have to sort this out.

(Refer Slide Time: 23:42)

So, let us create another variable sorted values. So, once these values have been sorted

we would like to identify the nodes which we want to get rid off. So, how we can do

this? So, let  us again zoom into the full  grown tree and with node numbers. So, for

example, first four levels, so level 1, 2, and 3 and 4. So, after these four levels, we would

like to get rid of the remaining part of the remaining part of the tree, that means, the

nodes is starting from node number 16. So, let us go back to the code, you can see. Same

thing I mentioned here the toss to this is once you know so 16; and up to the last node

right length of the tossed. So, from these node numbers starting at 16 to the last node, I

would like to get rid off this node, so that we just see the first four levels.
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Let us compute this. This is done. Now, as you can see I am using snip dot r part function

here. So, mode one and we would like to snip it using the toss tree argument containing

the nodes to get rid off. So, this is done.

(Refer Slide Time: 24:56)

Now, we can use p r p function to print the tree. Now, you would see just four levels of

the tree. Now, this is quite clear easy to understand what is going on here. So, you can

see first split is income less than 101.5 and then we have split starting using spending

and this split  using education at  the right part.  The left  part  is spending then further



spending, income, family size, income. So, these are some of the common variables they

would see income and spending they remain the two important variables here, income

spending, family size is also there and the pin code is also visible here in this part you

can see pin code is also there. So, income, spending, education, family size, pin code are

the important variables; however, the income and spending seems to be occurring more

often.

So, now since the whole full  grown tree is  developed to understand more about this

particular full tree. We can look at few more things for example,  number of decision

nodes that are there. So, again r part object this particular split attribute that is there it

will give us these splits contains the information about the variables used for a split. So,

we can also a length off this  particular  this  particular  very attribute  will  give us the

number of additional nodes. So, 54 decision nodes have been used. And we look at the

terminal nodes. So, a total number of nodes would be can we find out by the this frame

as we risk as we looked at the health section that frame contains a unique row number for

each of the node.

So, therefore, it can give us the total number of nodes that are there. You can see 109

which we already know. And then once we subtract the number of decision nodes will

get the number of terminal nodes 55. So, as you can see number of decision nodes 54 and

number of terminal nodes you know 55, which is much more one more than the number

of decision nodes. This is property of binary trees. In binary trees the number of terminal

nodes or number of leaves are one more than the decision nodes.

Now, if we are interested in having a table where we have the information about the

variables which have been used for splitting and the split values. So, the predictor value

combination, if we want to look at look at that list, so by default the output that we get

out of summary function, it is more descriptive right. So, we would like to have a tabular,

tabular  output  then we would have to  write  the code for  the same.  So,  here we are

essentially trying to do this. So, we are trying to capture the split variable information

and a split value information.  So, particularly split value for each of the splitter split

variable, because as we saw that the in r part object split function has the information on

the variables used for split. So, for all those variables can we compute the can we extract

the split values from the model.



(Refer Slide Time: 28:20)

So, let us compute the split values. So, split value lets compute. So, we have to counter j

is the counter file split variable i is counter for split values. So, then a split value is the

this variable where we are going to record all the split values. So, let us initialize this one

on also the counters. Then in the loop you can see x in mode one frame var. So, for all

the variables that are there. So, frame has all the information on all the variables. So, for

we run a loop for all the variables, and then we place a check there if as dot character and

leaf.

So, if the particular variable is the leaf node right if the particular you know that variable

is leaf node then we would like to skip that you know if it is not leaf node will like to

continue. If it is a leaf node, we would like to skip and go to the else part. So, within this

we see that if the variable is not factor right, there is the split variable could be factor or

numeric. So, again we do a check if the split variable is not factor that means, numeric

variable  then  simply  the  value  of  that  split  value  can  be  found  find  out  using  this

particular code where the splits attribute that we discussed. And the index column that is

there the index particular column is actually contains the split value. And j is anyway

counter for a split variable. So, for that split variable and index column will have this

split value will be immediately recorded or captured here; if we go to the else part which

will essentially deal with the factor variable.
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So, here if we go to this part, we have another variable c l as null initialized. So, split if

this spirit variable is factor. So, k is another counter that we are starting which is ranging

from 1 to largest number of levels in the factors. So, the different factor variables that we

have  the  pin  code  had  the  largest  number  of  categories  right.  So,  it  had  thirteen

categories. So, k will we you know lie between 1 and 13. So, we are running a loop for

the those number of categories. So, you can see k in one, two number of column that are

then and c s is split this is particular attribute actually contains information about factor

variables. So, it will have that information. And once it has that information, so we can

run the loop here. And within this we can look at we can again we are getting this temp

variable the we are recording this information of index.

So, this index and particular level, so for a particular variable and its levels, so there are

going to be different categories for factor variable. So, we get further information so that

information would be whether the that particular whether the level of so level of that

particular variable is going to be recorded in temp. So, if that goes into the left child, so

for  a  particular  for  particular  factor  variable  or  categorical  variable,  if  it  has  four

categories. So, once the tree is being constructed, and the categorical variable is the split

variable, we have to check which category is going to the left side and which categories

are going to the right side right. Whether a is going here, and b, c, d are going away to

the right side.



So, the same information as the same thing is being captured in this code. So, once we

have  recorded  whether  a  particular  you  know  whether  particular  level  right  that  is

represented by k right. So, k is running for all the levels right; maximum of levels that

will be run for all the you know it can be used for all the variables and the all the levels.

So, if it is goes for left goes into the that particular level is goes to the left child, left

branch, then that is being recorded here right that is being recorded in c l that c l variable

that we had created class. So, this we are recording here. And then you can see the next

line here, and the else part itself. Again for all the levels, so this loop will run and for all

the levels we would end up recording this, we would end up recording all the levels

right.

So, those levels are actually nothing but the values specific values for the categorical

variables right; just like numeric variable you know the specific value which was used

for split. So, the these level different levels which level has gone to the left part, which

level has gone to the right part, they actually represent the they actually represent the

split  value.  So,  you  can  see  spirit  value  that  variable  that  we  had  initialized.  So,

numerical variables are being stored in the if part; and in else part we are storing the

categorical variable. So, here will keep on storing using this particular function, in this

particular code we will keep on storing the value for categorical.
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Now, the second else part that we have the else section that we have so, this was for the

leaf node. So, if we come in arrive at a leaf node then we assign a spirit value as NA,

because leaf node is not the ricean node and it will not have any split value, and then we

continue with our counter. So, this is the code. So, this is how we can go about capturing

extracting the split values.

So, we will continue our discussion. We will stop here will continue our discussion in the

next lecture from the same point

Thank you.


