Business Analytics & Data Mining Modeling Using R
Dr. Gaurav Dixit
Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture - 40
Classification and Regression Trees- Part V

Welcome to the course business analytics and data mining modelling using R. So, in the
previous lecture, we were discussing classification and regression trees; and specifically
we were talking about the data set on the promotional offers. We were looking at the
variables of those data sets, and we identified the pin code particular variable which is
going to be categorical variable, this is a categorical variable and then too many
categories 96 of them which we saw in the previous lecture. And we wanted to find out
phase where we can actually reduce the number of categories to a fewer number, so that

the dimensionality problem is solved there.

(Refer Slide Time: 01:08)

al Offers Accepted
a
1

#Permation:
4

SESEREERRIRRTERRENE

oo “
a
g Rt B L L S
=

So, we generated a bar plot which you can see here, and we were we wanted to analyze
this particular bar plot to understand whether some of the categories can be grouped
together. So, if we look at this particular graphic we can see that some of the bars having
zero values right, some of the pin codes and they have zero values, so that therefore, zero
offers have been accepted in those locations here and here. So, of course, when the task

is to predict the class of you know this our outcome variable promotional offer, so with

respect to that we can club these two locations in one group. Because the level of
acceptance or rejection in these two particular locations two or three, and depending on

because this is quite a you know big plot.

So, all those locations which have similar acceptance level, we probably can group them.
So, for example, other bars we can see for example, this one first bar and the third bar
they also have the similar acceptance level five, so probably we can group them. So, we
can also identify many other you know locations for this one right. So, many other bars
which are at the similar acceptance level, and probably we can group them. We can also
group them by having a different range right. So, depending on the exercise and
depending on the suitability of that particular grouping with respect to our model and its

performance we can start grouping.

(Refer Slide Time: 02:52)

So, for example the pin codes with 0 to 5, you know acceptance count probably we can
group them, then you know 5 to let us say 8 group 2, then 8 to 12 group 3. So, in this
fashion also we can group these locations. So, we look at this particular scenario then
will end up with this three groups. However, what we are going to perform here in this
our exercises depending on the acceptance whether it is 0 or 1 or 2 because we have only
you know maximum value is 12. So, for each of the acceptance level, we are going to

create you know different groups. So, as you can see rather it is 13, yes, so depending on

the different grouping strategy can be done. So, we can have we can also do this range

based you know grouping, we can also do this.

So, this one seems less suitable, but in our exercise we are going to perform this and this
could be another grouping mechanism. So, but however, we will have to justify we will
have to try and understand why this range and the why this particular range, we will have
to understand probably these locations are having lower levels of acceptance. Probably
these locations are having medium level of acceptance of promotional offers. Probably
these locations having these acceptance numbers they are having slightly higher in our

data set as per our data sets slightly higher level of acceptance.

So, in this fashion also we can perform grouping. However, for our exercise we would
like to have you know so as you can understand we started from 96-pin locations pin
codes right. So, for 96 we can have a this situation also three groups, and we can also
have this one as well where we end up with thirteen groups. So, for our exercise we are
going to perform this one; however, this can also be done. So, once this is understood we
will have to a do few more computations, so that we are able to group all those records in

appropriate category, new categories that we are going to create.

So, what we are going to do is the count of a pin code, the count that we have computed
all right, the count of pin code that will treat as a level. So, if a particular pin code has
zero acceptance count, so that becomes its level 0. If the pin code has a particular pin
codes or number of pin codes which have one acceptance count, so that could be their
level one. And if they have 5 or 10 or 12 acceptance count, so that is going to be level.
So, all the locations depending on the acceptance counts that they have, so that is
something that we are going to treat as the level of that particular location. This is mainly

to simplify our coding and simplify our computation, so that we can easily group them.

Later on we want we can give them appropriate name instead of saying 1, 2, 3 or 13 or 0,
we can also say group 0, group 1. So, later on that kind of transformation can be done,
but for our purpose, we will stick to 0, 1 and up to 13 these thirteen levels and we will

later on convert it into a factor variable with thirteen groups.

(Refer Slide Time: 06:56)

S G . - SRun 3% | Seune -
id e PANCABE | TSROTRLWATEAL A% CRAFAETER 0T LV PiN CO0e =Y &
17 df liproncffar- 1))

f 20 obs. of 1 variables
) #f1 5000 abs of 9 variables [
values
C_PINcode int [1:96] 545263161
mad List of 14
\madsuh Lisr of 14

M Code’, las=3,
o ¥lim - ©00,13), cex names ~ 0.6

ba erovmed

Fin Blul Baage e e
L15pD replC_PINcode [which [FINnanes—x) |, Tengthl index
149 B i MEgui s 0

ar{dfLIPIN. Cade)
n=as Facror (df 15education;

mes) |
+ c_pIncode. lengehiwhich(as.character (df 1SFIN. Code}anx &
; df LSeronoffer==13))

ek
> range(C_PINccde)
11 o 12

#Pormobional Oflers Accepted

+ barplot(C_PINe,
3

+ ¥l
= barplot{c
+ ylab = "#Fors

arg=PINna % Coda” -
: im - c -
N ©
onal of = 5

So, this particular loop as you can see. So, what we are trying to do here is a assign count

s = 0.6} PIN Code

of pin code as its level. So, pin codes having same count will have same level, and
therefore that is how they will be grouped. So, loop you can see x and pin names, so for
all the pin names all the pin codes that are there. So, loop will run for those many pin
names for each of them. And first we try to compute the index where this particular you
know x values they are same. So, first we select all the records, all the records having the
same pin code. And once those records indices of those records is known with using
index variable, then pin code of you know pin code of those indices that is being
assigned this number which is nothing but the count of you know pin code, the

acceptance count for that particular pin code.

You can see C pin code where we had the counts we are trying to identify again you
know the pin code indices where the same pin code is there; and once it is known the
length of index that we already know, so that is going to be repeated. So, C pin code
count of all the locations, all the records where same you know the same pin name is
appearing same pin code is appearing. So, for all those you know we are going to give
that count rep is the function, so it is going to repeat. So, this is going to be equal to the
indices that we have already computed right. So, let us execute this particular code and

then it will be more clear.

(Refer Slide Time: 08:50)

e ~ Tl eswbeonment Wistary ==

T T - S | 3911 B s *H Beperrine s e =

138 range(c_PIncods) b bl s mecnmare =

140 barplat{c_PINcode, names arg=PINnames, xlab = "PIN Code”. las=3, Data
ylab - “#Pormorional offers Accepted”, ylim - c(0,13), cex.names - 0.6)) df 20 ohs. of 3 variables
142
F45 caniatas. facrert e y df] 5000 abs of 9 variables
144 wvalues
145 abel and wi e g ed €_PINcode imt [
196+ for(x i) index int [
1ar indax - which ridf15PIN. Coda x) d fide
108 dfLlindex,] Code=rep(C_PINcode [which(PINnanes==x) |, length{ index L 2
149 Py | Pk Bt ity | o -
150 -
151 BF1iPIn.code=as. factoridflien code) Pooi Mo 0 & §-

152 dfiieducation-as.faccor (df LiEducation
153 dflipromaffer=as.Factor (df Lipromaffer’
152 df15online=as facTor(dflionline

Cansols (- Sesn & =
]

= rangs(C_PINcode)

[o1

o, mames.argRINnanes, xlab = “PIN code”, 1
4Pormoticnal O Accepred”, ylim = c(0,13

. mames . arg=PINna ul PIN Code”™,

#Pormotional of fi . ¥lim = c(0.13).

= barplotic e

5

+ ¥
= barplot(c,
+ ; cex.manes = 0.6)

HPormobional Ofters Accepted
a

» farlx Nranas) {
+ dindex-mhich(as.character (4F16PIn . Codedamx]

+ dfl[index,]SPIN. Code=rep(C_PINcede [which(PINnames==x}1, length{index})

i PIN Code

Once it is done, you would see that d f 1 pin code, you can also look at the environment

section as well.

(Refer Slide Time: 09:03)

Pk M
- —~ Hiaory =
4 - 2 | B LT s i it i
weads, names.arg-PINnames, xlab - "sIn code”, 1 i e
¥iah = “#varnotional offers accepted”, ylim = c(0,131, cox.names = 0.6 Data
: 0 of 20 cas of 3 variables
g e therar R THOde 41 5000 obs of 9 variables
145 . values
16 - o 2 { . C_PINcode imt [1:06] 54516161
137 dev—ubichias charactar (417FI code, x S T
d 1:52] 6 56 77 202 238
138 dfilindex 14PIN.Code-ren(e_pINcods which PINnamas--x) 1. Tangthi indax)) L bl
o mad List of 14
130 film Fiob Bekagm H - m
151 or (df LiPIN ot o
35z ror (dF15educatian Focy M 9
153 or (GF15Promofrer
15 ol ne=as. Factor(dF 15on] ine;
155 sreiofl 2
i | g e = Z
3
v —olF o
S B 2654607 7535644954436 41065 »
537 98520474296 21L5466337464 50 @
2126 310 24211 53 35 157 647304604 5
2 310 ¢ 6535 35801446262 a0 43538 5 a
555488602622 62647086084413567 £
665 2 34 500 7 7 65 6 3 B4 7 833224674 2]
631 410 7 B 8 437 1.7 58 486056773527 g ©
85 6 8 3 24 210 411 8 3 4 4 6 6 2 3 2533753 £
5223372 33u4 g et
[reached getoptian{’nax_print™} -- omitted 4000 entries ® e s s
= F13PTh . Codeaas factor (dF1SPIN, Code) PIN Coda

But if you compute this, you would see all the this particular variable different records
that we had 5000s of them. So, all the records in the pin code variable, now we have the
count right. So, 7, 3, 4, 4 these counts actually represent the acceptance level of those
third particular location. So, because if the count is same, so they are again in the same

level, so they can be easily grouped. So, in this fashion, we are trying to group them.

Now, once we convert this variable into a factor variable. So, now, if we again look at the
values of this variable once it has been converted, so you can see levels you can easily
see 0 to 12, so 12 levels are there. And now this particular variable has been converted
into a factor variable. So, other variables that we wanted to a transform into factor
variables for education. So, three levels we had. So, let us convert it the promotional

offer and also online.

(Refer Slide Time: 10:18)

147 noex-whichias

i aracter (df LSPIN. Code) - D df 0 chs. of I variables
148 df 1l vndex,]5PI?

x)
oile= rep(C_PINcode (nhich (FINnames==x) |, Tengthl index) o e e A

C_PINcode imr [1:96] 545263161
index int [1:52] 6 56 77 202 238
2 mad List of 14

Fil Plob Pakage Eep i =

Bz Mpgns Q. f -

158 partidx-sam

153 dfltrain-dfl]

160 porTidvl-sanplerd] neow(df1))[partide], 1500, replace =)
T

"data.frame’': 5000 obs. of 9 varisbles:
§Incone :orun 48 33 10 101 45 3L 71 23 £0 182 .

P e (T B W T

i PIn.Code 84553768513

$ Experience

§ Family.Size:
Education

§ online

#Peemabonal Offers Accepted

ostGrad™: 2221111313

So, let us look at this structure now. However, education was I think already it was
factor, so we repeated the exercise. So, in this fashion, you can see now the promotional
offers factor variable appropriately mentioned here. The pin code now you can see 13
levels. So, we drop down the dimensionality from 96 to 13. So, one of them is going to
be taken as the reference category. Now, the education and online or so 3 and 2 levels

respectively. So, now, all the variables are in their desired variable type.

Now, we can go ahead and start without partitioning exercise. So, in this particular data
set, we have 5000 observations; out of this 5000 observation, we will take the 50 percent
of them that is 2500 observation in the training partition; out of the remaining 2500
observation, we will take first 1500 observation in the validation partition and the

remaining 1000 observation in the test partition.

So, let us sample. So, the partitioning in this particular exercise slightly different, as you

have been watching that in the previous other techniques, other lectures when we did

partitioning we just created two partition training and test partition. So, they are the
training the sample and indices be we computed using the sample function randomly
drawn indices and that were the part of the training partition, the remaining indices they
were assigned to the test partition. Now, if you look at this these four-five lines of code
for partitioning, first we are trying to randomly draw 2500 observation from the sample

part any partition.

(Refer Slide Time: 12:03)

— |
151 dflipIn.code=as. factor(df L3PIN Code) values
152 dflSeducation-as.factor (df 15Education, C_PINcode int [
153 dtLiFromaffer-as.Factor (dF LiPromoffer indax I
154 dfilionline-as.factaraf1ionlines]

155 stricfl)
0 modsub

5001000 madsub2 of 1
o partide int [1:2300] 2981 L192 464

151
163 dfitestedfli-c(partidsl, parzidx),]
"

rpartipronetfer - methad = class”, data = dfltrain

‘data.frame’: 5000 obs. of 3 vartables:
§ Incame : num 49 35 10 10L 45 31 71 23 80 182 .
§ spending : num 1.6 2.201 0.495 2.73 1 ...

w/ 2 lavel VST b

8455376853

#Peemabional Ofters Accepted

Posterad™: 2221111313
1221 B

3

So, let us do this. So, you can see part index has been created in the environment section
integer vector of 2500 observation. So, now, these observation can be safely assigned to
the training partition. So, this is done training partition is created with the randomly
drawn 2500 observations of all nine variables. Now, the second we again you know call
sample function. And, now in this case, you would see that all the observations which are
remaining now you can see this vector indices vector. And the remaining observation we
do minus part idx. So, the remaining observations, so remaining indices, now, out of
those indices, we can again randomly draw 50, 1500 you know further observation
observations for our validation partition right. So, in this fashion that is again create this

index.

(Refer Slide Time: 12:57)

gL L e -
164 dFItrain 2500 obs. of 9 variables
165 modiorpart{fromof 1)eFivalid LS00 obs. of 9 variables
wo 1 values
8= € PINcods int [1:96] 34526361
5 R z ! inday ine [1:52] & 56 77 202 218
170 mad List of 14

par(mar=c(0,0,0,0), pma-c(0.0,0,0), xpd=na)) madL List of 13
platimodl, uniforn=T, branch = 0.1, compress = 7

margin = 0. nspace - 1 Pl Pt Package Help Ve -
i plits = T, use.n = F, all = F, mnlength = 0,

Bz | o 91 o
extra = 0, compress = T,

1500, replace = F)

= cflvalidecfl[partidxl,]
> dfltest=dfl[-c(partidxl, partidx),]
= madlsrpart({Proncffer ~ ., methe 2
4 control = rpart contr

class”, data = dfitrain,
minsplit = 2, minbucket = 1
te = 0, maxsurrogate = O,

#Pormobional Oflers Accepted

PIN Code

+ parns = 1 -

Now, to because the way we have a randomly drawn these indices right replacement is
also set to false. So, there is no overlapping observation in the training and the validation
partition. If you want to check the same, you can check using intersect function. So,
intersect function will give us if there are any if there are any similar rows similar values,
so part idx and part idx 1. If we run intersect function here you would see we see no
values. So, these are two different you know two different set of indices. So, now we can
safely create our validation partition by selecting the 1500 randomly drawn indices. And
the remaining indices, so remaining ones which is the where we part idx and part idx 1
both of them once we remove them out, the remaining one are going to be the part of the

test partition. So, in this fashion we can actually go we can actually do our partitioning.

Now, we come to the next part that is once our partisans have been created we can use
the training partition to build our model. So, if similar you know exercise that we did for
the sedan car owner that sedan car dataset. So, here our outcome variable is we are using
r part function within the r part function, the first argument is the formula. In the
formula, you can see promo offer is our outcome variable and this is being modelled
against all other variables which are predictors. Method is class for classification model.
The data is appropriately mentioned as dfl train the training partition. R part control
function which we talked about in the previous lecture took control a certain aspect of
our tree model right; it is complexity parameter is 0, because we want to grow full you

know full grown tree and we. So, minimum is split this two observations in min bucket

the bucket one observation and so all these parameters we have already talked about x

value 0.

So, if we do not particularly you know I specify this value zero the default value is 10.
So, some observation is going to be used for cross validation by r part function, which
we do not want to do. So, we would like to use all the observations just for the training
you know building the model. And the validation we have the validation partition for
validate to form the validation. So, we do not want to make any we do not want to use
any observation for this cross validation exercise that is inbuilt in the r part function. So,
x value has to be 0. Other parameters are split this the gini metric that we have discussed

in previous lectures. So, let us execute this code and will build the model.

So, now mod one is created as you can see in the environmental section. Now, let us look
at the tree. So, let us set the parameters graphics parameters, margin outer margin. And x
p d you can look at the parameter function par function for more detail. So, this is a
basically x p d is basically to a you know generate your plot in the device region. So, you
can if you are interested in more detail, you can find out from the help section. Now,

once the pyramorphix parameter are set then we can generate the plot.

(Refer Slide Time: 16:40)

2500 obs. of 9 variables
LS00 obe. of 9 variables

values
€ pINceds int [1:96] 325268361

indax int 52] & 56 77 202 218
ymad
ymadl List

Fim Flol Bakage b i

So, this is our basic plot. Let us add the information. Now, you can see the part is quite
messy here. So, this is what we were talking about. If we have very large data set and we

you know generate full grown tree, so it is going to be quite messy. So, you can see the

number of splits too many splits are there because as we talked about in the full grown
tree, we also did the exercise where we were partitioning the observations right. In this
(Refer Time: 17:13) dataset and we kept on partitioning till the all the observations were

classified correctly.

So, the same kind of thing happens in a full grown tree where we continue to build our
tree model till all the observations are classified till all the partitions that we create are
your homogenous partition; that means, all the observations belong to the same class. So,
because of that too many partitions and the full grown tree is going to be quite big as you
can see here. If you want the nicer version or pretty version of this particular plot, so as
we have been doing as we have done previously prp is the function that can be used. The

relevant package we have already talked about.

(Refer Slide Time: 17:59)

T e

Q- ix- B . - desimn

partmar=ci,0,0,0), oma=cid, i,

plot{mocl. wniform-T, branch -
in = 0, nspace = 1)

115 = 1. use n= . all = ¢ minlength = 0

1, apa=ua)
1, compress - T,

Fin fon Peage mee e

Bz et O 4 %

[z tnceme = 1014 (]
1| o | et = e = Spending < 1M Education < HIC
|| Sesodeg < 260607 mconSanly.Size <25 incoes = 19R%

e e 1 m,ﬁ{fjﬁl}-nﬁnﬁku.
e 00) i;"é.""'@%)’_'!"ﬁ}:‘fju

] D T
B D E 0 e C 0]

' A

-
warriing message: e
Tabs da not fit ewen at cex 0.13, thers may be sone cverplotring cn ()

So, we can generate this. And you would see that this is the another way of representing
this full grown tree. So, this is slightly better version, but again because the tree is quite
big, so because of that this one also looks messy, but however, we can look at few things
for example, first split is done using income variable and this is value is 101.5. And then
the if you can look at other splits right, the spending and education, right then further
spending here, income here, family size and income. So, you can also see pin code and

you would see the different categories of pin codes, they have been used using comma.

Had we used pin code as an ordinal variable right, then we have would have seen some

numeric kind of value right. We the budget I would have been treated as you know
because it already had too many categories. So, we could have treated it as numeric
variable. And then it would have some numeric value, because we have treated its

categorical variable we can see specific categories as part of different sub trees.

So, we will discuss more on this as we go along, let us come back. So, the sniping
exercise that we had done in with using the previous data set something similar we will
have to perform in this particular case because this is quite a you know large tree and the
full grown tree is quite large in this case. So, if we want to this, if we want to see just
first four levels, so that we are able to understand what are the rules, what are the
important variables, and how the split is happening if you want to visualize that. So, first
four levels how we can go about this. So, first we need to do the node numbering as we

talked about in the previous data set.

So, you can see node numbering has been done. So, all the nodes have been numbered
now 1, 2, 3, starting 4, 5. So, because this tree is quite large, so you can see most of the
node numbers visible in this case right the earlier some of the numbers were missing, but
now you would see 1, 2, 3 is all the initial all the initial node numbers are there right up
to 13, 14, 15. So, quite you know in a sequence any node numbers can be seen here. So,
let us using these node numbers, we can always snip off the tree part that we are not

interested.

(Refer Slide Time: 20:39)

I e
1n 2500 obs. of 9 variabies
tra = 0, compress = T, ydfivalid L500 obs. of 9 varinbles

F. minlangch - o,

0, comgress = T
=08

2--16) . Tengthitess?
rass - rossh

x = 0.7, extra = 0, compress = T,

¢ S o ce S
185 margin = 0, digits = 0F s

| ipit otyect froary R Documentalien, |

7| Recursive Partitioning and
o Regression Trees Object

1 = . oall = F, minlength

profnodl, varlen = 0, cex = 0.7, extra = 0, compress
wargin = 0. digits = 03 Description

H Y AE Yt
i

ne overplotting Thess are chiects reprasentng fitted cpuc frees.

o Valus

warning message:

labs da not fit even at cex 0.1%, there may be zome cverplotting Frame <alm frame i ane row tar

= aachrode in e lres The
R

So, toss was one of the argument, the second argument that we use in the snip are r
function as you can see here in this particular line. So, we need to compute this we need
to create this particular you know argument right variable the number of node actual
node numbers which we want to snip off. So, lets first k toss 1. So, this is the function
mod one and the frame. So, we talked about r part dot object, and one of the element
there one of the attribute was frame. So, within frame we also have row names. So, row
names will actually have these node numbers. So, more detail you can always find using
the using the r part, this upper curve, you can see r part object. You can see it look at this

page in the help section, you can see frame.

(Refer Slide Time: 21:40)

F, a1l # minlength o
cex=0.7

5 F

€ proimadl, varlen = 0, cex = 0.7, extra = 0, compress = T,
7 Margin @1

g

il

B, digits

an. eger row.nanes (modLifrane)
182 fossi-sortitossl)
1685 tossi-tossd(mhichitoss2=16) . length(toss?
186 modlsub=snia.roart (madl, Toss = rossd
187 profmodisub, varien - 0, cex - 0.7, extra « 0, comoress = T,
188 Margin = O, digits - 0

i e
T, use.n = F, all = . mnlength = 0, CONLEN Me (unigue) nade
numiers thal foliow 8 binary
ex = 0.7, extra = 0, compress = T, ordenng indexed by node
its = 03 daplh. Catarrs. of Feame
¥ i

ven at cex 0,15, there may be sone overplotting
= 0. cex = 0.7, extra = 0, conpress =T,
i 0, an=T, nn.cex = 0.6)

n st cex 0.15. thers may ba sane overnlotting
row_ranes (modLiFrane))

So, for any r part object there is going to be a frame attribute which will be actually a
data frame with one row for each node in the tree. And the row dot names of frame
contain the unique node numbers that follow a binary ordering indexed by node depth.
So, these are the node numbers that we actually shown in the tree. The same node
numbers are stored in this particular in this particular attribute frame. So, from this we
row, row dot names we are trying to extract that information and then those number

those names and we are trying to convert it into integer variable.

So, let us compute this toss one. So, you can see toss one having 109, since we have 109
total nodes that tree the full grown tree that we had with it has 109 you know nodes. So,

all those nodes the node numbers the unique node numbers that are assigned by the

algorithm, so that has that has been captured. Once these numbers have been captured,
we can sort them. So, all this we are doing, so that we are able to identify the nodes

which we want to snip off.

So, once we solved, so these numbers might not be in order. So, if you want to have a
look at this you would see that 1, 2, 4, 8, 16, 17, then is suddenly 34. So, the this
numbering is slightly the way this is recorded in row names is slightly different right.
You can see 1, 2, and 4, 8. So, you can see the row names they are recorded in this
fashion 1, 2, 4, 8, and then 16, 17 then 34, 68 right. So, in this fashion these row numbers

are recorded. So, this is slightly different. So, therefore, we will have to sort this out.

(Refer Slide Time: 23:42)

F * Souny
175 Space = 1)
172 tewtimodl. T.use.n F, all f, minlangth - O,
175 cexn=0.7
176 proimadl, varlen - 0. cex = 0.7, extra = 0, comoress - 1.
Margin = 0, digits - 0
178
170 # Fir PIHnamas ¢
180 pral) 0, compress =T, zazsl i
181 A = 0.6 Toss? int [1:109] L 2 34 354 7
182 TPIN ‘table’ Int [1:9&(1d)] 34
183 tossleas
184 tossi-sorritossi) Flw: flob e = 3
185 tosai-tessdimhichitoss?=-16) length(toss? -
18 medlsub=snig.rpart(madl, Toss = tossd) Fom Megtr Q. & H-
7 profmadisub, varlen - §, cex « 0.7, extra « 0, compress - T.

158 win = 0, digits] e < 018 [y

en at cex 0.13. there may be sone overnlorzing
(i nes (madL3f rana))

2 3 8 69 138 139 35 9 18 36 3
[17] 74 148 149 298 299 598 399 75 150 300 301 602 603 151 302 604
[33] 605 303 20 40 4L &2 164 165 330 331 83 166 L6
[49] 334 668 669 1338 1339 335 21 11 22 23 12 14 15 50
(65] 51 13 26 52 104 105 2 21L 3 7 7 14 28 6 112 24
[B1] 225 430 451 113 226 452 453 906 007 1814 1815 7 454 455 57 114
9 58 539 118 15 30 60 6L

s2=sarz(tossl

So, let us create another variable sorted values. So, once these values have been sorted
we would like to identify the nodes which we want to get rid off. So, how we can do
this? So, let us again zoom into the full grown tree and with node numbers. So, for
example, first four levels, so level 1, 2, and 3 and 4. So, after these four levels, we would
like to get rid of the remaining part of the remaining part of the tree, that means, the
nodes is starting from node number 16. So, let us go back to the code, you can see. Same
thing I mentioned here the toss to this is once you know so 16; and up to the last node
right length of the tossed. So, from these node numbers starting at 16 to the last node, I

would like to get rid off this node, so that we just see the first four levels.

(Refer Slide Time: 24:42)

e ST eebommenr History E
afim 39 Sz - Rimeriisie =

a1l F., minlangth - © T bttt mersnmant =

madsub? 15T of 13
parzids [1:2500] 2981 1182 462
1:15007 1176 ga% “zs

176 prp(madt, varlen = 0, cex = 0.7, extra - 0, compress - 7.

Margin - 0, digits

4 arzidel
P8 W First Fooe: Tew g PInnsmas 1:896] "Liopoy" "L
S s e S O S e o zassl int [1:108] L2 28 38 17
he 0 tlatts =0 0.5 rass? int f1:108] 1233587
1\-1 zossd int [1:94] 16 17 18 19 X0
183 toss. teger{row. nanes i
184 tossloscreitoss. Fiw Ful Rabage M e i
185 tosaistona nhd‘ tossd=16) lengthitoss
186 modlsub=smip. madl, toss = rossh ¥z, MEguts 8
eSSt e o @
186 Margin = 0, digits = 0J
183 (] tnceme <1015 oy
et | iy
[
Cansots 1 e "
s ma e comomme il OF resre)
> tass

11 1 2 4 8 16 17 3¢ 68 69 138 139 35 9 18 36 37
[LF] 74 148 149 295 29% 3§98 3§99 75 150 300 301 602 603 151 302 604
[33] 605 303 19 5 10 20 40 4L 82 264 165 330 331 83 166 167
[49] 334 668 6[19 1!33 1338 335 21 il 2 23 3j 6 12 24 25 50
[65] 51 13 104 105 210 211 51 27 7 14 28 36 112 224
[B1] 225 450 qu 113 226 452 453 906 007 1814 L8IS 227 454 455 57 114
[67] 115 26 5§ 50 118 236 237 110 15 30 60 61 31

a3s2=sart 1)

» tossistoss2[which(ross2==16) Tength(ross2)]

Let us compute this. This is done. Now, as you can see | am using snip dot r part function
here. So, mode one and we would like to snip it using the toss tree argument containing

the nodes to get rid off. So, this is done.

(Refer Slide Time: 24:56)

¥- B A - i -

| v — 71 eewhonment Hisory =i

s - R 34 e = * i St e+ i =

DIITE = U, BASi, ne CEE = 6B
Eo ¥ 1 T T tidokal § mercnment =

183 tossleas. integer({row.names (nodlifranc ymadlsub List of 1S
1 el DR yossz Omodsub List of 14
toss3-toraZ (mhichitoss ergthioss i <
186 Mod15ub=Enif. AT (Ml Toss - prodeubZ, Lisx of 14
O e S R e e parcide imc [1:2500] 2951 Lisz 462
188 Margin 0, digits o parzidel int 500] 1176 96 8
PINnamas 6] “110001" o0

Tres zaszl int [1:108] L 248 16 17
Fin Fon beage me e

oy Megwts O F 5 -

L < [
2] Income < 1.5 [

[17] 74 148 149 298 293 595 5389 75 150 300 301 602 603 151 302 604
[35] 605 303 19 5 10 20 40 4L &2 164 165 330 331 B3 166 167

[49] 334 66E 669 1318 13319 333 21 11 2 23 3 1] 12 24 25 50 * ‘
(65] 51 13 26 52 104 105 210 21l 53 27 7 14 & 56 112 24 m«zsssu'wm“ hws«mﬂ‘”““ bt
(L] 235 430 450 A3 2B 43 453 9D OO LSl 81 27 434 455 7 1w A IR i
(871 115 15 58 59 118 236 237 30 B0 (13 31 y

s m..n...a&,"&..&. M““&m& “?mg"-ﬁ
Sy “_' L,\H-l '

hich (tass2==16): Te

+ madLlsubeznip. rpartinodl, coss - i B iy
> prp{rodlsun, varlen = 0, cex = 0.7, extra = 0, compress = T, (5} '|T L)AL) (0]
+ margin - 0. digits - 0) (D0 ﬂ.o.ﬂ 40} J_.J‘-

Now, we can use p r p function to print the tree. Now, you would see just four levels of
the tree. Now, this is quite clear easy to understand what is going on here. So, you can
see first split is income less than 101.5 and then we have split starting using spending

and this split using education at the right part. The left part is spending then further

spending, income, family size, income. So, these are some of the common variables they
would see income and spending they remain the two important variables here, income
spending, family size is also there and the pin code is also visible here in this part you
can see pin code is also there. So, income, spending, education, family size, pin code are
the important variables; however, the income and spending seems to be occurring more

often.

So, now since the whole full grown tree is developed to understand more about this
particular full tree. We can look at few more things for example, number of decision
nodes that are there. So, again r part object this particular split attribute that is there it
will give us these splits contains the information about the variables used for a split. So,
we can also a length off this particular this particular very attribute will give us the
number of additional nodes. So, 54 decision nodes have been used. And we look at the
terminal nodes. So, a total number of nodes would be can we find out by the this frame
as we risk as we looked at the health section that frame contains a unique row number for

each of the node.

So, therefore, it can give us the total number of nodes that are there. You can see 109
which we already know. And then once we subtract the number of decision nodes will
get the number of terminal nodes 55. So, as you can see number of decision nodes 54 and
number of terminal nodes you know 55, which is much more one more than the number
of decision nodes. This is property of binary trees. In binary trees the number of terminal

nodes or number of leaves are one more than the decision nodes.

Now, if we are interested in having a table where we have the information about the
variables which have been used for splitting and the split values. So, the predictor value
combination, if we want to look at look at that list, so by default the output that we get
out of summary function, it is more descriptive right. So, we would like to have a tabular,
tabular output then we would have to write the code for the same. So, here we are
essentially trying to do this. So, we are trying to capture the split variable information
and a split value information. So, particularly split value for each of the splitter split
variable, because as we saw that the in r part object split function has the information on
the variables used for split. So, for all those variables can we compute the can we extract

the split values from the model.

(Refer Slide Time: 28:20)

2300] 2991 1182 462

13007 1176 S&3 3328

PInnamas chr [1:96] “L10001" “L1000

_fas.charactar(x) - 1 Tossl int [1:108] L 2 4 B 16 17
201- if (!is.factor(dfl].as. character(x)1)] {

202 | selizvaluelilomedlisalics (i, "index"] Films Flob Pakagm el e -

o bt

LTS VRTTTAN AT SRR 10865 T =

n ane row for
i

> proprodlsun, varien = it =T, =pih.
+ Margin = 0, digits = 0) rchude
= wincdlisplits) he names af the varisties
ugsed if M pil ak each
wincd 15 Frame) nade (leaf rodes sre
00 denoted by the level -

So, let us compute the split values. So, split value lets compute. So, we have to counter j
is the counter file split variable i is counter for split values. So, then a split value is the
this variable where we are going to record all the split values. So, let us initialize this one
on also the counters. Then in the loop you can see x in mode one frame var. So, for all
the variables that are there. So, frame has all the information on all the variables. So, for
we run a loop for all the variables, and then we place a check there if as dot character and

leaf.

So, if the particular variable is the leaf node right if the particular you know that variable
is leaf node then we would like to skip that you know if it is not leaf node will like to
continue. If it is a leaf node, we would like to skip and go to the else part. So, within this
we see that if the variable is not factor right, there is the split variable could be factor or
numeric. So, again we do a check if the split variable is not factor that means, numeric
variable then simply the value of that split value can be found find out using this
particular code where the splits attribute that we discussed. And the index column that is
there the index particular column is actually contains the split value. And j is anyway
counter for a split variable. So, for that split variable and index column will have this
split value will be immediately recorded or captured here; if we go to the else part which

will essentially deal with the factor variable.

(Refer Slide Time: 30:11)

mad
0 madL =
Omadisub L1sT
) madsub List of

List

r 12(k], sep=",") File Flob Reckage
4 ¥ & ksl

= 7. stap = nchar(cl) R VATIA] EK 1945 AT =

it frame Wit ane row s

+ margin = 0, digits = . .
= nrow(mod1isplits) nchude <z, a tactor giving
(13 5 e names of ihe vatisbies
= nrow(nod1§frame) used in e spil al each
1] node f nodes sre

denoted By the leyel -

= rrow(nedlifrane)-nron{medlSzplits)
(1} 55

- salitvaluesnioe; jel; del

So, here if we go to this part, we have another variable ¢ 1 as null initialized. So, split if
this spirit variable is factor. So, k is another counter that we are starting which is ranging
from 1 to largest number of levels in the factors. So, the different factor variables that we
have the pin code had the largest number of categories right. So, it had thirteen
categories. So, k will we you know lie between 1 and 13. So, we are running a loop for
the those number of categories. So, you can see k in one, two number of column that are
then and c s is split this is particular attribute actually contains information about factor
variables. So, it will have that information. And once it has that information, so we can
run the loop here. And within this we can look at we can again we are getting this temp

variable the we are recording this information of index.

So, this index and particular level, so for a particular variable and its levels, so there are
going to be different categories for factor variable. So, we get further information so that
information would be whether the that particular whether the level of so level of that
particular variable is going to be recorded in temp. So, if that goes into the left child, so
for a particular for particular factor variable or categorical variable, if it has four
categories. So, once the tree is being constructed, and the categorical variable is the split
variable, we have to check which category is going to the left side and which categories
are going to the right side right. Whether a is going here, and b, c, d are going away to
the right side.

So, the same information as the same thing is being captured in this code. So, once we
have recorded whether a particular you know whether particular level right that is
represented by k right. So, k is running for all the levels right; maximum of levels that
will be run for all the you know it can be used for all the variables and the all the levels.
So, if it is goes for left goes into the that particular level is goes to the left child, left
branch, then that is being recorded here right that is being recorded in c 1 that c | variable
that we had created class. So, this we are recording here. And then you can see the next
line here, and the else part itself. Again for all the levels, so this loop will run and for all
the levels we would end up recording this, we would end up recording all the levels

right.

So, those levels are actually nothing but the values specific values for the categorical
variables right; just like numeric variable you know the specific value which was used
for split. So, the these level different levels which level has gone to the left part, which
level has gone to the right part, they actually represent the they actually represent the
split value. So, you can see spirit value that variable that we had initialized. So,
numerical variables are being stored in the if part; and in else part we are storing the
categorical variable. So, here will keep on storing using this particular function, in this

particular code we will keep on storing the value for categorical.

(Refer Slide Time: 33:54)

e [L:96(1)] 54 -

Filn Ploh Pakage Help | U
far

W rsive Vet and s

i o At
splitvalue(i]=substric]. start = 2. stop = nchar(c1)) Ardenng indexed Ly

deplh. Cokares of
i

+ else
+ splitvalue[i]=sa

e

a d=fal
S

> the cd cane
wekdits Tor cheenaticns. o

Now, the second else part that we have the else section that we have so, this was for the
leaf node. So, if we come in arrive at a leaf node then we assign a spirit value as NA,
because leaf node is not the ricean node and it will not have any split value, and then we
continue with our counter. So, this is the code. So, this is how we can go about capturing

extracting the split values.

So, we will continue our discussion. We will stop here will continue our discussion in the

next lecture from the same point

Thank you.

